生物多样性 ›› 2012, Vol. 20 ›› Issue (4): 451-459.DOI: 10.3724/SP.J.1003.2012.09221

• 研究报告 • 上一篇    下一篇

基于线粒体DNA的大石鸡种群遗传变异

周蓉1, 李佳琦2, 李铀3, 刘迺发2*, 房峰杰2, 施丽敏2, 王莹2   

  1. 1兰州大学资源环境学院, 兰州 730000
    2兰州大学生命科学学院, 兰州 730000
    3School of Earth & Environmental Sciences, the University of Adelaide, Adelaide, SA 5005
  • 收稿日期:2011-12-05 修回日期:2012-04-10 出版日期:2012-07-20 发布日期:2012-09-12
  • 通讯作者: 刘迺发
  • 基金资助:

    国家自然科学基金

Genetic variation in rusty-necklaced partridge (Alectoris magna) detected by mitochondrial DNA

Rong Zhou1, Jiaqi Li2, You Li3, Naifa Liu2*, Fengjie Fang2, Limin Shi2, Ying Wang2   

  1. 1College of Earth and Environmental Science, Lanzhou University, Lanzhou 730000, China

    2School of Life Sciences, Lanzhou University, Lanzhou 730000, China

    3School of Earth and Environmental Science, University of Adelaide, Adelaide, SA 5005, Australia
  • Received:2011-12-05 Revised:2012-04-10 Online:2012-07-20 Published:2012-09-12
  • Contact: Naifa Liu

摘要: 大石鸡(Alectoris magna)是我国的特有鸟类, 其种群数量由于受到栖息地片断化和人类狩猎的影响而日益减少。本文以mtDNA的控制区部分序列(1,127 bp)和细胞色素b部分序列(807 bp)为分子标记, 研究了大石鸡分布区内12个种群234个样本的遗传变异。173个样本的控制区序列中共发现了34个多态位点, 定义了44种单倍型, 平均单倍型多样性和核苷酸多样性分别为0.916 ± 0.011和0.00449 ± 0.00242, 所有种群中单倍型多样性最高的是靖远和民和种群 (0.894 ± 0.063), 最低的是海原种群(0.476 ± 0.155)。230个样本的细胞色素b序列中共发现了13个多态位点, 定义了14种单倍型。平均单倍型多样性为0.738 ± 0.024, 平均核苷酸多样性为0.00216 ± 0.00009, 所有种群中单倍型多样性最高的是共和种群(0.763 ± 0.059), 最低的为德令哈种群(0.000 ± 0.000)。所有遗传多样性参数与样本量均无显著相关性。控制区和细胞色素b的单倍型邻接树均显示大石鸡在系统发生树上没有互为单系发生的种群存在, 因此应该将大石鸡作为一个独立的进化显著单元(ESU)来对待。AMOVA结果显示大部分遗传变异分布于种群内, 但种群间和群组间也存在显著的遗传变异, 所以应该把各个种群作为独立的管理单元(MU)来实现短期内的管理和保护。对德令哈、都兰、礼县、张家川、海原等遗传多样性较低的边缘种群应重点保护, 另外, 对共和、贵德和靖远3个遗传多样性较高的种群也应重点加以保护。

Abstract: The rusty-necklaced partridge (Alectoris magna) is a bird species endemic to China that has been threatened by habitat fragmentation and hunting. To examine the conservation status of this species, we examined the intraspecific variation in the mitochondrial DNA (mtDNA) control region and cytochrome b 234 individuals from 12 representative populations throughout the species’ range. Forty-four haplotypes were defined by 34 variable sites with the mean haplotype diversity of 0.916 ± 0.011 and nucleotide diversity of 0.00449 ± 0.00242 in the 1,127 bp mtDNA control region. Haplotype diversity was maximized in the Jingyuan and Minhe populations (0.894 ± 0.063) and was minimized in the Haiyuan population (0.476 ± 0.155). Fourteen haplotypes were defined by 14 variable sites with a mean haplotype diversity of 0.738 ± 0.024 and a nucleotide diversity of 0.00216 ± 0.00009 in mtDNA cytochrome b.Haplotype diversity was the highest in the Gonghe population (0.763 ± 0.059) and did not differ in the Delingha population. Correlation between genetic diversity indices and sample size did not result in statistically significant differences. We found that neighbour-joining methods revealed limited phylogenetic distinction between geographically distant populations of the rusty-necklaced partridge, and provided tentative support for a single evolutionarily significant unit. AMOVA revealed that the most genetic variation was distributed within populations; However, the genetic variation among groups and populations was also statistically significant, indicating that the appropriate short-term management unit for the rusty-necklaced partridge is a the level of the local population. Therefore, edge populations with lower genetic diversity, including Delingha, Dulan, Lixian, Zhangjiachuan and Haiyuan, have higher conservation value. We recommend that strengthening protection of populations with lower genetic diversity, including Gonghe, Guide and Jingyuan, is advantageous to retain the general level of genetic diversity in this species.