生物多样性 ›› 2012, Vol. 20 ›› Issue (4): 460-469. DOI: 10.3724/SP.J.1003.2012.10011 cstr: 32101.14.SP.J.1003.2012.10011
收稿日期:
2012-01-12
接受日期:
2012-04-18
出版日期:
2012-07-20
发布日期:
2012-09-12
通讯作者:
叶其刚
作者简介:
*E-mail: qigangye@wbgcas.cn基金资助:
Yongmei Ruan1,2, Jinju Zhang3, Xiaohong Yao1, Qigang Ye1,*()
Received:
2012-01-12
Accepted:
2012-04-18
Online:
2012-07-20
Published:
2012-09-12
Contact:
Qigang Ye
摘要:
研究濒危植物片断化孤立居群不同年龄阶段植株的遗传多样性和小尺度空间遗传结构有助于认识残存居群动态和制订保育策略。本研究选取黄梅秤锤树(Sinojackia huangmeiensis)的一个片断化孤立居群(面积160 m × 80 m)为研究对象, 对居群内60株成年个体、175株幼树和198株幼苗全部定位, 采用8个微卫星位点检测了居群内不同生活史阶段植株的遗传多样性、空间遗传结构, 并分析了花粉和种子传播距离和式样。结果表明, 黄梅秤锤树居群3种不同年龄阶段植株的遗传多样性之间无显著差异; 居群出现显著的杂合子缺失, 可能是由近交造成的; 在10 m以内成年个体、幼树和幼苗植株均呈现出显著的空间遗传结构, 说明种子扩散限制于成年母树周边; 种子和花粉传播的平均距离分别为9.07 ± 13.38和23.81 ± 23.60 m, 且花粉和种子传播式样均呈“L”型分布; 种子雨重叠少、有限的基因流、自疏以及近亲繁殖是造成各年龄阶段出现空间遗传结构的主要原因。本研究结果启示, 在采集秤锤树迁地保护材料时个体间距离应超过10 m, 以降低采样个体的遗传相似性; 同时在就地保护过程中需要人为促进基因流和加强幼苗管理, 以降低近交风险。
阮咏梅, 张金菊, 姚小洪, 叶其刚 (2012) 黄梅秤锤树孤立居群的遗传多样性及其小尺度空间遗传结构. 生物多样性, 20, 460-469. DOI: 10.3724/SP.J.1003.2012.10011.
Yongmei Ruan, Jinju Zhang, Xiaohong Yao, Qigang Ye (2012) Genetic diversity and fine-scale spatial genetic structure of different life- history stages in a small, isolated population of Sinojackia huangmeiensis (Styracaceae). Biodiversity Science, 20, 460-469. DOI: 10.3724/SP.J.1003.2012.10011.
图1 黄梅秤锤树居群(湖北省境内)植株空间分布图。不同形状分别代表3个树龄级别: 成年个体(○), 幼树(△)和幼苗(×)
Fig. 1 Spatial distribution of Sinojackia huangmeiensis in Huangmei, Hubei Province. Different shapes represent three age classes, (○)Adults; (△)Saplings; (×)Seedlings.
年龄阶段 Age stage | N | HO | HE | FIS | F(1) | bF | Sp |
---|---|---|---|---|---|---|---|
成年个体 Adult | 60 | 0.670 | 0.778 | 0.143* | 0.120 | -0.0345 | 0.0392 |
幼树 Sapling | 175 | 0.642 | 0.775 | 0.174* | 0.084 | -0.0277 | 0.0302 |
幼苗 Seedling | 198 | 0.638 | 0.768 | 0.169* | 0.117 | -0.0367 | 0.0416 |
总体 All individuals | 433 | 0.644 | 0.772 | 0.168* | 0.105 | -0.0319 | 0.0357 |
表1 黄梅秤锤树孤立居群不同年龄阶段群体的遗传多样性和空间遗传结构
Table 1 Genetic diversity and spatial genetic structure statistics for different age classes of the isolated population of Sinojackia huangmeiensis
年龄阶段 Age stage | N | HO | HE | FIS | F(1) | bF | Sp |
---|---|---|---|---|---|---|---|
成年个体 Adult | 60 | 0.670 | 0.778 | 0.143* | 0.120 | -0.0345 | 0.0392 |
幼树 Sapling | 175 | 0.642 | 0.775 | 0.174* | 0.084 | -0.0277 | 0.0302 |
幼苗 Seedling | 198 | 0.638 | 0.768 | 0.169* | 0.117 | -0.0367 | 0.0416 |
总体 All individuals | 433 | 0.644 | 0.772 | 0.168* | 0.105 | -0.0319 | 0.0357 |
图2 成年个体、幼树、幼苗和总体的相关系数图。虚线代表95%置信区间上下限, Fij值的标准误通过对所有位点自检获得。
Fig. 2 Correlograms of Kinship coefficients for adults, saplings, seedlings and all individuals. The dashed lines indicate upper and lower 95% confidence range of the null hypothesis. Standard errors (SE) around each Fij value were obtained through a jackknife procedure over loci.
位点 Locus | N | K | FIS | HO | HE | PIC | Pr(Ex1) | Pr(Ex2) |
---|---|---|---|---|---|---|---|---|
Sx11 | 60 | 9 | 0.122 | 0.700 | 0.797 | 0.768 | 0.437 | 0.617 |
Sx15 | 60 | 7 | 0.149 | 0.500 | 0.588 | 0.560 | 0.205 | 0.389 |
Sx40 | 59 | 10 | 0.062 | 0.831 | 0.885 | 0.865 | 0.600 | 0.752 |
Sx74 | 60 | 7 | 0.189 | 0.467 | 0.575 | 0.545 | 0.192 | 0.374 |
Sx101 | 60 | 7 | 0.240 | 0.583 | 0.767 | 0.727 | 0.376 | 0.556 |
Sx112 | 59 | 17 | 0.140 | 0.797 | 0.926 | 0.911 | 0.714 | 0.833 |
Sx116 | 60 | 14 | 0.205 | 0.700 | 0.880 | 0.859 | 0.594 | 0.746 |
Sx154 | 60 | 9 | 0.034 | 0.783 | 0.811 | 0.783 | 0.457 | 0.634 |
平均 Mean | 10 | 0.670 | 0.778 | 0.753 | - | - | ||
合计 Total | 80 | 0.146 | - | - | - | 0.994 | 0.999 |
表2 黄梅秤锤树孤立居群中成年个体的8个微卫星位点特征
Table 2 Characteristics of 8 microsatellite loci from adult individuals in the studied transect of the population of Sinojackia huangmeiensis
位点 Locus | N | K | FIS | HO | HE | PIC | Pr(Ex1) | Pr(Ex2) |
---|---|---|---|---|---|---|---|---|
Sx11 | 60 | 9 | 0.122 | 0.700 | 0.797 | 0.768 | 0.437 | 0.617 |
Sx15 | 60 | 7 | 0.149 | 0.500 | 0.588 | 0.560 | 0.205 | 0.389 |
Sx40 | 59 | 10 | 0.062 | 0.831 | 0.885 | 0.865 | 0.600 | 0.752 |
Sx74 | 60 | 7 | 0.189 | 0.467 | 0.575 | 0.545 | 0.192 | 0.374 |
Sx101 | 60 | 7 | 0.240 | 0.583 | 0.767 | 0.727 | 0.376 | 0.556 |
Sx112 | 59 | 17 | 0.140 | 0.797 | 0.926 | 0.911 | 0.714 | 0.833 |
Sx116 | 60 | 14 | 0.205 | 0.700 | 0.880 | 0.859 | 0.594 | 0.746 |
Sx154 | 60 | 9 | 0.034 | 0.783 | 0.811 | 0.783 | 0.457 | 0.634 |
平均 Mean | 10 | 0.670 | 0.778 | 0.753 | - | - | ||
合计 Total | 80 | 0.146 | - | - | - | 0.994 | 0.999 |
图3 0-100 m范围内观察和预期种子及花粉扩散距离频率分布
Fig. 3 Comparison of the observed (black bars) and potential (white bars) seed dispersal distance frequency distribution, observed (gray bars) and potential (stripe bars) pollen dispersal distance frequency distribution within 0-100 m of the isolated population
[1] | Chen KX (陈克霞), Wang R (王嵘), Chen XY (陈小勇) (2008) Genetic structure of Alpinia japonica populations in naturally fragmented habitats. Acta Ecologica Sinica (生态学报), 28, 2480-2485. (in Chinese with English abstract) |
[2] | Chen XY (陈小勇) (2000) Effects of habitat fragmentation on genetic structure of plant populations and implications for the biodiversity conservation. Acta Ecologica Sinica (生态学报), 20, 884-892. (in Chinese with English abstract) |
[3] |
Chung MY, Epperson BK, Chung MG (2003a) Genetic structure of age classes in Camellia japonica (Theaceae). Evolution, 57, 62-73.
URL PMID |
[4] |
Chung MY, Nason JD, Epperson BK, Chung MG (2003b) Temporal aspects of the fine-scale genetic structure in a population of Cinnamomum insularimontanum (Lauraceae). Heredity, 90, 98-106.
DOI URL PMID |
[5] |
Crawford TJ (1984) The estimation of neighbourhood parameters for plant populations. Heredity, 52, 273-283.
DOI URL |
[6] | Crow JF, Kimura M (1970) An Introduction to Population Genetics Theory. Harper and Row, New York. |
[7] |
Debout GDG, Doucet JL, Hardy OJ (2010) Population history and gene dispersal inferred from spatial genetic structure of a Central African timber tree, Distemonanthus benth- amianus (Caesalpinioideae). Heredity, 106, 88-99.
DOI URL PMID |
[8] |
De Lucas AI, Gonzalez-Martínez SC, Vendramin GG, Hidalgo E, Heuertz M (2009) Spatial genetic structure in continuous and fragmented populations of Pinus pinaster Aiton. Molecular Ecology, 18, 4564-4576.
DOI URL PMID |
[9] |
Dow BD, Ashley MV (1996) Microsatellite analysis of seed dispersal and parentage of saplings in bur oak, Quercus macrocarpa. Molecular Ecology, 5, 615-627.
DOI URL |
[10] | Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin, 19, 11-15. |
[11] |
Dutech C, Joly HI, Jarne P (2004) Gene flow, historical population dynamics and genetic diversity within French Guianan populations of a rainforest tree species, Vouacapoua americana. Heredity, 92, 69-77.
URL PMID |
[12] |
Dutech C, Seiter J, Petronelli P, Joly HI, Jarne P (2002) Evidence of low gene flow in a neotropical clustered tree species in two rainforest stands of French Guiana. Molecular Ecology, 11, 725-738.
DOI URL PMID |
[13] |
Ellstrand NC, Elam DR (1993) Population genetic consequences of small population size: implications for plant conservation. Annual Review of Ecology and Systematics, 24, 217-242.
DOI URL |
[14] |
Epperson BK (1992) Spatial structure of genetic variation within populations of forest trees. New Forests, 6, 257-278.
DOI URL |
[15] |
Fenster CB, Vekemans X, Hardy OJ (2003) Quantifying gene flow from spatial genetic structure data in a metapopulation of Chamaecrista fasciculata (Leguminosae). Evolution, 57, 995-1007.
DOI URL PMID |
[16] |
Foster PF, Sork VL (1997) Population and genetic structure of the West African rain forest liana Ancistrocladus korupensis (Ancistrocladaceae). American Journal of Botany, 84, 1078-1091.
URL PMID |
[17] | Fu LK (傅立国) (1991) China Plant Red Data Book: Rare and Endangered Plants (中国植物红皮书: 稀有濒危植物), Volume 1. Science Press, Beijing. (in Chinese) |
[18] |
Gapare WJ, Aitken SN (2005) Strong spatial genetic structure in peripheral but not core populations of Sitka spruce (Picea sitchensis (Bong.) Carr.). Molecular Ecology, 14, 2659-2667.
DOI URL PMID |
[19] |
Hardy OJ, Maggia L, Bandou E, Breyne P, Caron H, Chevallier MH, Doligez A, Dutech C, Kremer A, Latouche-Hallé C, Troispoux V, Veron V, Degen B (2006) Fine-scale genetic structure and gene dispersal inferences in 10 Neotropical tree species. Molecular Ecology, 15, 559-571.
DOI URL PMID |
[20] |
Hardy OJ, Vekemans X (1999) Isolation by distance in a continuous population: reconciliation between spatial autocorrelation analysis and population genetics models. Heredity, 83, 145-154.
DOI URL PMID |
[21] |
Hardy OJ, Vekemans X (2002) SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Molecular Ecology Notes, 2, 618-620.
DOI URL |
[22] |
Hirao AS (2010) Kinship between parents reduces offspring fitness in a natural population of Rhododendron brachycarpum. Annals of Botany, 105, 637-646.
DOI URL PMID |
[23] |
Honnay O, Coart E, Butaye J, Adriaens D, van Glabeke S, Roldán-Ruiz I (2006) Low impact of present and historical landscape configuration on the genetics of fragmented Anthyllis vulneraria populations. Biological Conservation, 127, 411-419.
DOI URL |
[24] | Huang ZY (黄致远), Zong SX (宗世贤), Zhu XY (朱小毅) (1998) The study on eco-geographical distribution, biology characteristics and propagation techniques of Sinojackia xylocarpa Hu. Journal of Jiangsu Forestry Science and Technology (江苏林业科技), 25(2), 15-18. (in Chinese with English abstract) |
[25] |
Jacquemyn H, Brys R, Vandepitte K, Honnay O, Roldán-Ruiz I (2006) Fine scale genetic structure of life history stages in the food deceptive orchid Orchis purpurea. Molecular Ecology, 15, 2801-2808.
DOI URL PMID |
[26] | Jia SG (贾书果), Shen YB (沈永宝) (2007) Research progress on Sinojackia xylocarpa Hu. Journal of Jiangsu Forestry Science and Technology (江苏林业科技), 34(6), 41-45. (in Chinese with English abstract) |
[27] |
Jones FA, Hubbell SP (2006) Demographic spatial genetic structure of the Neotropical tree, Jacaranda copaia. Molecular Ecology, 15, 3205-3217.
DOI URL PMID |
[28] |
Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Molecular Ecology, 16, 1099-1106.
DOI URL PMID |
[29] |
Kalisz S, Nason JD, Hanzawa FM, Tonsor SJ (2001) Spatial population genetic structure in Trillium grandiflorum: the roles of dispersal, mating, history, and selection. Evolution, 55, 1560-1568.
DOI URL PMID |
[30] |
Kramer AT, Ison JL, Ashley MV, Howe HF (2008) The paradox of forest fragmentation genetics. Conservation Biology, 22, 878-885.
DOI URL PMID |
[31] |
Levin DA, Kerster HW (1969) The dependence of bee-mediated pollen and gene dispersal upon plant density. Evolution, 23, 560-571.
DOI URL PMID |
[32] |
Mandák B, Bímová K, Mahelka V, Plačková I (2006) How much genetic variation is stored in the seed bank? A study of Atriplex tatarica (Chenopodiaceae). Molecular Ecology, 15, 2653-2663.
URL PMID |
[33] |
Marshall TC, Slate J, Kruuk LEB, Pemberton JM (1998) Statistical confidence for likelihood-based paternity inference in natural populations. Molecular Ecology, 7, 639-655.
DOI URL PMID |
[34] |
Ndiade-Bourobou D, Hardy OJ, Favreau B, Moussavou H, Nzengue E, Mignot A, Bouvet JM (2010) Long-distance seed and pollen dispersal inferred from spatial genetic structure in the very low-density rainforest tree, Baillonella toxisperma Pierre, in Central Africa. Molecular Ecology, 19, 4949-4962.
DOI URL PMID |
[35] |
Ohsawa T, Tsuda Y, Saito Y, Sawada H, Lde Y (2007) Steep slopes promote downhill dispersal of Quercus crispula seeds and weaken the fine-scale genetic structure of seedling populations. Annals of Forest Science, 64, 405-412.
DOI URL |
[36] |
Parker KC, Hamrick JL, Parker AJ, Nason JD (2001) Fine-scale genetic structure in Pinus clausa (Pinaceae) populations: effects of disturbance history. Heredity, 87, 99-113.
DOI URL PMID |
[37] |
Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics, 145, 1219-1228.
URL PMID |
[38] |
Rousset F (2000) Genetic differentiation between individuals. Journal of Evolutionary Biology, 13, 58-62.
DOI URL |
[39] |
Rousset F (2008) GENEPOP’ 007: a complete re-implementa- tion of the GENEPOP software for Windows and Linux. Molecular Ecology Resources, 8, 103-106.
DOI URL PMID |
[40] |
Schnabel A, Nason JD, Hamrick JL (1998) Understanding the population genetic structure of Gleditsia triacanthos L.: seed dispersal and variation in female reproductive success. Molecular Ecology, 7, 819-832.
DOI URL |
[41] |
Shapcott A (1995) The spatial genetic structure in natural populations of the Australian temperate rainforest tree Atherosperma moschatum (Labill.) (Monimiaceae). Heredity, 74, 28-38.
DOI URL |
[42] |
Stacy EA, Hamrick JL, Nason JD, Hubbell SP, Foster RB, Condit R (1996) Pollen dispersal in low-density populations of three neotropical tree species. The American Naturalist, 148, 275-298.
DOI URL |
[43] |
Ueno S, Tomaru N, Yoshimaru H, Manabe T, Yamamoto S (2002) Size-class differences in genetic structure and individual distribution of Camellia japonica L. in a Japanese old-growth evergreen forest. Heredity, 89, 120-126.
DOI URL PMID |
[44] |
Vekemans X, Hardy OJ (2004) New insights from fine-scale spatial genetic structure analyses in plant populations. Molecular Ecology, 13, 921-935.
DOI URL PMID |
[45] |
Wells GP, Young AG (2002) Effects of seed dispersal on spatial genetic structure in populations of Rutidosis leptorrhychoides with different levels of correlated paternity. Genetical Research, 79, 219-226.
URL PMID |
[46] | White GM, Boshier DH, Powell W (2002) Increased pollen flow counteracts fragmentation in a tropical dry forest: an example from Swietenia humilis Zuccarini. Proceedings of the National Academy of Sciences, USA, 99, 2038-2042. |
[47] |
Wright S (1943) Isolation by distance. Genetics, 28, 114-138.
URL PMID |
[48] | Yao XH, Ye QG, Ge JW, Kang M, Huang HW (2007b) A new species of Sinojackia (Styracaceae) from Hubei, central China. Novon, 17, 138-140. |
[49] | Yao XH (姚小洪), Ye QG (叶其刚), Kang M (康明), Huang HW (黄宏文) (2005) Geographic distribution and current status of the endangered genera Sinojackia and Changiostyrax. Biodiversity Science (生物多样性), 13, 339-346. (in Chinese with English abstract) |
[50] | Yao XH, Ye QG, Kang M, Huang HW (2007a) Microsatellite analysis reveals interpopulation differentiation and gene flow in the endangered tree Changiostyrax dolichocarpa (Styracaceae) with fragmented distribution in central China. New Phytologist, 176, 472-480. |
[51] | Yao XH, Ye QG, Kang M, Zhou JF, Xu YQ, Wang Y, Huang HW (2006) Characterization of microsatellite markers in the endangered Sinojackia xylocarpa (Styracaceae) and cross-species amplification in closely related taxa. Molecular Ecology Notes, 6, 133-136. |
[52] | Yao XH, Zhang JJ, Ye QG, Huang HW (2011) Fine-scale spatial genetic structure and gene flow in a small, fragmented population of Sinojackia rehderiana (Styracaceae), an endangered tree species endemic to China. Plant Biology, 13, 401-410. |
[53] | Young A, Boyle T, Brown T (1996) The population genetic consequences of habitat fragmentation for plants. Trends in Ecology and Evolution, 11, 413-418. |
[54] | Young AG, Merriam HG (1994) Effects of forest fragmentation on the spatial genetic structure of Acer saccharum Marsh. (sugar maple) populations. Heredity, 72, 201-207. |
[55] | Zhang JJ, Ye QG, Yao XH, Huang HW (2010a) Microsatellite diversity and mating system of Sinojackia xylocarpa (Styracaceae), a species extinct in the wild. Biochemical Systematics and Ecology, 38, 154-159. |
[56] | Zhang JJ, Ye QG, Yao XH, Huang HW (2010b) Spontaneous interspecific hybridization and patterns of pollen dispersal in ex situ populations of a tree species (Sinojackia xylocarpa) that is extinct in the wild. Conservation Biology, 24, 246-255. |
[57] | Zhang JJ (张金菊), Ye QG (叶其刚), Yao XH (姚小洪), Zhang SJ (张胜菊), Huang HW (黄宏文) (2008) Preliminary studies on the floral biology, breeding system and reproductive success of Sinojackia huangmeiensis, an endangered plant in a fragmented habitat in Hubei Province, China. Journal of Plant Ecology (Chinese Version)(植物生态学报), 32, 743-750. (in Chinese with English abstract) |
[58] |
Zhao R, Xia HB, Lu BR (2009) Fine-scale genetic structure enhances biparental inbreeding by promoting mating events between more related individuals in wild soybean (Glycine Soja; Fabaceae) populations. American Journal of Botany, 96, 1138-1147.
URL PMID |
[1] | 干靓 刘巷序 鲁雪茗 岳星. 全球生物多样性热点地区大城市的保护政策与优化方向[J]. 生物多样性, 2025, 33(5): 24529-. |
[2] | 曾子轩 杨锐 黄越 陈路遥. 清华大学校园鸟类多样性特征与环境关联[J]. 生物多样性, 2025, 33(5): 24373-. |
[3] | 周昊, 王茗毅, 张楚格, 肖治术, 欧阳芳. 昆虫旅馆在独栖蜂多样性保护中的现状与挑战[J]. 生物多样性, 2025, 33(5): 24472-. |
[4] | 祝晓雨, 王晨灏, 王忠君, 张玉钧. 城市绿地生物多样性研究进展与展望[J]. 生物多样性, 2025, 33(5): 25027-. |
[5] | 王欣, 鲍风宇. 基于鸟类多样性提升的南滇池国家湿地公园生态修复效果分析[J]. 生物多样性, 2025, 33(5): 24531-. |
[6] | 明玥, 郝培尧, 谭铃千, 郑曦. 基于城市绿色高质量发展理念的中国城市生物多样性保护与提升研究[J]. 生物多样性, 2025, 33(5): 24524-. |
[7] | 易木荣, 卢萍, 彭勇, 汤勇, 许久恒, 尹浩萍, 张路杨, 翁晓东, 底明晓, 雷隽, 卢宸祺, 曹如君, 戴年华, 占德洋, 童媚, 楼智明, 丁永刚, 柴静, 车静. 北潦河金家水支流江西大鲵野外种群现状及栖息地评估[J]. 生物多样性, 2025, 33(4): 24145-. |
[8] | 王太, 宋福俊, 张永胜, 娄忠玉, 张艳萍, 杜岩岩. 河西走廊内陆河水系鱼类多样性及资源现状[J]. 生物多样性, 2025, 33(4): 24387-. |
[9] | 李沫潼, 何拓, 李薇, 廖菁, 曾岩. 从CITES的术语看野生动植物国际贸易监管规则[J]. 生物多样性, 2025, 33(4): 24545-. |
[10] | 张晶晶, 黄文彬, 陈奕廷, 杨泽鹏, 柯伟业, 彭昭杰, 魏世超, 张志伟, 胡怡思, 余文华, 周文良. 广东南澎列岛海洋生态国家级自然保护区造礁石珊瑚多样性及分布特征[J]. 生物多样性, 2025, 33(4): 24424-. |
[11] | 卢晓强, 董姗姗, 马月, 徐徐, 邱凤, 臧明月, 万雅琼, 李孪鑫, 于赐刚, 刘燕. 前沿技术在生物多样性研究中的应用现状、挑战与展望[J]. 生物多样性, 2025, 33(4): 24440-. |
[12] | 郭雨桐, 李素萃, 王智, 解焱, 杨雪, 周广金, 尤春赫, 朱萨宁, 高吉喜. 全国自然保护地对国家重点保护野生物种的覆盖度及其分布状况[J]. 生物多样性, 2025, 33(3): 24423-. |
[13] | 赵维洋, 王伟, 马冰然. 其他有效的区域保护措施(OECMs)研究进展与展望[J]. 生物多样性, 2025, 33(3): 24525-. |
[14] | 周志华, 金效华, 罗颖, 李迪强, 岳建兵, 刘芳, 何拓, 李希, 董晖, 罗鹏. 中国林草部门落实《昆明-蒙特利尔全球生物多样性框架》的机制、成效分析及建议[J]. 生物多样性, 2025, 33(3): 24487-. |
[15] | 刘立, 臧明月, 马月, 万雅琼, 胡飞龙, 卢晓强, 刘燕. 央地协同推动国家生物多样性战略和行动计划执行的措施、进展与展望[J]. 生物多样性, 2025, 33(3): 24532-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn