生物多样性 ›› 2011, Vol. 19 ›› Issue (2): 134-142. DOI: 10.3724/SP.J.1003.2011.09295
所属专题: 中国的森林生物多样性监测
王伟1, 骆争荣1, 周荣飞2, 许大明2, 哀建国3, 丁炳扬4,*()
收稿日期:
2010-12-03
接受日期:
2011-02-23
出版日期:
2011-03-20
发布日期:
2011-06-01
通讯作者:
丁炳扬
作者简介:
*E-mail: dingby2005@126.com基金资助:
Wei Wang1, Zhengrong Luo1, Rongfei Zhou2, Daming Xu2, Jianguo Ai3, Bingyang Ding4,*()
Received:
2010-12-03
Accepted:
2011-02-23
Online:
2011-03-20
Published:
2011-06-01
Contact:
Bingyang Ding
摘要:
中性理论和生态位理论在解释热带雨林中物种共存机制上发挥了重要作用。本文通过Torus-translation检测方法对百山祖常绿阔叶林5 ha样地中DBH≥1 cm、个体数大于5的89种木本植物与4个根据地形和物种组成划分的小生境进行了关联性分析。同时按植物的胸径径级大小将其分为幼树期、生长期、成熟期3个生长阶段, 并分别分析了植物在这3个生长阶段与生境的关联性。结果表明: 89个木本植物中, 没有表现出显著的生境相关性的物种多是稀有种或是个体数较少的物种, 而大部分的常见种表现出与生境的显著相关性; 通过对每个物种不同生长阶段的生境相关性比较, 发现多数物种的生境相关性会发生改变, 其中只有麂角杜鹃(Rhododendron latoucheae)、褐叶青冈(Cyclobalanopsis stewardiana)和厚叶红淡比(Cleyera pachyphylla)在生长的3个生长阶段没有发生改变。这表明, 生境异质性对亚热带常绿阔叶林中木本植物的生物多样性的维持起着重要作用, 同时对不同生长时期的物种与生境相关性的分析结果表明, 大部分物种与生境的相关性会随着生长阶段的变化而发生变化。
王伟, 骆争荣, 周荣飞, 许大明, 哀建国, 丁炳扬 (2011) 百山祖常绿阔叶林木本植物的生境相关性分析. 生物多样性, 19, 134-142. DOI: 10.3724/SP.J.1003.2011.09295.
Wei Wang, Zhengrong Luo, Rongfei Zhou, Daming Xu, Jianguo Ai, Bingyang Ding (2011) Habitat associations of woody plant species in Baishanzu subtropical broad-leaved evergreen forest. Biodiversity Science, 19, 134-142. DOI: 10.3724/SP.J.1003.2011.09295.
图2 根据百山祖样地内物种组成及生境因子构成的多元线性回归树(MRT)。 每一个节点表示一个选中的生境因子以及划分不同生境的标准, n表示小样方数。
Fig. 2 Multivariate regression tree (MRT) for the tree species composition against micro-topographic factors in the Baishanzu plot. The information above the node denotes the selected factor and rule for the division of the quadrats. The number n below each branch give the number of quadrats in that habitat
图3 通过多元回归树对10 m×10 m的小样方进行生境类型分类后的图示。 不同颜色的方块及数字代表不同的生境类别: 1: 沟谷; 2: 陡坡; 3: 缓坡; 4: 山脊。
Map of the habitat types classified by the multivariate regression tree at 10 m × 10 m scale. The diamonds with different color and numbers denote different group of habitats.1, Gully; 2, Steep slope; 3, Less-steep slope; 4, Ridge.
生境类别 Habitat category | 生境名称 Habitat name | 小样方数 Number of quadrats | 面积 Total area (ha) | 相对海拔 Relative elevation (m) | 凸度 Convexity (m) | 坡度 Slope (°) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
最低 Min. | 最高 Max. | 平均 Mean | 最小 Min. | 最大 Max. | 平均 Mean | 最小 Min. | 最大 Max. | 平均 Mean | ||||||
1 | 沟谷 Gully | 203 | 2.03 | 3.49 | 109.08 | 49.90 | -8.71 | 0.06 | -2.67 | 13.43 | 35.55 | 27.47 | ||
2 | 陡坡 Steep slope | 36 | 0.36 | 11.39 | 91.77 | 43.78 | -7.66 | -0.03 | -1.99 | 35.64 | 41.95 | 37.54 | ||
3 | 缓坡 Less-steep slope | 194 | 1.94 | 9.70 | 120.53 | 67.90 | 0.07 | 3.35 | 1.49 | 10.64 | 40.95 | 27.69 | ||
4 | 山脊 Ridge | 67 | 0.67 | 26.77 | 114.62 | 75.63 | 3.37 | 10.04 | 4.90 | 11.95 | 37.28 | 27.42 |
表1 百山祖5 ha长期监测样地中各类生境的地形参数
Table 1 The topographic parameters of habitat categories in the 5 ha Baishanzu permanent plot
生境类别 Habitat category | 生境名称 Habitat name | 小样方数 Number of quadrats | 面积 Total area (ha) | 相对海拔 Relative elevation (m) | 凸度 Convexity (m) | 坡度 Slope (°) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
最低 Min. | 最高 Max. | 平均 Mean | 最小 Min. | 最大 Max. | 平均 Mean | 最小 Min. | 最大 Max. | 平均 Mean | ||||||
1 | 沟谷 Gully | 203 | 2.03 | 3.49 | 109.08 | 49.90 | -8.71 | 0.06 | -2.67 | 13.43 | 35.55 | 27.47 | ||
2 | 陡坡 Steep slope | 36 | 0.36 | 11.39 | 91.77 | 43.78 | -7.66 | -0.03 | -1.99 | 35.64 | 41.95 | 37.54 | ||
3 | 缓坡 Less-steep slope | 194 | 1.94 | 9.70 | 120.53 | 67.90 | 0.07 | 3.35 | 1.49 | 10.64 | 40.95 | 27.69 | ||
4 | 山脊 Ridge | 67 | 0.67 | 26.77 | 114.62 | 75.63 | 3.37 | 10.04 | 4.90 | 11.95 | 37.28 | 27.42 |
生长阶段 Growth stages | 径级 DBH (cm) | |
---|---|---|
灌木 Shrubs | 幼树 Sapling | 1.0 ≤ DBH < 1.5 |
生长期 Juvenile | 1.5 ≤ DBH < 2.5 | |
成熟期 Mature | DBH ≥ 2.5 | |
小乔木 Under-story trees | 幼树 Sapling | 1.0 ≤ DBH < 2.5 |
生长期 Juvenile | 2.5 ≤ DBH < 4.0 | |
成熟期 Mature | DBH ≥ 4.0 | |
高大乔木 Canopy trees | 幼树 Sapling | 1.0 ≤ DBH < 4.0 |
生长期 Juvenile | 4.0 ≤ DBH < 8.0 | |
成熟期 Mature | DBH ≥ 8.0 |
表2 3类物种的生长阶段的划分
Table 2 Growth stages of different types of tree species
生长阶段 Growth stages | 径级 DBH (cm) | |
---|---|---|
灌木 Shrubs | 幼树 Sapling | 1.0 ≤ DBH < 1.5 |
生长期 Juvenile | 1.5 ≤ DBH < 2.5 | |
成熟期 Mature | DBH ≥ 2.5 | |
小乔木 Under-story trees | 幼树 Sapling | 1.0 ≤ DBH < 2.5 |
生长期 Juvenile | 2.5 ≤ DBH < 4.0 | |
成熟期 Mature | DBH ≥ 4.0 | |
高大乔木 Canopy trees | 幼树 Sapling | 1.0 ≤ DBH < 4.0 |
生长期 Juvenile | 4.0 ≤ DBH < 8.0 | |
成熟期 Mature | DBH ≥ 8.0 |
生境名称 Habitat name | 正相关的物种数 Number of species positively associated with habitat | 负相关的物种数 Number of species negatively associated with habitat |
---|---|---|
沟谷 Gully | 10 | 40 |
陡坡 Steep slope | 10 | 4 |
缓坡 Less-steep slope | 17 | 5 |
山脊 Ridge | 21 | 13 |
表3 与生境相关的物种在各类生境中的分布
Table 3 The number of species with remarkable association in each habitat category
生境名称 Habitat name | 正相关的物种数 Number of species positively associated with habitat | 负相关的物种数 Number of species negatively associated with habitat |
---|---|---|
沟谷 Gully | 10 | 40 |
陡坡 Steep slope | 10 | 4 |
缓坡 Less-steep slope | 17 | 5 |
山脊 Ridge | 21 | 13 |
图4 百山祖5 ha长期监测样地中物种的3个时期(幼树期、生长期、成熟期)与4类生境之间正相关(I)和负相关(II)关系图。 当Torus-translation检验结果在P<0.1时认为物种与生境的相关性是显著的。在图中, 数字表示物种在3个生长时期与生境显著的相关物种数。
Fig. 4 Venn diagrams illustrating positive associations (I) and negative associations (II) of the sapling, juvenile, and mature stages with four habitats in the 5 ha Baishanzu permanent plot. Significance of association was determined with Torus-transla- tion tests at P<0.1. The numbers in the venn diagrams indicate the numbers of species that associated with habitats at different developmental stages.
图5 在幼树期、生长期和成熟期与四类生境正相关(A)和负相关(B)的物种数。所有的89个树种和灌木都经过Torus- translation检验, 当P<0.1时被认为物种与生境显著相关。
Fig. 5 Number of species positively(A) and negatively(B) associated with each of the four habitat at the sapling, juvenile, and mature stages in the 5 ha Baishanzu permanent plot. Torus-translation tests were used to assess the significance of habitat associations for 89 tree and shrub species (P<0.1).
[1] | Chave J (2004) Neutral theory and community ecology. Ecology Letters, 7, 241-253. |
[2] |
Chen L, Mi XC, Comita SL, Zhang LW, Ren HB, Ma KP (2010) Community-level consequences of density dependence and habitat association in a subtropical broad-leaved forest. Ecology Letters, 13, 695-704.
URL PMID |
[3] | Clark DB, Clark DA, Read JM (1998) Edaphic variation and the mesoscale distribution of tree species in a neotropical rain forest. Journal of Ecology, 86, 101-112. |
[4] | Clark DB, Palmer MW, Clark DA (1999) Edaphic factors and the landscape scale distributions of tropical rain forest trees. Ecology, 80, 2662-2675. |
[5] | Comita LS, Condit R, Hubbell SP (2007) Developmental changes in habitat associations of tropical trees. Journal of Ecology, 95, 482-492. |
[6] | Condit R (1998) Tropical Forest Census Plots: Methods and Results from Barro Colorado Island, Panama and a Comparison with Other Plots. Springer-Verlag, Berlin. |
[7] |
Connell JH (1978) Diversity in tropical rain forests and coral reefs. Science, 199, 1302-1310.
URL PMID |
[8] | Dalling JW, Muller-Landau HC, Wright SJ, Hubbell SP (2002) Role of dispersal in the recruitment limitation of neotropical pioneer species. Journal of Ecology, 90, 714-727. |
[9] | De’ath G (2002) Multivariate regression trees: a new technique for modeling species-environment relationships. Ecology, 83, 1105-1117. |
[10] | Debski I, Burslem DFRP, Palmiotto PA, Lafrankie JV, Lee HS, Manokaran N (2002) Habitat preferences of Aporosa in two Malaysian rain forests: implications for abundance and co-existence. Ecology, 83, 2005-2018. |
[11] | Gong GQ (宫贵权), Cheng JM (程积民), Mi XC (米湘成), Chen SW (陈声文), Fang T (方腾) (2007) Habitat associations of wood species in the Gutianshan subtropical broad-leaved evergreen forest. Science of Soil and Water Conservation (中国水土保持科学), 5(3), 79-83. (in Chinese with English abstract) |
[12] | Grubb PJ (1977) The maintenance of species richness in plant communities: the importance of regeneration niche. Biological Reviews, 52, 107-145. |
[13] | Grubb PJ (1986) Problems posed by sparse and patchily distributed species in species-rich communities. In: Community Ecology (eds Diamond J, Case TJ), pp. 207-225. Harper & Row, New York. |
[14] | Gunatilleke CVS, Gunatilleke IAUN, Esufali S, Harms KE, Ashton PMS, Burslem DFRP, Ashton PS (2006) Species-habitat associations in a Sri Lankan dipterocarp forest. Journal of Tropical Ecology, 22, 371-384. |
[15] | Harms KE, Condit R, Hubbell SP, Foster SB (2001) Habitat associations of trees and shrubs in a 50 ha neotropical forest plot. Journal of Ecology, 89, 947-959. |
[16] | Hou JH (侯继华), Ma KP (马克平) (2002) On mechanisms of species coexistence in plant communities. Acta Phytoecologica Sinica (植物生态学报), 26, 1-8. (in Chinese with English abstract) |
[17] | Hubbell SP, Foster RB (1983) Diversity of canopy trees in a neotropical forest and implications for conservation. In: Tropical Rain Forest: Ecology and Management (eds Sutton SL, Whitmore TC, Chadwick AC), pp.25-41. Blackwell Scientific Publications, Oxford. |
[18] | Hubbell SP, Foster RB (1986) Biology, chance and history and the structure of tropical rain forest tree communities. In: Community Ecology, pp. 314-319. Harper & Row, New York. |
[19] |
Hubbell SP, Foster RB, O’Brien ST, Harms KE, Condit R, Wechsler R, Wright SJ, de Lao SL (1999) Light-gap disturbances, recruitment limitation, and tree diversity in a neotropical forest. Science, 283, 554-557.
DOI URL PMID |
[20] | Hubbell SP (2001) The Unified Neutral Theory of Biodiversity and Biogeography. Princeton University Press, Princeton, NJ. |
[21] | Itoh A, Yamakura T, Ohkubo T, Kanzakim M, Palmiotto PA, Lafrankie JV, Ashton PS, Lee HS (2003) Importance of topography and soil texture in the spatial distribution of two sympatric dipterocarp trees in a Bornean rain forest. Ecological Research, 18, 307-320. |
[22] | Lai JS, Mi XC, Ren HB, Ma KP (2009) Species-habitat associations change in a subtropical forest of China. Journal of Vegetation Science, 20, 415-423. |
[23] | Legendre P, Mi XC, Ren HB, Ma KP, Yu MJ, Sun IF, He FL (2009) Partitioning beta diversity in a subtropical broad-leaved forest of China. Ecology, 90, 663-674. |
[24] | Leigh EG (1999) Tropical Forest Ecology. Oxford University Press, Oxford. |
[25] | Li L, Huang ZL, Ye WH, Cao HL, Wei SG, Wang ZG, Lian JY, Sun IF, Ma KP, He FL (2009) Spatial distributions of tree species in a subtropical forest of China. Oikos, 118, 495-502. |
[26] | Liu M (刘梅), Jiang DS (蒋定生), Huang GJ (黄国俊), Fan XK (范兴科), Chang CE (畅彩娥) (1990) An analysis to the differences of soil water in varied places of hillslopes. Bulletin of Soil and Water Conservation (水土保持通报), 10(2), 16-20. (in Chinese with English abstract) |
[27] | Luo ZR, Ding BY, Mi XC, Yu JH, Wu YG (2009) Distribution patterns of tree species in an evergreen broadleaved forest in eastern China. Frontiers of Biology in China, 4, 531-538. |
[28] | Lutz HJ (1930) Original forest composition in northwestern Pennsylvania as indicated by early land survey notes. Journal of Forestry, 28, 1098-1103. |
[29] |
Nakashizuka T (2001) Species coexistence in temperate, mixed deciduous forests. Trends in Ecology and Evolution, 16, 205-210.
URL PMID |
[30] | Potts MD, Ashton PS, Kaufman LS, Plotkin JB (2002) Habitat patterns in tropical rainforests: a comparison of 105 plots in northwest Borneo. Ecology, 83, 2782-2797. |
[31] |
Potts MD, Davies SJ, Bossert WH, Tan S, Supardi MNN (2004) Habitat heterogeneity and niche structure of trees in two tropical rain forests. Oecologia, 139, 446-453.
URL PMID |
[32] | Qiu Y (邱扬), Fu BJ (傅伯杰), Wang J (王军), Zhang XL (张希来), Meng QH (孟庆华) (2007) Spatio temporal variation of soil moisture and its relation to environmental factors. Chinese Journal of Ecology (生态学杂志), 26, 100-107. (in Chinese with English abstract) |
[33] | Queenborough SA, Burslem DFRP, Garwood NC, Valencia R (2007) Habitat niche partitioning by 16 species of Myristicaceae in Amazonian Ecuador. Plant Ecology, 192, 193-207. |
[34] | Schupp EW, Fuentes M (1995) Spatial patterns of seed disperal and the unification of plant population ecology. Ecoscience, 2, 267-275. |
[35] | Shea K, Roxburgh SH, Rauschert ES (2004) Moving from pattern to process: coexistence mechanisms under intermediate disturbance regimes. Ecology Letters, 7, 491-508. |
[36] |
Shen GC, Yu MJ, Hu XS, Mi XC, Ren HB, Sun IF, Ma KP (2009) Species-area relationships explained by the joint effects of dispersal limitation and habitat heterogeneity. Ecology, 90, 3033-3041.
URL PMID |
[37] | Silvertown J (2004) Plant coexistence and the niche. Trends in Ecology and Evolution, 19, 606-611. |
[38] | Svenning JC (1999) Microhabitat specialization in a species-rich palm community in Amazonian Ecuador. Journal of Ecology, 87, 55-65. |
[39] | Tilman D, Pacala S (1993) The maintenance of species richness in plant communities. In: Species Diversity in Ecological Communities (eds Ricklefs RE, Schluter D), pp. 13-25. University of Chicago Press, Chicago. |
[40] |
Tuomisto H, Ruokolainen K, Yli-Halla M (2003) Dispersal, environment, and floristic variation of western Amazonian forests. Science, 299, 241-244.
DOI URL PMID |
[41] | Valencia R, Foster RB, Villa G, Condit R, Svenning JC, Hernández C, Romoleroux K, Losos E, Magård E, Balslev H (2004) Tree species distributions and local habitat variation in the Amazon: large forest plot in eastern Ecuador. Journal of Ecology, 92, 214-229. |
[42] | Wang BC, Smith TB (2002) Closing the seed dispersal loop. Trends in Ecology and Evolution, 17, 379-385. |
[43] | Webb C, Peart DR (2000) Habitat associations of trees and seedlings in a Bornean rain forest. Journal of Ecology, 88, 464-478. |
[44] | Werner EE, Gilliam JF (1984) The ontogenetic niche and species interactions in size-structured populations. Annual Review of Ecology and Systematics, 15, 393-425. |
[45] |
Whitfield J (2002) Ecology: neutrality versus the niche. Nature, 417, 480-481.
DOI URL PMID |
[46] |
Wright SJ (2002) Plant diversity in tropical forests: a review of mechanisms of species coexistence. Oecologia, 130, 1-14.
DOI URL PMID |
[47] | Xu M (徐敏), Luo ZR (骆争荣), Yu MJ (于明坚), Ding BY (丁炳扬), Wu YG (吴友贵) (2007) Floristic composition and community structure of mid-montane evergreen broad-leaved forest in north slope of Baishanzu Mountain. Journal of Zhejiang University (Agriculture & Life Science) (浙江大学学报(农业与生命科学版)), 33, 450-454. (in Chinese with English abstract) |
[48] | Yamada T, Zuidema PA, Itoh A, Yamakura T, Ohkubo T, Kanzaki M, Tan S, Ashton PS (2007) Strong habitat preference of a tropical rain forest tree does not imply large differences in population dynamics across habitats. Journal of Ecology, 95, 332-342. |
[49] | Yamakura T, Kanzake M, Itoh A, Ohkubo T, Ogino K, Chai EOK, Lee HS, Ashton PS (1995) Topgraphy of a large-scale research plot established within a tropical rain forest at Lambir, Sarawak. Tropics, 5, 41-56. |
[50] | Zhu Y, Mi XC, Ren HB, Ma KP (2010) Density dependence is prevalent in a heterogeneous subtropical forest. Oikos, 119, 109-119. |
[1] | 张楚然, 李生发, 李逢昌, 唐志忠, 刘辉燕, 王丽红, 顾荣, 邓云, 张志明, 林露湘. 云南鸡足山亚热带半湿润常绿阔叶林20 ha动态监测样地木本植物生境关联与群落数量分类[J]. 生物多样性, 2024, 32(1): 23393-. |
[2] | 王明慧, 陈昭铨, 李帅锋, 黄小波, 郎学东, 胡子涵, 尚瑞广, 刘万德. 云南普洱季风常绿阔叶林不同种子扩散方式的优势种空间点格局分析[J]. 生物多样性, 2023, 31(9): 23147-. |
[3] | 邓婷婷, 魏岩, 任思远, 祝燕. 北京东灵山暖温带落叶阔叶林地形和林分结构对林下草本植物物种多样性的影响[J]. 生物多样性, 2023, 31(7): 22671-. |
[4] | 陈声文, 任海保, 童光蓉, 王宁宁, 蓝文超, 薛建华, 米湘成. 钱江源国家公园木本植物物种多样性空间分布格局[J]. 生物多样性, 2023, 31(7): 22587-. |
[5] | 饶杰生, 杨涛, 田希, 刘文聪, 王晓凤, 钱恒君, 沈泽昊. 基于背包LiDAR的半湿润常绿阔叶林及其常见树种的垂直结构特征[J]. 生物多样性, 2023, 31(11): 23216-. |
[6] | 罗彩访, 杨涛, 张秋雨, 王馨培, 沈泽昊. 滇中半湿润常绿阔叶林木本植物的功能特征和功能多样性及其影响因子[J]. 生物多样性, 2023, 31(11): 23215-. |
[7] | 杨涛, 沈泽昊, 王晓凤, 饶杰生, 刘文聪, 田希, 陈稀, 张秋雨, 刘倩, 钱恒君, 解宇阳, 刘其明, 徐衍潇, 涂梦灵, 单子铭, 张玉坤, 侯波, 李建斌, 欧晓昆. 滇中高原亚热带半湿润常绿阔叶林植物群落多样性特征[J]. 生物多样性, 2023, 31(11): 23238-. |
[8] | 田希, 刘文聪, 饶杰生, 王晓凤, 杨涛, 陈稀, 张秋雨, 刘其明, 徐衍潇, 张旭, 沈泽昊. 云南鸡足山半湿润常绿阔叶林的林隙干扰格局与成因[J]. 生物多样性, 2023, 31(11): 23219-. |
[9] | 左艳洁, 彭明春, 王崇云, 沈泽昊, 李永萍, 周新茂, 周杰, 周光信, 任佳昕, 刘忠安. 滇中高原半湿润常绿阔叶林的岛屿化与物种多样性[J]. 生物多样性, 2023, 31(11): 23252-. |
[10] | 刘文聪, 田希, 杨涛, 饶杰生, 王晓凤, 钱恒君, 涂梦灵, 单子铭, 欧晓昆, 沈泽昊. 云南鸡足山半湿润常绿阔叶林优势树种的种群结构与更新特征[J]. 生物多样性, 2023, 31(11): 23251-. |
[11] | 马子驭, 何再新, 王一晴, 宋大昭, 夏凡, 崔士明, 苏红信, 邓建林, 李平, 李晟. 中国云豹种群分布现状与关键栖息地信息更新[J]. 生物多样性, 2022, 30(9): 22349-. |
[12] | 刘童祎, 姜立云, 乔格侠. 中国半翅目等29目昆虫新分类单元2021年年度报告[J]. 生物多样性, 2022, 30(8): 22300-. |
[13] | 孙维悦, 舒江平, 顾钰峰, 莫日根高娃, 杜夏瑾, 刘保东, 严岳鸿. 基于保护基因组学揭示荷叶铁线蕨的濒危机制[J]. 生物多样性, 2022, 30(7): 21508-. |
[14] | 戴静, 陈威兆, 金露露, 黄亮. 云南宜良上新世栎属植物研究及其古环境指示意义[J]. 生物多样性, 2022, 30(11): 22553-. |
[15] | 张昭臣, 胡健波, 杨庆松, 练琚愉, 李步杭, 王希华, 叶万辉, 张健. 中国亚热带4个森林动态监测样地无人机可见光遥感影像数据集[J]. 生物多样性, 2021, 29(9): 1181-1185. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn