生物多样性 ›› 2022, Vol. 30 ›› Issue (8): 22186. DOI: 10.17520/biods.2022186
所属专题: 土壤生物与土壤健康
收稿日期:
2022-04-14
接受日期:
2022-06-23
出版日期:
2022-08-20
发布日期:
2022-08-31
通讯作者:
李俊生
作者简介:
* E-mail: lijsh@craes.org.cn基金资助:
Bing Yan1, Qing Lu2, Song Xia1, Junsheng Li3,*()
Received:
2022-04-14
Accepted:
2022-06-23
Online:
2022-08-20
Published:
2022-08-31
Contact:
Junsheng Li
摘要:
城市化对生物多样性的影响是当前生态学研究的热点之一, 引起了人们的广泛关注。土壤微生物多样性是城市生物多样性的重要组成部分, 对维持城市生态系统的健康稳定具有重要意义和作用。近年来, 已有研究关注城市土壤微生物群落结构及多样性, 回答了一些关键问题, 但缺乏系统的总结与论述。基于此, 本文分析了城市化对土壤微生物特性、群落组成、功能和多样性的影响, 总结了影响城市土壤微生物多样性的主要因素, 发现城市化改变了土壤微生物组成和功能, 并且对细菌和真菌多样性的影响存在差异, 城市环境因子通过直接和间接作用共同影响土壤微生物多样性。进一步探讨了城市土壤微生物多样性的维持与保护, 并对今后城市土壤微生物研究需要关注的问题进行了展望, 包括: (1)城市化对城市绿地土壤微生物多样性的影响机制; (2)城市土壤微生物多样性变化对生态系统多功能性的影响; (3)土壤微生物多样性与人类健康的关系。以期为城市土壤生物多样性保护研究提供参考。
闫冰, 陆晴, 夏嵩, 李俊生 (2022) 城市土壤微生物多样性研究进展. 生物多样性, 30, 22186. DOI: 10.17520/biods.2022186.
Bing Yan, Qing Lu, Song Xia, Junsheng Li (2022) An overview of advances in soil microbial diversity of urban environment. Biodiversity Science, 30, 22186. DOI: 10.17520/biods.2022186.
图1 城市化环境梯度 (改编自网络图片)。 箭头表示城市化梯度方向。
Fig. 1 The environmental gradients of urbanization (adapted from the web images). Arrow indicates the direction of the urbanization gradient.
研究区域 Study area | 研究对象 Research object | 环境梯度 Environmental gradient | 微生物类群 Microbial taxa | 优势菌门 Dominant phylum | 文献来源 References |
---|---|---|---|---|---|
中国16个城市 16 representative cities, China | 公园土壤 Park soil | - | 细菌 Bacteria | 变形菌门、放线菌门、酸杆菌门、浮霉菌门、绿弯菌门、拟杆菌门 Proteobacteria, Actinobacteria, Acidobacteria, Planctomycetes, Chloroflexi, and Bacteroidetes | Xu et al, |
中国广东东莞 Dongguan, Guangdong, China | 公园土壤 Park soil | 城市-郊区-农村 Urban-Suburban-Rural | 细菌 Bacteria | 变形菌门、酸杆菌门、放线菌门、疣微菌门、WPS-2、浮霉菌门、绿弯菌门、拟杆菌门 Proteobacteria, Acidobacteria, Actinobacteria, Verrucomicrobia, WPS-2, Planctomycetes, Chloroflexi, and Bacteroidetes | Tan et al, |
真菌 Fungi | 子囊菌门、担子菌门、接合菌门 Ascomycota, Basidiomycota, and Zygomycota | ||||
美国纽约 New York, USA | 绿色基础设施土壤/生长介质 Green infrastructure soil/substrate | 街边绿地-城市森林 Street green space-Urban forest | 细菌 Bacteria | 变形菌门、酸杆菌门、拟杆菌门、放线菌门、疣微菌门、浮霉菌门、绿弯菌门 Proteobacteria, Acidobacteria, Bacteroidetes, Actinobacteria, Verrucomicrobia, Planctomycetes, and Chloroflexi | Joyner et al, |
西班牙加利西亚 Galicia, Spain | 海滩沙丘 Coastal dune | 城市海滩-自然海滩 Urban beaches-Natural beaches | 细菌 Bacteria | 变形菌门、放线菌门、酸杆菌门、拟杆菌门 Proteobacteria, Actinobacteria, Acidobacteria, and Bacteroidetes | Novoa et al, |
美国纽瓦克市 Newark, USA | 树木根际土壤 Tree rhizosphere soil | 城市-郊区-农村 Urban-Suburban-Rural | 细菌 Bacteria | 浮霉菌门、变形菌门、绿弯菌门、酸杆菌门 Planctomycetes, Proteobacteria, Chloroflexi, and Acidobacteria | Rosier et al, |
中国北京 Beijing, China | 公园土壤 Park soil | 现代公园-古典公园 Young park-Old park | 细菌 Bacteria | 酸杆菌门、变形菌门、绿弯菌门、放线菌门 Acidobacteria, Proteobacteria, Chloroflexi, and Actinobacteria | 张骏达等, |
中国福建 Fujian, China | 草坪土壤 Turfgrass soil | 城市-郊区-自然区域 Urban-Suburban-Natural | 细菌 Bacteria | 变形菌门、酸杆菌门、放线菌门、装甲菌门、厚壁菌门、疣微菌门 Acidobacteria, Acidobacteria, Actinobacteria, Armatimonadetes, Firmicutes, and Verrucomicrobia | Zhang et al, |
美国芝加哥 Chicago, USA | 公园/街道/居民区绿地土壤 Park/Street/Resid-ential soil | 人口密度/绿地类型 Population densities/Greenspace types | 细菌 Bacteria | 变形菌门、酸杆菌门、拟杆菌门、疣微菌门、放线菌门 Proteobacteria, Acidobacteria, Bacteroidetes, Verrucomicrobia, and Actinobacteria | Wang et al, |
芬兰赫尔辛基、拉赫蒂 Helsinki and Lahti, Finland | 公园土壤 Park soil | 公园年龄: 10, 50, >100 Park age: 10, 50, >100 | 细菌 Bacteria | 变形菌门、酸杆菌门、放线菌门、绿弯菌门、芽单胞菌门、硝化螺旋菌门 Proteobacteria, Acidobacteria, Actinobacteria, Chloroflexi, Gemmatimonadetes, and Nitrospirae | Hui et al, |
真菌 Fungi | 子囊菌门、担子菌门、接合菌门、球囊菌门、壶菌门 Ascomycota, Basidiomycota, Zygomycota, Glomeromycota, and Chytridiomycota | ||||
中国北京 Beijing, China | 公园/街道/居民区绿地土壤 Park/Street/Resid-ential soil | 城市环路: 2环、2-3环、3-4环、4-5环、5环 Urban ring road: 2H, 2-3H, 3-4H, 4-5H, 5H | 细菌 Bacteria | 变形菌门、酸杆菌门、拟杆菌门、放线菌门、芽单胞菌门、疣微菌门 Proteobacteria, Acidobacteria, Bacteroidetes, Actinobacteria, Gemmatimonadetes, and Verrucomicrobia | Yan et al, |
中国北京 Beijing, China | 公园土壤 Park soil | 公园年龄: 10, 30, >100年 Park age: 10, 30, > 100 | 细菌 Bacteria | 变形菌门、酸杆菌门、拟杆菌门、放线菌门、芽单胞菌门、疣微菌门、浮霉菌门 Proteobacteria, Acidobacteria, Bacteroidetes, Actinobacteria, Gemmatimonadetes, Verrucomicrobia, and Planctomycetes | Yan et al, |
美国纽约 New York, USA | 绿色基础设施土壤/生长介质 Green infrastructure soil/subtrate | 绿色屋顶-街旁洼地-非工程化绿色基础设施 Green roof-Bioswale-Non-engineered Green infrastructure | 细菌 Bacteria | 变形菌门、放线菌门、酸杆菌门、拟杆菌门、浮霉菌门、疣微菌门、厚壁菌门、绿弯菌门、芽单胞菌门 Proteobacteria, Actinobacteria, Acidobacteria, Bacteroidetes, Planctomycetes, Verrucomicrobia, Firmicutes, Chloroflexi, and Gemmatimonadetes | Gill et al, |
真菌 Fungi | 子囊菌门、担子菌门、被孢霉门、球囊菌门、油壶菌门 Ascomycota, Basidiomycota, Mortierellomycota, Glomeromycota, and Olpidiomycota | ||||
研究区域 Location | 研究对象 | 环境梯度 Environmental gradient | 微生物类群 Microbial taxa | 优势菌门 Dominant phylum | 文献来源 References |
中国北京 Beijing, China | 公园/居民区/街道绿地土壤 Park/Residential/ Street soil | 公园-街道-居民区-工业区绿地 Park-Street-Residential- Industrial green space | 细菌 Bacteria | 变形菌门、酸杆菌门、绿弯菌门、放线菌门、芽单胞菌门、拟杆菌门 Proteobacteria, Acidobacteria, Chloroflexi, Actinobacteria, Gemmatimonadetes, and Bacteroidetes | Zhang et al, |
中国北京 Beijing, China | 公园土壤 Park soil | 公园年龄 Park ages | 真菌 Fungi | 子囊菌门、担子菌门、被孢霉门、壶菌门、隐真菌门 Ascomycota, Basidiomycota, Mortierellomycota, Chytridiomycota, and Cryptomycota | 于天赫等, |
表1 城市土壤微生物群落组成
Table 1 Microbial community composition in urban soil
研究区域 Study area | 研究对象 Research object | 环境梯度 Environmental gradient | 微生物类群 Microbial taxa | 优势菌门 Dominant phylum | 文献来源 References |
---|---|---|---|---|---|
中国16个城市 16 representative cities, China | 公园土壤 Park soil | - | 细菌 Bacteria | 变形菌门、放线菌门、酸杆菌门、浮霉菌门、绿弯菌门、拟杆菌门 Proteobacteria, Actinobacteria, Acidobacteria, Planctomycetes, Chloroflexi, and Bacteroidetes | Xu et al, |
中国广东东莞 Dongguan, Guangdong, China | 公园土壤 Park soil | 城市-郊区-农村 Urban-Suburban-Rural | 细菌 Bacteria | 变形菌门、酸杆菌门、放线菌门、疣微菌门、WPS-2、浮霉菌门、绿弯菌门、拟杆菌门 Proteobacteria, Acidobacteria, Actinobacteria, Verrucomicrobia, WPS-2, Planctomycetes, Chloroflexi, and Bacteroidetes | Tan et al, |
真菌 Fungi | 子囊菌门、担子菌门、接合菌门 Ascomycota, Basidiomycota, and Zygomycota | ||||
美国纽约 New York, USA | 绿色基础设施土壤/生长介质 Green infrastructure soil/substrate | 街边绿地-城市森林 Street green space-Urban forest | 细菌 Bacteria | 变形菌门、酸杆菌门、拟杆菌门、放线菌门、疣微菌门、浮霉菌门、绿弯菌门 Proteobacteria, Acidobacteria, Bacteroidetes, Actinobacteria, Verrucomicrobia, Planctomycetes, and Chloroflexi | Joyner et al, |
西班牙加利西亚 Galicia, Spain | 海滩沙丘 Coastal dune | 城市海滩-自然海滩 Urban beaches-Natural beaches | 细菌 Bacteria | 变形菌门、放线菌门、酸杆菌门、拟杆菌门 Proteobacteria, Actinobacteria, Acidobacteria, and Bacteroidetes | Novoa et al, |
美国纽瓦克市 Newark, USA | 树木根际土壤 Tree rhizosphere soil | 城市-郊区-农村 Urban-Suburban-Rural | 细菌 Bacteria | 浮霉菌门、变形菌门、绿弯菌门、酸杆菌门 Planctomycetes, Proteobacteria, Chloroflexi, and Acidobacteria | Rosier et al, |
中国北京 Beijing, China | 公园土壤 Park soil | 现代公园-古典公园 Young park-Old park | 细菌 Bacteria | 酸杆菌门、变形菌门、绿弯菌门、放线菌门 Acidobacteria, Proteobacteria, Chloroflexi, and Actinobacteria | 张骏达等, |
中国福建 Fujian, China | 草坪土壤 Turfgrass soil | 城市-郊区-自然区域 Urban-Suburban-Natural | 细菌 Bacteria | 变形菌门、酸杆菌门、放线菌门、装甲菌门、厚壁菌门、疣微菌门 Acidobacteria, Acidobacteria, Actinobacteria, Armatimonadetes, Firmicutes, and Verrucomicrobia | Zhang et al, |
美国芝加哥 Chicago, USA | 公园/街道/居民区绿地土壤 Park/Street/Resid-ential soil | 人口密度/绿地类型 Population densities/Greenspace types | 细菌 Bacteria | 变形菌门、酸杆菌门、拟杆菌门、疣微菌门、放线菌门 Proteobacteria, Acidobacteria, Bacteroidetes, Verrucomicrobia, and Actinobacteria | Wang et al, |
芬兰赫尔辛基、拉赫蒂 Helsinki and Lahti, Finland | 公园土壤 Park soil | 公园年龄: 10, 50, >100 Park age: 10, 50, >100 | 细菌 Bacteria | 变形菌门、酸杆菌门、放线菌门、绿弯菌门、芽单胞菌门、硝化螺旋菌门 Proteobacteria, Acidobacteria, Actinobacteria, Chloroflexi, Gemmatimonadetes, and Nitrospirae | Hui et al, |
真菌 Fungi | 子囊菌门、担子菌门、接合菌门、球囊菌门、壶菌门 Ascomycota, Basidiomycota, Zygomycota, Glomeromycota, and Chytridiomycota | ||||
中国北京 Beijing, China | 公园/街道/居民区绿地土壤 Park/Street/Resid-ential soil | 城市环路: 2环、2-3环、3-4环、4-5环、5环 Urban ring road: 2H, 2-3H, 3-4H, 4-5H, 5H | 细菌 Bacteria | 变形菌门、酸杆菌门、拟杆菌门、放线菌门、芽单胞菌门、疣微菌门 Proteobacteria, Acidobacteria, Bacteroidetes, Actinobacteria, Gemmatimonadetes, and Verrucomicrobia | Yan et al, |
中国北京 Beijing, China | 公园土壤 Park soil | 公园年龄: 10, 30, >100年 Park age: 10, 30, > 100 | 细菌 Bacteria | 变形菌门、酸杆菌门、拟杆菌门、放线菌门、芽单胞菌门、疣微菌门、浮霉菌门 Proteobacteria, Acidobacteria, Bacteroidetes, Actinobacteria, Gemmatimonadetes, Verrucomicrobia, and Planctomycetes | Yan et al, |
美国纽约 New York, USA | 绿色基础设施土壤/生长介质 Green infrastructure soil/subtrate | 绿色屋顶-街旁洼地-非工程化绿色基础设施 Green roof-Bioswale-Non-engineered Green infrastructure | 细菌 Bacteria | 变形菌门、放线菌门、酸杆菌门、拟杆菌门、浮霉菌门、疣微菌门、厚壁菌门、绿弯菌门、芽单胞菌门 Proteobacteria, Actinobacteria, Acidobacteria, Bacteroidetes, Planctomycetes, Verrucomicrobia, Firmicutes, Chloroflexi, and Gemmatimonadetes | Gill et al, |
真菌 Fungi | 子囊菌门、担子菌门、被孢霉门、球囊菌门、油壶菌门 Ascomycota, Basidiomycota, Mortierellomycota, Glomeromycota, and Olpidiomycota | ||||
研究区域 Location | 研究对象 | 环境梯度 Environmental gradient | 微生物类群 Microbial taxa | 优势菌门 Dominant phylum | 文献来源 References |
中国北京 Beijing, China | 公园/居民区/街道绿地土壤 Park/Residential/ Street soil | 公园-街道-居民区-工业区绿地 Park-Street-Residential- Industrial green space | 细菌 Bacteria | 变形菌门、酸杆菌门、绿弯菌门、放线菌门、芽单胞菌门、拟杆菌门 Proteobacteria, Acidobacteria, Chloroflexi, Actinobacteria, Gemmatimonadetes, and Bacteroidetes | Zhang et al, |
中国北京 Beijing, China | 公园土壤 Park soil | 公园年龄 Park ages | 真菌 Fungi | 子囊菌门、担子菌门、被孢霉门、壶菌门、隐真菌门 Ascomycota, Basidiomycota, Mortierellomycota, Chytridiomycota, and Cryptomycota | 于天赫等, |
[1] |
Abo Shelbaya MM, Abd El-Azeim MM, Menesi AM,Abd El-Mageed MM (2021) Heavy metals and microbial activity in alluvial soils affected by different land-uses. Journal of Soil Sciences and Agricultural Engineering, 12, 165-177.
DOI URL |
[2] | Allison SD, Martiny JBH (2008) Resistance, resilience, and redundancy in microbial communities. Proceedings of the National Academy of Sciences, USA, 105, 11512-11519. |
[3] | Baiser B, Olden JD, Record S, Lockwood JL, McKinney ML (2012) Pattern and process of biotic homogenization in the New Pangaea. Proceedings of the Royal Society B: Biological Sciences, 279, 4772-4777. |
[4] |
Barrico L, Azul AM, Morais MC, Coutinho AP, Freitas H, Castro P (2012) Biodiversity in urban ecosystems: Plants and macromycetes as indicators for conservation planning in the city of Coimbra (Portugal). Landscape and Urban Planning, 106, 88-102.
DOI URL |
[5] | Barrico L, Castro H, Coutinho AP, Gonçalves MT, Freitas H, Castro P (2018) Plant and microbial biodiversity in urban forests and public gardens: Insights for cities’ sustainable development. Urban Forestry & Urban Greening, 29, 19-27. |
[6] |
Berg G, Smalla K (2009) Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiology Ecology, 68, 1-13.
DOI URL |
[7] |
Betts R (2007) Implications of land ecosystem‐atmosphere interactions for strategies for climate change adaptation and mitigation. Tellus B: Chemical and Physical Meteorology, 59, 602-615.
DOI URL |
[8] |
Bond-Lamberty B, Bailey VL, Chen M, Gough CM, Vargas R (2018) Globally rising soil heterotrophic respiration over recent decades. Nature, 560, 80-83.
DOI URL |
[9] |
Brockett BFT, Prescott CE, Grayston SJ (2012) Soil moisture is the major factor influencing microbial community structure and enzyme activities across seven biogeoclimatic zones in western Canada. Soil Biology & Biochemistry, 44, 9-20.
DOI URL |
[10] | Buczkowski G, Richmond DS (2012) The effect of urbanization on ant abundance and diversity: A temporal examination of factors affecting biodiversity. PLoS ONE, 7, e41729. |
[11] |
Byrne LB (2007) Habitat structure: A fundamental concept and framework for urban soil ecology. Urban Ecosystems, 10, 255-274.
DOI URL |
[12] |
Chu HY, Fierer N, Lauber CL, Caporaso JG, Knight R, Grogan P (2010) Soil bacterial diversity in the Arctic is not fundamentally different from that found in other biomes. Environmental Microbiology, 12, 2998-3006.
DOI URL |
[13] |
Cousins JR, Hope D, Gries C, Stutz JC (2003) Preliminary assessment of arbuscular mycorrhizal fungal diversity and community structure in an urban ecosystem. Mycorrhiza, 13, 319-326.
DOI URL |
[14] |
Curtis TP, Sloan WT (2005) Exploring microbial diversity—A vast below. Science, 309, 1331-1333.
PMID |
[15] |
de Kimpe CR, Morel JL (2000) Urban soil management: A growing concern. Soil Science, 165, 31-40.
DOI URL |
[16] |
de Miguel E, de Grado MJ, Llamas JF, Martı́n-Dorado A, Mazadiego LF (1998) The overlooked contribution of compost application to the trace element load in the urban soil of Madrid (Spain). Science of the Total Environment, 215, 113-122.
DOI URL |
[17] |
Delgado-Baquerizo M, Maestre FT, Reich PB, Jeffries TC, Gaitan JJ, Encinar D, Berdugo M, Campbell CD, Singh BK (2016) Microbial diversity drives multifunctionality in terrestrial ecosystems. Nature Communications, 7, 10541.
DOI PMID |
[18] |
Demina S, Vasenev V, Ivashchenko K, Ananyeva N, Plyushchikov V, Hajiaghayeva R, Dovletyarova E (2018) Microbial properties of urban soils with different land-use history in New Moscow. Soil Science, 183, 132-140.
DOI URL |
[19] | Dunivin TK, Shade A (2018) Community structure explains antibiotic resistance gene dynamics over a temperature gradient in soil. FEMS Microbiology Ecology, 94, fiy016. |
[20] |
Eilers KG, Debenport S, Anderson S, Fierer N (2012) Digging deeper to find unique microbial communities: The strong effect of depth on the structure of bacterial and archaeal communities in soil. Soil Biology & Biochemistry, 50, 58-65.
DOI URL |
[21] | Epp Schmidt DJ, Pouyat R, Szlavecz K, Setälä H, Kotze DJ, Yesilonis I, Cilliers S, Hornung E, Dombos M, Yarwood SA (2017) Urbanization erodes ectomycorrhizal fungal diversity and may cause microbial communities to converge. Nature Ecology & Evolution, 1, 123. |
[22] | Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proceedings of the National Academy of Sciences, USA, 103, 626-631. |
[23] |
Forsberg KJ, Patel S, Gibson MK, Lauber CL, Knight R, Fierer N, Dantas G (2014) Bacterial phylogeny structures soil resistomes across habitats. Nature, 509, 612-616.
DOI URL |
[24] | Fu FY, Lu HF (2015) Effects of urbanization on soil community structure under subtropical evergreen broad-leaved forests. Ecology and Environmental Sciences, 24, 938-946. (in Chinese with English abstract) |
[符方艳, 陆宏芳 (2015) 城市化对南亚热带常绿阔叶林土壤生物群落结构的影响. 生态环境学报, 24, 938-946.] | |
[25] |
Fuhrman JA (2009) Microbial community structure and its functional implications. Nature, 459, 193-199.
DOI URL |
[26] |
Garbeva P, Elsas JD, Veen JA (2008) Rhizosphere microbial community and its response to plant species and soil history. Plant and Soil, 302, 19-32.
DOI URL |
[27] |
Ghosh S, Scharenbroch BC, Ow LF (2016) Soil organic carbon distribution in roadside soils of Singapore. Chemosphere, 165, 163-172.
DOI URL |
[28] | Gill AS, Lee A, McGuire KL (2017) Phylogenetic and functional diversity of total (DNA) and expressed (RNA) bacterial communities in urban green infrastructure bioswale soils. Applied and Environmental Microbiology, 83, e00287. |
[29] |
Gill AS, Purnell K, Palmer MI, Stein J, McGuire KL (2020) Microbial composition and functional diversity differ across urban green infrastructure types. Frontiers in Microbiology, 11, 912.
DOI URL |
[30] | Gkorezis P, Daghio M, Franzetti A, van Hamme JD, Sillen W, Vangronsveld J (2016) The interaction between plants and bacteria in the remediation of petroleum hydrocarbons: An environmental perspective. Frontiers in Microbiology, 7, 1836. |
[31] |
Grimm NB, Faeth SH, Golubiewski NE, Redman CL, Wu JG, Bai XM, Briggs JM (2008) Global change and the ecology of cities. Science, 319, 756-760.
DOI URL |
[32] | Guo DL, Zhang J, Shen S, Yu ZJ, Yang JS, Luo HY (2022) Effects of heavy metal content on fungal community structure in urban soil. Environmental Science, 43, 510-520. (in Chinese with English abstract) |
[郭大陆, 张建, 申思, 余子洁, 杨军顺, 罗红燕 (2022) 重金属含量对城市土壤真菌群落结构的影响. 环境科学, 43, 510-520.] | |
[33] | Hang XS, Wang HY, Zhou JM, Du CW, Chen XQ (2010) Heavy metal contamination characteristics and its impacts on microbial and enzymatic activities in the soil surrounding an electroplating factory. Journal of Agro-Environment Science, 29, 2133-2138. (in Chinese with English abstract) |
[杭小帅, 王火焰, 周健民, 杜昌文, 陈小琴 (2010) 电镀厂附近土壤重金属污染特征及其对微生物与酶活性的影响. 农业环境科学学报, 29, 2133-2138.] | |
[34] | Hanski I, von Hertzen L, Fyhrquist N, Koskinen K, Torppa K, Laatikainen T, Karisola P, Auvinen P, Paulin L, Mäkelä MJ, Vartiainen E, Kosunen TU, Alenius H, Haahtela T (2012) Environmental biodiversity, human microbiota, and allergy are interrelated. Proceedings of the National Academy of Sciences, USA, 109, 8334-8339. |
[35] | He Y, Li CT, Yu YC, He HP, Tao X (2021) Variation of subtropical forest soil microbial biomass and soil microbial community functional characteristics along an urban-rural gradient. Chinese Journal of Applied Ecology, 32, 93-102. (in Chinese with English abstract) |
[何越, 李春涛, 俞元春, 何黄盼, 陶晓 (2021) 亚热带森林土壤微生物生物量及群落功能特征的城乡梯度变化. 应用生态学报, 32, 93-102.]
DOI |
|
[36] | Hermans SM, Taylor M, Grelet G, Curran-Cournane F, Buckley HL, Handley KM, Lear G (2020) From pine to pasture: Land use history has long-term impacts on soil bacterial community composition and functional potential. FEMS Microbiology Ecology, 96, fiaa041. |
[37] | Hou Y, Zhou HP, Zhang C (2014) Effects of urbanization on community structure of soil microorganism. Ecology and Environmental Sciences, 23, 1108-1112. (in Chinese with English abstract) |
[侯颖, 周会萍, 张超 (2014) 城市化对土壤微生物群落结构的影响. 生态环境学报, 23, 1108-1112.] | |
[38] |
Hu YH, Dou XL, Li JY, Li F (2018) Impervious surfaces alter soil bacterial communities in urban areas: A case study in Beijing, China. Frontiers in Microbiology, 9, 226.
DOI URL |
[39] |
Hui N, Jumpponen A, Francini G, Kotze DJ, Liu XX, Romantschuk M, Strömmer R, Setälä H (2017) Soil microbial communities are shaped by vegetation type and park age in cities under cold climate. Environmental Microbiology, 19, 1281-1295.
DOI URL |
[40] |
Huot H, Joyner J, Córdoba A, Shaw RK, Wilson MA, Walker R, Muth TR, Cheng ZQ (2017) Characterizing urban soils in New York City: Profile properties and bacterial communities. Journal of Soils and Sediments, 17, 393-407.
DOI URL |
[41] |
Jesus ED, Marsh TL, Tiedje JM, Moreira FMD (2009) Changes in land use alter the structure of bacterial communities in Western Amazon soils. The ISME Journal, 3, 1004-1011.
DOI URL |
[42] | Jiang YF (2009) Preliminary Study on Composition, Distribution and Source Identification of Persistent Organic Pollutants in Soil of Shanghai. PhD dissertation, Shanghai University, Shanghai. (in Chinese with English abstract) |
[蒋煜峰 (2009) 上海地区土壤中持久性有机污染物污染特征、分布及来源初步研究. 上海大学, 上海.] | |
[43] |
Joyner JL, Kerwin J, Deeb M, Lozefski G, Prithiviraj B, Paltseva A, McLaughlin J, Groffman P, Cheng ZQ, Muth TR (2019) Green infrastructure design influences communities of urban soil bacteria. Frontiers in Microbiology, 10, 982.
DOI URL |
[44] |
Karpati AS, Handel SN, Dighton J, Horton TR (2011) Quercus rubra-associated ectomycorrhizal fungal communities of disturbed urban sites and mature forests. Mycorrhiza, 21, 537-547.
DOI PMID |
[45] |
Kaye JP, Groffman M, Grimm NB, Baker LA, Pouyat RV (2006) A distinct urban biogeochemistry? Trends in Ecology & Evolution, 21, 192-199.
DOI URL |
[46] |
Kourtev PS, Ehrenfeld JG, Häggblom M (2002) Exotic plant species alter the microbial community structure and function in the soil. Ecology, 83, 3152-3166.
DOI URL |
[47] | Li YW, Wang J, Ju TZ, Wang L, Lin N, Zhang SN, Zha XH (2017) Heavy metal pollution characteristics and human health risk assessment in soils from different functional areas of Baiyin, Gansu, China. Chinese Journal of Ecology, 36, 1408-1418. (in Chinese with English abstract) |
[李有文, 王晶, 巨天珍, 王莉, 林宁, 张胜楠, 查向浩 (2017) 白银市不同功能区土壤重金属污染特征及其健康风险评价. 生态学杂志, 36, 1408-1418.] | |
[48] |
Loranger-Merciris G, Barthes L, Gastine A, Leadley P (2006) Rapid effects of plant species diversity and identity on soil microbial communities in experimental grassland ecosystems. Soil Biology & Biochemistry, 38, 2336-2343.
DOI URL |
[49] | Lozupone CA, Knight R (2007) Global patterns in bacterial diversity. Proceedings of the National Academy of Sciences, USA, 104, 11436-11440. |
[50] |
Madejón E, Burgos P, López R, Cabrera F (2001) Soil enzymatic response to addition of heavy metals with organic residues. Biology and Fertility of Soils, 34, 144-150.
DOI URL |
[51] |
Magle SB, Hunt VM, Vernon M, Crooks KR (2012) Urban wildlife research: Past, present, and future. Biological Conservation, 155, 23-32.
DOI URL |
[52] |
McBride MB, Shayler HA, Spliethoff HM, Mitchell RG, Marquez-Bravo LG, Ferenz GS, Russell-Anelli JM, Casey L, Bachman S (2014) Concentrations of lead, cadmium and barium in urban garden-grown vegetables: The impact of soil variables. Environmental Pollution, 194, 254-261.
DOI PMID |
[53] |
McDonnell MJ, Hahs AK (2008) The use of gradient analysis studies in advancing our understanding of the ecology of urbanizing landscapes: Current status and future directions. Landscape Ecology, 23, 1143-1155.
DOI URL |
[54] | McGuire KL, Payne SG, Palmer MI, Gillikin CM, Keefe D, Kim SJ, Gedallovich SM, Discenza J, Rangamannar R, Koshner JA, Massmann AL, Orazi G, Essene A, Leff JW, Fierer N (2013) Digging the New York City Skyline:Soil fungal communities in green roofs and city parks. PLoS ONE, 8, e58020. |
[55] |
McKinney ML (2002) Urbanization, biodiversity, and conservation. BioScience, 52, 883-890.
DOI URL |
[56] |
McKinney ML (2006) Urbanization as a major cause of biotic homogenization. Biological Conservation, 127, 247-260.
DOI URL |
[57] |
McKinney ML (2008) Effects of urbanization on species richness: A review of plants and animals. Urban Ecosystems, 11, 161-176.
DOI URL |
[58] |
McKinney ML, Lockwood JL (1999) Biotic homogenization: A few winners replacing many losers in the next mass extinction. Trends in Ecology & Evolution, 14, 450-453.
DOI URL |
[59] | Meier CL, Bowman WD (2008) Links between plant litter chemistry, species diversity, and below-ground ecosystem function. Proceedings of the National Academy of Sciences, USA, 105, 19780-19785. |
[60] |
Michel HM, Williams MA (2011) Soil habitat and horizon properties impact bacterial diversity and composition. Soil Science Society of America Journal, 75, 1440-1448.
DOI URL |
[61] | Mills JG, Bissett A, Gellie NJC, Lowe AJ, Selway CA, Thomas T, Weinstein P, Weyrich LS, Breed MF (2020) Revegetation of urban green space rewilds soil microbiotas with implications for human health and urban design. Restoration Ecology, 28, S322-S334. |
[62] |
Morel JL, Chenu C, Lorenz K (2015) Ecosystem services provided by soils of urban, industrial, traffic, mining, and military areas (SUITMAs). Journal of Soils and Sediments, 15, 1659-1666.
DOI URL |
[63] | Neilson JW, Califf K, Cardona C, Copeland A, van Treuren W, Josephson KL, Knight R, Gilbert JA, Quade J, Caporaso JG, Maier RM (2017) Significant impacts of increasing aridity on the arid soil microbiome. mSystems, 2, e00195-16. |
[64] | Novoa A, Keet JH, Lechuga-Lago Y, Pyšek P, Roux JJL (2020) Urbanization and Carpobrotus edulis invasion alter the diversity and composition of soil bacterial communities in coastal areas. FEMS Microbiology Ecology, 96, fiaa106. |
[65] |
Ochimaru TO, Fukuda KF (2007) Changes in fungal communities in evergreen broad-leaved forests across. Canadian Journal of Forest Research, 37, 247-258.
DOI URL |
[66] |
Orwin KH, Wardle DA, Greenfield LG (2006) Ecological consequences of carbon substrate identity and diversity in a laboratory study. Ecology, 87, 580-593.
PMID |
[67] |
Ossola A, Hahs AK, Livesley SJ (2015) Habitat complexity influences fine scale hydrological processes and the incidence of stormwater runoff in managed urban ecosystems. Journal of Environmental Management, 159, 1-10.
DOI URL |
[68] |
Parajuli A, Grönroos M, Siter N, Puhakka R, Vari HK, Roslund MI, Jumpponen A, Nurminen N, Laitinen OH, Hyöty H, Rajaniemi J, Sinkkonen A (2018) Urbanization reduces transfer of diverse environmental microbiota indoors. Frontiers in Microbiology, 9, 84.
DOI URL |
[69] |
Pataki DE, Carreiro MM, Cherrier J, Grulke NE, Jennings V, Pincetl S, Pouyat RV, Whitlow TH, Zipperer WC (2011) Coupling biogeochemical cycles in urban environments: Ecosystem services, green solutions, and misconceptions. Frontiers in Ecology and the Environment, 9, 27-36.
DOI URL |
[70] |
Peng C, Wang ME, Zhao Y, Chen WP (2016) Distribution and risks of polycyclic aromatic hydrocarbons in suburban and rural soils of Beijing with various land uses. Environmental Monitoring and Assessment, 188, 162.
DOI PMID |
[71] |
Perrodin Y, Boillot C, Angerville R, Donguy G, Emmanuel E (2011) Ecological risk assessment of urban and industrial systems: A review. Science of the Total Environment, 409, 5162-5176.
DOI URL |
[72] |
Pickett STA, Cadenasso ML (2006) Advancing urban ecological studies: Frameworks, concepts, and results from the Baltimore Ecosystem Study. Austral Ecology, 31, 114-125.
DOI URL |
[73] |
Pimm SL, Russell GJ, Gittleman JL, Brooks TM (1995) The future of biodiversity. Science, 269, 347-350.
PMID |
[74] |
Prober SM, Leff JW, Bates ST, Borer ET, Firn J, Harpole WS, Lind EM, Seabloom EW, Adler PB, Bakker JD, Cleland EE, DeCrappeo NM, DeLorenze E, Hagenah N, Hautier Y, Hofmockel KS, Kirkman KP, Knops JMH, La Pierre KJ, MacDougall AS, McCulley RL, Mitchell CE, Risch AC, Schuetz M, Stevens CJ, Williams RJ, Fierer N (2015) Plant diversity predicts beta but not alpha diversity of soil microbes across grasslands worldwide. Ecology Letters, 18, 85-95.
DOI URL |
[75] |
Rai PK, Rai A, Singh S (2018) Change in soil microbial biomass along a rural-urban gradient in Varanasi (U.P., India). Geology, Ecology, and Landscapes, 2, 15-21.
DOI URL |
[76] |
Rajaniemi TK, Allison VJ (2009) Abiotic conditions and plant cover differentially affect microbial biomass and community composition on dune gradients. Soil Biology & Biochemistry, 41, 102-109.
DOI URL |
[77] | Ramirez KS, Leff JW, Barberán A, Bates ST, Betley J, Crowther TW, Kelly EF, Oldfield EE, Shaw EA, Steenbock C, Bradford MA, Wall DH, Fierer N (2014) Biogeographic patterns in below-ground diversity in New York City’s Central Park are similar to those observed globally. Proceedings of the Royal Society of London B: Biological Sciences, 281, 20141988. |
[78] |
Reese AT, Savage A, Youngsteadt E, McGuire KL, Koling A, Watkins O, Frank SD, Dunn RR (2016) Urban stress is associated with variation in microbial species composition—but not richness—in Manhattan. The ISME Journal, 10, 751-760.
DOI URL |
[79] |
Rex D, Clough TJ, Richards KG, Klein C, Morales SE, Samad MS, Grant J, Lanigan GJ (2018) Fungal and bacterial contributions to codenitrification emissions of N2O and N2 following urea deposition to soil. Nutrient Cycling in Agroecosystems, 110, 135-149.
DOI URL |
[80] |
Rosier CL, Polson SW, D’Amico V, Kan JJ, Trammell TLE (2021) Urbanization pressures alter tree rhizosphere microbiomes. Scientific Reports, 11, 9447.
DOI PMID |
[81] | Roslund MI, Puhakka R, Grönroos M, Nurminen N, Oikarinen S, Gazali AM, Cinek O, Kramná L, Siter N, Vari HK, Soininen L, Parajuli A, Rajaniemi J, Kinnunen T, Laitinen OH, Hyöty H, Sinkkonen A,ADELE Research Group (2020) Biodiversity intervention enhances immune regulation and health-associated commensal microbiota among daycare children. Science Advances, 6, eaba2578. |
[82] |
Ruokolainen L, von Hertzen L, Fyhrquist N, Laatikainen T, Lehtomäki J, Auvinen P, Karvonen AM, Hyvärinen A, Tillmann V, Niemelä O, Knip M, Haahtela T, Pekkanen J, Hanski I (2015) Green areas around homes reduce atopic sensitization in children. Allergy, 70, 195-202.
DOI PMID |
[83] |
Russo D, Ancillotto L (2015) Sensitivity of bats to urbanization: A review. Mammalian Biology, 80, 205-212.
DOI URL |
[84] |
Savard JPL, Clergeau P, Mennechez G (2000) Biodiversity concepts and urban ecosystems. Landscape and Urban Planning, 48, 131-142.
DOI URL |
[85] |
Scharenbroch BC, Lloyd JE, Johnson-Maynard JL (2005) Distinguishing urban soils with physical, chemical, and biological properties. Pedobiologia, 49, 283-296.
DOI URL |
[86] |
Selway CA, Mills JG, Weinstein P, Skelly C, Yadav S, Lowe A, Breed MF, Weyrich LS (2020) Transfer of environmental microbes to the skin and respiratory tract of humans after urban green space exposure. Environment International, 145, 106084.
DOI URL |
[87] |
Shanahan DF, Lin BB, Gaston KJ, Bush R, Fuller RA (2015) What is the role of trees and remnant vegetation in attracting people to urban parks? Landscape Ecology, 30, 153-165.
DOI URL |
[88] |
Shen CC, Xiong JB, Zhang HY, Feng YZ, Lin XG, Li XY, Liang WJ, Chu HY (2013) Soil pH drives the spatial distribution of bacterial communities along elevation on Changbai Mountain. Soil Biology & Biochemistry, 57, 204-211.
DOI URL |
[89] |
Singh BK, Walker A (2006) Microbial degradation of organophosphorus compounds. FEMS Microbiology Reviews, 30, 428-471.
DOI URL |
[90] |
Singh JP, Vaidya BP, Goodey NM, Krumins JA (2019) Soil microbial response to metal contamination in a vegetated and urban brownfield. Journal of Environmental Management, 244, 313-319.
DOI URL |
[91] | Stabler LB, Martin CA, Stutz JC (2001) Effect of urban expansion on arbuscular mycorrhizal fungal mediation of landscape tree growth. Journal of Arboriculture, 27, 193-202. |
[92] |
Tan X, Kan L, Su Z, Liu X, Zhang L (2019) The composition and diversity of soil bacterial and fungal communities along an urban-to-rural gradient in South China. Forests, 10, 797.
DOI URL |
[93] | UN DESA (2018) World Population Prospects 2018:Highlights. United Nations Department for Economic and Social Affairs, New York (US). |
[94] |
van der Putten WH, Klironomos JN, Wardle DA (2007) Microbial ecology of biological invasions. The ISME Journal, 1, 28-37.
DOI URL |
[95] |
van Rensburg BJ, Peacock DS, Robertson MP (2009) Biotic homogenization and alien bird species along an urban gradient in South Africa. Landscape and Urban Planning, 92, 233-241.
DOI URL |
[96] |
von Hertzen L, Hanski I, Haahtela T (2011) Natural immunity: Biodiversity loss and inflammatory diseases are two global megatrends that might be related. EMBO Reports, 12, 1089-1093.
DOI PMID |
[97] |
Wang FH, Qiao M, Su JQ, Chen Z, Zhou X, Zhu YG (2014) High throughput profiling of antibiotic resistance genes in urban park soils with reclaimed water irrigation. Environmental Science & Technology, 48, 9079-9085.
DOI URL |
[98] | Wang HH, Li LQ, Pan GX, Wu XM (2005) Topsoil microbial carbon and nitrogen and enzyme activity of different city zones in Nanjing, China. Chinese Journal of Ecology, 24, 273-277. (in Chinese with English abstract) |
[王焕华, 李恋卿, 潘根兴, 吴新民 (2005) 南京市不同功能城区表土微生物碳氮与酶活性分析. 生态学杂志, 24, 273-277.] | |
[99] |
Wang HT, Cheng MY, Dsouza M, Weisenhorn P, Zheng TL, Gilbert JA (2018) Soil bacterial diversity is associated with human population density in urban greenspaces. Environmental Science & Technology, 52, 5115-5124.
DOI URL |
[100] |
Wang HT, Marshall CW, Cheng MY, Xu HJ, Li H, Yang XR, Zheng TL (2017) Changes in land use driven by urbanization impact nitrogen cycling and the microbial community composition in soils. Scientific Reports, 7, 44049.
DOI URL |
[101] | White MP, Alcock I, Grellier J, Wheeler BW, Hartig T, Warber SL, Bone A, Depledge MH, Fleming LE (2019) Spending at least 120 minutes a week in nature is associated with good health and wellbeing. Scientific Reports, 9, 7730. |
[102] | Wichmann F, Udikovic-Kolic N, Andrew S, Handelsman J (2014) Diverse antibiotic resistance genes in dairy cow manure. MBio, 5, e01017. |
[103] |
Wu TH, Chellemi DO, Graham JH, Martin KJ, Rosskopf EN (2008) Comparison of soil bacterial communities under diverse agricultural land management and crop production practices. Microbial Ecology, 55, 293-310.
DOI URL |
[104] | Xie Y, Fan JB, Zhu WX, Amombo E, Lou YH, Chen L, Fu JM (2016) Effect of heavy metals pollution on soil microbial diversity and bermudagrass genetic variation. Frontiers in Plant Science, 7, 755. |
[105] |
Xu HJ, Li S, Su JQ, Nie SA, Gibson V, Li H, Zhu YG (2014) Does urbanization shape bacterial community composition in urban park soils? A case study in 16 representative Chinese cities based on the pyrosequencing method. FEMS Microbiology Ecology, 87, 182-192.
DOI URL |
[106] | Yan B, Li JS, Lu Q, Xiong JH, Xiao NW, Fu G (2019) Soil microbial carbon metabolic activity of green-land of urban park in Beijing. Research of Environmental Sciences, 32, 1567-1574. (in Chinese with English abstract) |
[闫冰, 李俊生, 陆晴, 熊继海, 肖能文, 付刚 (2019) 北京城市公园绿地土壤微生物群落碳源代谢活性特征. 环境科学研究, 32, 1567-1574.] | |
[107] |
Yan B, Li JS, Xiao NW, Qi Y, Fu G, Liu GH, Qiao MP (2016) Urban-development-induced changes in the diversity and composition of the soil bacterial community in Beijing. Scientific Reports, 6, 38811.
DOI URL |
[108] |
Yan B, Lu Q, He J, Qi Y, Fu G, Xiao NW, Li JS (2021) Composition and interaction frequencies in soil bacterial communities change in association with urban park age in Beijing. Pedobiologia, 84, 150699.
DOI URL |
[109] | Yan B, Xiao NW, Qi Y, Fu G, Gao XQ, Liu GH, Li JS (2016) Effects of urban development on soil microbial functional diversity in Beijing. Research of Environmental Sciences, 29, 1325-1335. (in Chinese with English abstract) |
[闫冰, 肖能文, 齐月, 付刚, 高晓琦, 刘高慧, 李俊生 (2016) 北京城市发展对土壤微生物群落功能多样性的影响. 环境科学研究, 29, 1325-1335.] | |
[110] |
Yan ZZ, Chen QL, Zhang YJ, He JZ, Hu HW (2019) Antibiotic resistance in urban green spaces mirrors the pattern of industrial distribution. Environment International, 132, 105106.
DOI URL |
[111] |
Yang YG, Campbell CD, Clark L, Cameron CM, Paterson E (2006) Microbial indicators of heavy metal contamination in urban and rural soils. Chemosphere, 63, 1942-1952.
DOI URL |
[112] | Yang YG, Paterson E, Campbell C (2000) Study on microbial properties of urban soils in Aberdeen City, Scotland, UK. Acta Mineralogica Sinica, 20, 342-348. (in Chinese with English abstract) |
[杨元根, Paterson E, Campbell C (2000) 苏格兰阿伯丁城市土壤的微生物特性研究. 矿物学报, 20, 342-348.] | |
[113] | Yu TH, Zhang NL, Yu S, Qu LY (2021) The characteristics of soil fungal community and effect factors under common tree species in urban parks of Beijing. Acta Ecologica Sinica, 41, 1835-1845. (in Chinese with English abstract) |
[于天赫, 张乃莉, 于爽, 曲来叶 (2021) 北京城市公园常见乔木土壤真菌群落特征及影响因素. 生态学报, 41, 1835-1845.] | |
[114] |
Zak DR, Holmes WE, White DC, Peacock AD, Tilman D (2003) Plant diversity, soil microbial communities, and ecosystem function: Are there any links? Ecology, 84, 2042-2050.
DOI URL |
[115] |
Zhalnina K, Dias R, de Quadros PD, Davis-Richardson A, Camargo FAO, Clark IM, McGrath SP, Hirsch PR, Triplett EW (2015) Soil pH determines microbial diversity and composition in the park grass experiment. Microbial Ecology, 69, 395-406.
DOI URL |
[116] | Zhang GL, Zhu YG, Fu BJ (2003) Quality changes of soils in urban and suburban areas and its eco-environmental impacts—A review. Acta Ecologica Sinica, 23, 539-546. (in Chinese with English abstract) |
[张甘霖, 朱永官, 傅伯杰 (2003) 城市土壤质量演变及其生态环境效应. 生态学报, 23, 539-546.] | |
[117] | Zhang GX, Xu J, Wang GB, Wu SS, Ruan HH (2010) Soil respiration under different vegetation types in Nanjing urban green space. Chinese Journal of Ecology, 29, 274-280. (in Chinese with English abstract) |
[张鸽香, 徐娇, 王国兵, 武珊珊, 阮宏华 (2010) 南京城市公园绿地不同植被类型土壤呼吸的变化. 生态学杂志, 29, 274-280.] | |
[118] |
Zhang J, Wang LH, Yang JC, Liu H, Dai JL (2015) Health risk to residents and stimulation to inherent bacteria of various heavy metals in soil. Science of the Total Environment, 508, 29-36.
DOI URL |
[119] |
Zhang JD, Li SY, Sun XY, Tong J, Fu Z, Li J (2019) Sustainability of urban soil management: Analysis of soil physicochemical properties and bacterial community structure under different green space types. Sustainability, 11, 1395.
DOI URL |
[120] | Zhang JD, Li SY, Sun XY, Zhang H, Hu N, Fu Z, Guo ZT (2019) Analysis of soil bacterial diversity in urban parks with different ages by high throughput sequencing. Microbiology China, 46, 65-74. (in Chinese with English abstract) |
[张骏达, 李素艳, 孙向阳, 张骅, 呼诺, 傅振, 郭子腾 (2019) 基于高通量测序技术的不同年代公园绿地土壤细菌多样性. 微生物学通报, 46, 65-74.] | |
[121] |
Zhang Y, Ji GD, Wu T, Qiu JX (2020) Urbanization significantly impacts the connectivity of soil microbes involved in nitrogen dynamics at a watershed scale. Environmental Pollution, 258, 113708.
DOI URL |
[122] |
Zhao D, Li F, Wang RS, Yang QR, Ni HS (2012) Effect of soil sealing on the microbial biomass, N transformation and related enzyme activities at various depths of soils in urban area of Beijing, China. Journal of Soils and Sediments, 12, 519-530.
DOI URL |
[123] |
Zhao JJ, Ouyang ZY, Xu WH, Zheng H, Meng XS (2010) Sampling adequacy estimation for plant species composition by accumulation curves: A case study of urban vegetation in Beijing, China. Landscape and Urban Planning, 95, 113-121.
DOI URL |
[124] |
Zhu WX, Carreiro MM (2004) Variations of soluble organic nitrogen and microbial nitrogen in deciduous forest soils along an urban-rural gradient. Soil Biology & Biochemistry, 36, 279-288.
DOI URL |
[1] | 连佳丽, 陈婧, 杨雪琴, 赵莹, 罗叙, 韩翠, 赵雅欣, 李建平. 荒漠草原植物多样性和微生物多样性对降水变化的响应[J]. 生物多样性, 2024, 32(6): 24044-. |
[2] | 罗正明, 刘晋仙, 张变华, 周妍英, 郝爱华, 杨凯, 柴宝峰. 不同退化阶段亚高山草甸土壤原生生物群落多样性特征及驱动因素[J]. 生物多样性, 2023, 31(8): 23136-. |
[3] | 张雅丽, 张丙昌, 赵康, 李凯凯, 刘燕晋. 毛乌素沙地不同类型生物结皮细菌群落差异及其驱动因子[J]. 生物多样性, 2023, 31(8): 23027-. |
[4] | 董廷玮, 黄美玲, 韦旭, 马硕, 岳衢, 刘文丽, 郑佳鑫, 王刚, 马蕊, 丁由中, 薄顺奇, 王正寰. 上海地区金线侧褶蛙种群的潜在空间分布格局及其景观连通性[J]. 生物多样性, 2023, 31(8): 22692-. |
[5] | 朱晓华, 高程, 王聪, 赵鹏. 尿素对土壤细菌与真菌多样性影响的研究进展[J]. 生物多样性, 2023, 31(6): 22636-. |
[6] | 沈诗韵, 潘远飞, 陈丽茹, 土艳丽, 潘晓云. 喜旱莲子草原产地和入侵地种群的植物-土壤反馈差异[J]. 生物多样性, 2023, 31(3): 22436-. |
[7] | 杨预展, 余建平, 钱海源, 陈小南, 陈声文, 袁志林. 钱江源国家公园体制试点区水稻田土壤微生物群落的格局及其驱动机制[J]. 生物多样性, 2023, 31(2): 22392-. |
[8] | 姚仁秀, 陈燕, 吕晓琴, 王江湖, 杨付军, 王晓月. 海拔及环境因子影响杜鹃属植物的表型特征和化学性状[J]. 生物多样性, 2023, 31(2): 22259-. |
[9] | 赵雯, 王丹丹, 热依拉·木民, 黄开钏, 刘顺, 崔宝凯. 阿尔山地区兴安落叶松林土壤微生物群落结构[J]. 生物多样性, 2023, 31(2): 22258-. |
[10] | 王晓凤, 饶杰生, 杨涛, 刘文聪, 田希, 陈稀, 刘其明, 徐衍潇, 张秋雨, 张洪强, 张旭, 欧晓昆, 沈泽昊. 云南鸡足山半湿润常绿阔叶林群落木本植物多样性格局与环境解释[J]. 生物多样性, 2023, 31(11): 23217-. |
[11] | 汪婷, 周立志. 合肥市小微湿地鸟类多样性的时空格局及其影响因素[J]. 生物多样性, 2022, 30(7): 21445-. |
[12] | 田璐嘉, 杨小波, 李东海, 李龙, 陈琳, 梁彩群, 张培春, 李晨笛. 海口和三亚两城市破碎化林地中鸟类群落多样性与嵌套分布格局[J]. 生物多样性, 2022, 30(6): 21424-. |
[13] | 薛文凯, 孟华旦尚, 王艳红, 朱攀, 德吉, 郭小芳. 纳木措可培养丝状真菌多样性及其与理化因子关系[J]. 生物多样性, 2022, 30(6): 21473-. |
[14] | 姚海凤, 张赛超, 上官华媛, 李志鹏, 孙新. 城市化对土壤动物群落结构和多样性的影响[J]. 生物多样性, 2022, 30(12): 22547-. |
[15] | 肖宇珊, 杨昌娆, 郑国, 武鹏峰, 张士秀, 崔淑艳. 降水格局对北方温带草原土壤微食物网结构的影响[J]. 生物多样性, 2022, 30(12): 22208-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn