生物多样性 ›› 2021, Vol. 29 ›› Issue (3): 373-384. DOI: 10.17520/biods.2020181
收稿日期:
2020-04-30
接受日期:
2020-07-10
出版日期:
2021-03-20
发布日期:
2021-01-11
通讯作者:
刘晋仙
作者简介:
E-mail: liujinxian@sxu.edu.cn基金资助:
Jinxian Liu1,*(), Baofeng Chai1, Zhengming Luo1,2
Received:
2020-04-30
Accepted:
2020-07-10
Online:
2021-03-20
Published:
2021-01-11
Contact:
Jinxian Liu
摘要:
金属尾矿废水中含有重金属以及多种有机和无机污染物, 然而在该极端生境中仍然有大量微生物存在。为了揭示碱性尾矿废水中真菌群落的组成模式和多样性格局及其维持机制, 本文利用ITS1区rDNA基因扩增子测序和qPCR技术对山西中条山十八河尾矿库废水中5个不同采样点真菌群落的组成、丰度和分布格局进行了研究。通过主坐标分析(PCoA)比较不同采样点间群落结构的差异性; 通过冗余分析(RDA)探讨了水体理化因子对真菌群落结构的影响; 通过零模型分析了影响群落结构的主要因素; 通过网络图分析了真菌类群之间的种间相互作用。结果表明, 布勒掷孢酵母属(Bullera)、Schizangiella、支顶孢属(Acremonium)和亚罗酵母属(Yarrowia)是主要的优势属, 真菌群落在不同采样地点从门到属水平的相对丰度均有明显变化。真菌群落丰度沿水流方向逐渐增加且与有机碳(TOC)浓度呈显著正相关。真菌群落的α-多样性与pH、重金属(As和Cu)、无机碳(IC)和铵态氮(NH4+)浓度显著相关。真菌群落的空间结构在不同采样点具有明显差异, 这种差异性与理化因子没有显著关系; 不同采样点真菌群落的零偏差值均大于零, 且不同物种之间存在复杂的种间相互作用。以上结果说明, 在尾矿废水中环境因子只对真菌群落的α-多样性有显著影响, 而群落的β-多样性主要受种间相互作用关系的影响, 表明在碱性铜尾矿废水中存在比较复杂的真菌群落动态模式。
刘晋仙, 柴宝峰, 罗正明 (2021) 复合污染尾矿废水中真菌群落多样性及其驱动机制. 生物多样性, 29, 373-384. DOI: 10.17520/biods.2020181.
Jinxian Liu, Baofeng Chai, Zhengming Luo (2021) Driving forces and the diversity of fungal communities in complex contaminated tailings drainage. Biodiversity Science, 29, 373-384. DOI: 10.17520/biods.2020181.
因子 Parameter | 采样点 Sample site | ||||
---|---|---|---|---|---|
STW1 | STW2 | STW3 | SUSW | SDSW | |
pH | 9.382 ± 0.095 a | 9.131 ± 0.053 a | 8.147 ± 0.048 b | 8.190 ± 0.032 b | 8.014 ± 0.076 b |
溶解氧 DO (mg/L) | 8.560 ± 0.195 a | 10.218 ± 0.466 a | 10.661 ± 0.527 a | 10.643 ± 0.281 a | 11.114 ± 3.292 a |
电导率 EC (uS/cm) | 1,834.333 ± 31.205 a | 1,832.001 ± 20.466 a | 865.143 ± 3.106 b | 1,427.333 ± 59.218 ab | 404.333 ± 8.511 c |
硝态氮$NO_{3}^{-}$ (mg/L) | 134.373 ± 5.417 a | 85.170 ± 1.553 ab | 14.315 ± 1.142 bc | 5.265 ± 0.345 c | 4.698 ± 0.364 c |
亚硝态氮$NO_{2}^{-}$ (mg/L) | 10.548 ± 0.405 a | 6.959 ± 0.20 ab | 1.259 ± 0.096 bc | 0.575 ± 0.057 c | 0.478 ± 0.044 c |
铵态氮$NH_{4}^{+}$ (mg/L) | 1.453 ± 0.003 ab | 1.715± 0.019a | 0.340 ± 0.116 b | 2.333 ± 0.030 a | 0.387 ± 0.015 b |
总碳 TC (mg/L) | 20.600 ± 0.035 c | 24.723 ± 0.818 bc | 34.523 ± 3.215 ab | 25.070 ± 0.023 bc | 52.315 ± 0.136 a |
总有机碳 TOC (mg/L) | 7.597 ± 0.003 abc | 8.520 ± 1.529 bc | 14.100 ± 0.075 ab | 5.253 ± 0.020 c | 19.344 ± 3.374 a |
无机碳 IC (mg/L) | 13.005 ± 0.032 c | 16.202 ± 0.291 bc | 20.179 ± 2.703 bc | 19.820 ± 0.001 ab | 43.015 ± 0.061 a |
硫酸盐$SO_{4}^{2-}$ (mg/L) | 1,582.500 ± 2.977 a | 1,207.558 ± 100.997 a | 837.255 ± 38.754 ab | 897.900 ± 97.900 ab | 117.655 ± 11.311 c |
砷 As (mg/L) | 2.407± 0.021a | 2.853 ± 0.171 a | 0.155 ± 0.012 b | 0.180 ± 0.009 ab | 0.003 ± 0.003 b |
镉 Cd (mg/L) | 0.004 ± 0.001 a | 0.002 ± 0.001 a | 0.002 ± 0.003 a | 0.003 ± 0.002 a | BDL |
铜 Cu (mg/L) | 0.017 ± 0.009 ab | 0.032 ± 0.004 a | 0.016 ± 0.004 ab | 0.006 ± 0.002 b | 0.008 ± 0.001 b |
铅 Pb (mg/L) | 0.060 ± 0.036 a | 0.021 ± 0.013 a | 0.025 ± 0.030 a | 0.043 ± 0.006 a | BDL |
锌 Zn (mg/L) | 0.012 ± 0.001 ab | 0.011 ± 0.004 b | 0.009 ± 0.003 b | 2.741 ± 1.058 a | 0.249 ± 0.057 a |
表1 不同采样点水体理化参数(平均值±标准误) (n = 3)
Table 1 Water physical and chemical parameters in different sample sites (mean±SE) (n = 3)
因子 Parameter | 采样点 Sample site | ||||
---|---|---|---|---|---|
STW1 | STW2 | STW3 | SUSW | SDSW | |
pH | 9.382 ± 0.095 a | 9.131 ± 0.053 a | 8.147 ± 0.048 b | 8.190 ± 0.032 b | 8.014 ± 0.076 b |
溶解氧 DO (mg/L) | 8.560 ± 0.195 a | 10.218 ± 0.466 a | 10.661 ± 0.527 a | 10.643 ± 0.281 a | 11.114 ± 3.292 a |
电导率 EC (uS/cm) | 1,834.333 ± 31.205 a | 1,832.001 ± 20.466 a | 865.143 ± 3.106 b | 1,427.333 ± 59.218 ab | 404.333 ± 8.511 c |
硝态氮$NO_{3}^{-}$ (mg/L) | 134.373 ± 5.417 a | 85.170 ± 1.553 ab | 14.315 ± 1.142 bc | 5.265 ± 0.345 c | 4.698 ± 0.364 c |
亚硝态氮$NO_{2}^{-}$ (mg/L) | 10.548 ± 0.405 a | 6.959 ± 0.20 ab | 1.259 ± 0.096 bc | 0.575 ± 0.057 c | 0.478 ± 0.044 c |
铵态氮$NH_{4}^{+}$ (mg/L) | 1.453 ± 0.003 ab | 1.715± 0.019a | 0.340 ± 0.116 b | 2.333 ± 0.030 a | 0.387 ± 0.015 b |
总碳 TC (mg/L) | 20.600 ± 0.035 c | 24.723 ± 0.818 bc | 34.523 ± 3.215 ab | 25.070 ± 0.023 bc | 52.315 ± 0.136 a |
总有机碳 TOC (mg/L) | 7.597 ± 0.003 abc | 8.520 ± 1.529 bc | 14.100 ± 0.075 ab | 5.253 ± 0.020 c | 19.344 ± 3.374 a |
无机碳 IC (mg/L) | 13.005 ± 0.032 c | 16.202 ± 0.291 bc | 20.179 ± 2.703 bc | 19.820 ± 0.001 ab | 43.015 ± 0.061 a |
硫酸盐$SO_{4}^{2-}$ (mg/L) | 1,582.500 ± 2.977 a | 1,207.558 ± 100.997 a | 837.255 ± 38.754 ab | 897.900 ± 97.900 ab | 117.655 ± 11.311 c |
砷 As (mg/L) | 2.407± 0.021a | 2.853 ± 0.171 a | 0.155 ± 0.012 b | 0.180 ± 0.009 ab | 0.003 ± 0.003 b |
镉 Cd (mg/L) | 0.004 ± 0.001 a | 0.002 ± 0.001 a | 0.002 ± 0.003 a | 0.003 ± 0.002 a | BDL |
铜 Cu (mg/L) | 0.017 ± 0.009 ab | 0.032 ± 0.004 a | 0.016 ± 0.004 ab | 0.006 ± 0.002 b | 0.008 ± 0.001 b |
铅 Pb (mg/L) | 0.060 ± 0.036 a | 0.021 ± 0.013 a | 0.025 ± 0.030 a | 0.043 ± 0.006 a | BDL |
锌 Zn (mg/L) | 0.012 ± 0.001 ab | 0.011 ± 0.004 b | 0.009 ± 0.003 b | 2.741 ± 1.058 a | 0.249 ± 0.057 a |
采样点 Sampling point | 序列数 Sequence number | OTU个数 OTUs | Chao1指数 Chao1 index | Shannon指数 Shannon index | Simpson指数 Simpson index | 盖度 Coverage |
---|---|---|---|---|---|---|
STW1 | 76,565.673 ± 251.658 c | 404.675 ± 13.436 c | 478.636 ± 25.356 b | 5.496 ± 0.012 a | 0.948 ± 0.001 a | 0.999 ± 0.000 a |
STW2 | 63,438.606 ± 317.863 d | 118.658 ± 6.813 e | 135.338 ± 10.784 d | 2.387 ± 0.019 e | 0.554 ± 0.005 d | 0.998 ± 0.001 a |
STW3 | 80,413.333 ± 224.795 b | 499.582 ± 12.000 a | 519.275 ± 16.587 a | 5.096 ± 0.015 b | 0.938 ± 0.001 b | 0.997 ± 0.001 b |
SUSW | 81,207.36±165.631a | 460.055 ± 6.084 b | 484.696 ± 11.345 b | 2.982 ± 0.017 c | 0.586 ± 0.004 d | 0.996 ± 0.001 b |
SDSW | 81,094.014±45.935a | 237.336 ± 19.759 d | 259.418 ± 11.001 c | 2.585 ± 0.013 d | 0.692 ± 0.002 c | 0.999 ± 0.001 a |
表2 十八河尾矿废水中5个采样点真菌群落的丰富度和多样性(平均值±标准误) (n = 3)。
Table 2 Richness and diversity index of the fungal communities in five sample sites of tailings drainage from Shibahe (mean±SE) (n = 3)
采样点 Sampling point | 序列数 Sequence number | OTU个数 OTUs | Chao1指数 Chao1 index | Shannon指数 Shannon index | Simpson指数 Simpson index | 盖度 Coverage |
---|---|---|---|---|---|---|
STW1 | 76,565.673 ± 251.658 c | 404.675 ± 13.436 c | 478.636 ± 25.356 b | 5.496 ± 0.012 a | 0.948 ± 0.001 a | 0.999 ± 0.000 a |
STW2 | 63,438.606 ± 317.863 d | 118.658 ± 6.813 e | 135.338 ± 10.784 d | 2.387 ± 0.019 e | 0.554 ± 0.005 d | 0.998 ± 0.001 a |
STW3 | 80,413.333 ± 224.795 b | 499.582 ± 12.000 a | 519.275 ± 16.587 a | 5.096 ± 0.015 b | 0.938 ± 0.001 b | 0.997 ± 0.001 b |
SUSW | 81,207.36±165.631a | 460.055 ± 6.084 b | 484.696 ± 11.345 b | 2.982 ± 0.017 c | 0.586 ± 0.004 d | 0.996 ± 0.001 b |
SDSW | 81,094.014±45.935a | 237.336 ± 19.759 d | 259.418 ± 11.001 c | 2.585 ± 0.013 d | 0.692 ± 0.002 c | 0.999 ± 0.001 a |
图1 不同采样点真菌群落ITS rDNA拷贝数。STW1、STW2和STW3表示尾矿库中3个采样点, SUSW和SDSW表示尾矿库外2个渗流水采样点。
Fig. 1 Fungal ITS rDNA copy numbers at the different sample points. STW1, STW2 and STW3 represent three sample sites in the tailings reservoir, SUSW and SDSW represent two seepage water sample sites outside the tailings reservoir.
图2 不同采样点真菌群落在门水平的组成。STW1、STW2和STW3表示尾矿库中3个采样点, SUSW和SDSW表示尾矿库外2个渗流水采样点。
Fig. 2 Fungal community composition of each sampling point at the phyla level. STW1, STW2 and STW3 represent three samplingpoints in the tailings reservoir, SUSW and SDSW represent two seepage water sample sites outside the tailings reservoir.
图3 不同采样点真菌群落的优势类群。(a)纲水平; (b)目水平; (c)科水平; (d)属水平。STW1、STW2和STW3表示尾矿库中3个采样点, SUSW和SDSW表示尾矿库外2个渗流水采样点。
Fig. 3 Dominant fungi in different sample sites. (a) Class level; (b) Order level; (c) Family level; (d) Genus level. STW1, STW2 and STW3 represent three samplingpoints in the tailings reservoir, SUSW and SDSW represent two seepage water sample sites outside the tailings reservoir.
图4 真菌优势类群组成与环境因子的RDA分析。(a)门水平; (b)纲水平; (c)目水平; (d)科水平; (e)属水平。NH4+: 铵态氮; IC:无机碳; TOC: 总有机碳; Cu: 铜。
Fig. 4 RDA showing the relationship between environmental parameters and composition of dominant fungal taxa. (a) Phylum level; (b) Class level; (c) Order level; (d) Family level; (e) Genus level. $NH_{4}^{+}$: Ammonium nitrogen; IC: Inorganic carbon; TOC: Total organic carbon; Cu: Copper.
环境因子 Parameter | OTUs | Chao 1指数 Chao 1 index | Shannon index | Simpson index | 拷贝数 Copies | |||||
---|---|---|---|---|---|---|---|---|---|---|
pH | -0.706** | -0.710** | -0.258 | -0.268 | 0.107 | |||||
DO | -0.193 | -0.179 | -0.329 | -0.404 | 0.057 | |||||
EC | -0.338 | -0.336 | -0.007 | -0.200 | 0.257 | |||||
$NO_{3}^{-}$ | -0.132 | -0.129 | 0.346 | 0.293 | 0.493 | |||||
$NO_{2}^{-}$ | -0.132 | -0.132 | 0.350 | 0.296 | 0.471 | |||||
$NH_{4}^{+}$ | -0.189 | -0.198 | -0.214 | -0.536* | -0.307 | |||||
TC | 0.106 | 0.086 | -0.343 | -0.118 | -0.004 | |||||
TOC | 0.060 | 0.080 | -0.025 | 0.297 | 0.425* | |||||
IC | -0.203 | -0.244 | -0.530* | -0.434 | -0.498 | |||||
$SO_{4}^{2-}$ | -0.262 | -0.270 | 0.229 | 0.068 | 0.007 | |||||
As | -0.628* | -0.632* | -0.186 | -0.261 | 0.104 | |||||
Cd | -0.376 | -0.340 | -0.004 | 0.082 | -0.021 | |||||
Cu | -0.616* | -0.579* | -0.400 | -0.239 | 0.346 | |||||
Pb | -0.126 | -0.082 | 0.179 | 0.039 | -0.190 | |||||
Zn | 0.179 | 0.161 | -0.050 | -0.146 | -0.350 |
表3 真菌群落的α多样性指数与环境参数的相关性系数
Table 3 Correlation coefficient of α diversity index of fungal communities and environmental parameters
环境因子 Parameter | OTUs | Chao 1指数 Chao 1 index | Shannon index | Simpson index | 拷贝数 Copies | |||||
---|---|---|---|---|---|---|---|---|---|---|
pH | -0.706** | -0.710** | -0.258 | -0.268 | 0.107 | |||||
DO | -0.193 | -0.179 | -0.329 | -0.404 | 0.057 | |||||
EC | -0.338 | -0.336 | -0.007 | -0.200 | 0.257 | |||||
$NO_{3}^{-}$ | -0.132 | -0.129 | 0.346 | 0.293 | 0.493 | |||||
$NO_{2}^{-}$ | -0.132 | -0.132 | 0.350 | 0.296 | 0.471 | |||||
$NH_{4}^{+}$ | -0.189 | -0.198 | -0.214 | -0.536* | -0.307 | |||||
TC | 0.106 | 0.086 | -0.343 | -0.118 | -0.004 | |||||
TOC | 0.060 | 0.080 | -0.025 | 0.297 | 0.425* | |||||
IC | -0.203 | -0.244 | -0.530* | -0.434 | -0.498 | |||||
$SO_{4}^{2-}$ | -0.262 | -0.270 | 0.229 | 0.068 | 0.007 | |||||
As | -0.628* | -0.632* | -0.186 | -0.261 | 0.104 | |||||
Cd | -0.376 | -0.340 | -0.004 | 0.082 | -0.021 | |||||
Cu | -0.616* | -0.579* | -0.400 | -0.239 | 0.346 | |||||
Pb | -0.126 | -0.082 | 0.179 | 0.039 | -0.190 | |||||
Zn | 0.179 | 0.161 | -0.050 | -0.146 | -0.350 |
图5 真菌群落空间分布格局及其影响因素。(a)在OTU水平基于Bray-Curtis距离的真菌群落PCoA排序结果; (b)真菌群落结构与环境因子的冗余分析; (c)基于Bray-Curtis距离的零偏差结果。IC: 无机碳; STW1、STW2和STW3表示尾矿库中3个采样点, SUSW和SDSW表示尾矿库外2个渗流水采样点。
Fig. 5 Spatial distribution pattern of fungal community structure and its influencing factors. (a) PCoA analysis based on Bray-Curtis similarities of fungal communities at OTU level; (b) RDA showing the relationship between environmental parameters and fungal communities; (c) Null deviation result based on Bray-Curtis distance. IC: Inorganic carbon; STW1, STW2 and STW3 represent three sample sites in the tailings reservoir, SUSW and SDSW represent two seepage water sample sites outside the tailings reservoir.
图6 属水平真菌类群间相互作用网络图。每个节点代表一个属, M1?M6代表6个独立模块, 节点大小与丰度成正比, 有显著相关性的节点通过线连接起来, 红线表示正相关, 绿线表示负相关。
Fig. 6 Network interactions of fungal groups at genus level. Each circle represents a genus and M1-M6 represent the six independent modules in the network diagram. The sizes of the circles are proportional to the value of abundance. Lines connecting two nodes represent the interactions between them. Red lines represent the positive significant correlations and green lines represent a negative significant correlation.
[1] | Aguilera A, González-Toril E (2019) Eukaryotic Life in Extreme Environments: Acidophilic Fungi. pp.21-38. Springer, Cham. |
[2] | Arfi Y, Marchand C, Wartel M, Record E (2012) Fungal diversity in anoxic-sulfidic sediments in a mangrove soil. Fungal Ecology, 5,282-285. |
[3] | Baker BJ, Banfield JF (2003) Microbial communities in acid mine drainage. FEMS Microbiology Ecology, 44,139-152. |
[4] |
Bier RL, Voss KA, Bernhardt ES (2015) Bacterial community responses to a gradient of alkaline mountaintop mine drainage in Central Appalachian streams. The ISME Journal, 9,1378-1390.
DOI URL PMID |
[5] | Chase JM, Kraft NJB, Smith KG, Vellend M, Inouye BD (2011) Using null models to disentangle variation in community dissimilarity from variation in α-diversity. Ecosphere, 2,1-11. |
[6] |
Connell JH (1978) Diversity in tropical rain forests and coral reefs. Science, 199,1302-1310.
DOI URL PMID |
[7] |
Dreesens LL, Lee CK, Cary SC (2014) The distribution and identity of edaphic fungi in the McMurdo dry valleys. Biology, 3,466-483.
DOI URL PMID |
[8] | [ Fan T (2009) Resistance Mechanism and Enrichment Characteristics of Fungi to Heavy Metals. PhD dissertation, Hunan University, Changsha. (in Chinese with English abstract) |
[ 樊霆 (2009) 真菌对重金属的抗性机制和富集特性研究. 博士学位论文, 湖南大学, 长沙.]. | |
[9] | Glassman SI, Wang IJ, Bruns TD (2017) Environmental filtering by pH and soil nutrients drives community assembly in fungi at fine spatial scales. Molecular Ecology, 26,6960-6973. |
[10] |
Gostinčar C, Grube M, de Hoog S, Zalar P, Gunde-Cimerman N (2010) Extremotolerance in fungi: Evolution on the edge. FEMS Microbiology Ecology, 71,2-11.
DOI URL PMID |
[11] |
Grossart HP, Wyngaert SV, Kagami M, Wurzbacher C, Cunliffe M, Rojas-Jimenez K (2019) Fungi in aquatic ecosystems. Nature Reviews Microbiology, 17,339-354.
DOI URL PMID |
[12] | He MX, Gao Y, Sun QY (2011) Influence of mine tailings drainage on microbial diversity in the river sediment and paddy soil. Environmental Science, 32,1778-1785. (in Chinese with English abstract) |
[ 贺梦醒, 高毅, 孙庆业 (2011) 尾矿废水对河流沉积物和稻田土壤细菌多样性的影响. 环境科学, 32,1778-1785.]. | |
[13] | Iram S, Ahmad I, Javed B, Yaqoob S, Akhtar K, Kazmi MR, Badar-uz-Zaman (2009) Fungal tolerance to heavy metals. Pakistan Journal of Botany, 41,2583-2594. |
[14] |
Jebaraj CS, Raghukumar C, Behnke A, Stoeck T (2010) Fungal diversity in oxygen-depleted regions of the Arabian Sea revealed by targeted environmental sequencing combined with cultivation. FEMS Microbiology Ecology, 71,399-412.
URL PMID |
[15] | Li HY, Li DW, He CM, Zhou ZP, Mei T, Xu HM (2012) Diversity and heavy metal tolerance of endophytic fungi from six dominant plant species in a Pb-Zn mine wasteland in China. Fungal Ecology, 5,309-315. |
[16] | Li YH, Jiang Y, Wang WJ, Zhang BY (2013) Effect of organic and inorganic carbon on extracellular enzyme activity of acid phosphatase and proteases in three kinds of fungal hyphae. Bulletin of Botanical Research, 33,404-409. (in Chinese with English abstract) |
[ 李艳红, 姜勇, 王文杰, 张宝友 (2013) 有机碳和无机碳对3种真菌胞外酸性磷酸酶和蛋白酶活性的影响. 植物研究, 33,404-409.]. | |
[17] |
Liu JX, Li C, Jing JH, Zhao PY, Luo ZM, Cao MW, Ma ZZ, Jia T, Chai BF (2018) Ecological patterns and adaptability of bacterial communities in alkaline copper mine drainage. Water Research, 133,99-109.
URL PMID |
[18] | Liu JX, Li C, Luo ZM, Wang X, Bao JB, Chai BF (2019) Distribution pattern and diversity maintenance mechanisms of fungal community in subalpine lakes. Environmental Science, 40,2382-2393. (in Chinese with English abstract) |
[ 刘晋仙, 李毳, 罗正明, 王雪, 暴家兵, 柴宝峰 (2019) 亚高山湖群中真菌群落的分布格局和多样性维持机制. 环境科学, 40,2382-2393.]. | |
[19] | Liu YH, Zhao HX (2000) Advances in theory of disturbance and species diversity preservation. Journal of Beijing Forestry University, 22,101-105. (in Chinese with English abstract) |
[ 刘艳红, 赵惠勋 (2000) 干扰与物种多样性维持理论研究进展. 北京林业大学学报, 22,101-105.]. | |
[20] | Lupatini M, Suleiman AKA, Jacques RJS, Antoniolli ZI, de Siqueira Ferreira AO, Kuramae EE, Roesch LFW (2014) Network topology reveals high connectance levels and few key microbial genera within soils. Frontiers in Environmental Science, 2,1-11. |
[21] | Ma Y, Yu XB (2017) Research progress on bioaccumulation of heavy metals in wastewater by filamentous fungi. Biotechnology Bulletin, 33(10),59-63. (in Chinese with English abstract) |
[ 马燕, 余晓斌 (2017) 丝状真菌生物富集重金属废水的研究进展. 生物技术通报, 33(10),59-63.]. | |
[22] | Nagano Y, Nagahama T, Hatada Y, Nunoura T, Takami H, Miyazaki J, Takai K, Horikoshi K (2010) Fungal diversity in deep-sea sediments—The presence of novel fungal groups. Fungal Ecology, 3,316-325. |
[23] | Newsham KK (2012) Fungi in extreme environments. Fungal Ecology, 5,379-380. |
[24] |
Orgiazzi A, Lumini E, Nilsson RH, Girlanda M, Vizzini A, Bonfante P, Bianciotto V (2012) Unravelling soil fungal communities from different Mediterranean land-use backgrounds. PLoS ONE, 7,e34847.
DOI URL PMID |
[25] | Osono T, Ueno T, Uchida M, Kanda H (2012) Abundance and diversity of fungi in relation to chemical changes in arctic moss profiles. Polar Science, 6,121-131. |
[26] |
Selbmann L, Egidi E, Isola D, Onofri S, Zucconi L, de Hoog GS, Chinaglia S, Testa L, Tosi S, Balestrazzi A, Lantieri A, Compagno R, Tigini V, Varese GC (2013) Biodiversity, evolution and adaptation of fungi in extreme environments. Plant Biosystems, 147,237-246.
DOI URL |
[27] |
Sterkenburg E, Bahr A, Durling MB, Clemmensen KE, Lindahl BD (2015) Changes in fungal communities along a boreal forest soil fertility gradient. New Phytologist, 207,1145-1158.
DOI URL |
[28] |
Sun WM, Xiao EZ, Krumins V, Dong YR, Xiao TF, Ning ZP, Chen HY, Xiao QX (2016) Characterization of the microbial community composition and the distribution of Fe-metabolizing bacteria in a creek contaminated by acid mine drainage. Applied Microbiology and Biotechnology, 100,8523-8535.
URL PMID |
[29] | Tucker CM, Shoemaker LG, Davies KF, Nemergut DR, Melbourne BA (2016) Differentiating between niche and neutral assembly in metacommunities using null models of β-diversity. Oikos, 125,778-789. |
[30] | Wei N, Xu Q, Zhang N, Li BX (2014) Ballistosporous yeasts: A review on systematics, cell differentiation, and their applications. Microbiology China, 41,1211-1218. (in Chinese with English abstract) |
[ 魏娜, 徐琼, 张宁, 李炳学 (2014) 掷孢酵母及其应用研究进展. 微生物学通报, 41,1211-1218.]. | |
[31] | Wu JN, Liu YX, Zhou X, Wang TY, Gao Q, Gao YH, Liu SX (2018) Effects of long-term different fertilization on soil fungal communities in black soil based on the Illumina MiSeq platform. Acta Microbiologica Sinica, 58,1658-1671. (in Chinese with English abstract) |
[ 武俊男, 刘昱辛, 周雪, 王天野, 高强, 高云航, 刘淑霞 (2018) 基于Illumina MiSeq测序平台分析长期不同施肥处理对黑土真菌群落的影响. 微生物学报, 58,1658-1671.]. | |
[32] | Xu W (2014) Fungal Community Structure and Abundance of Deep-sea Sediments from the Pacific Ocean and Hydrothermal Vent Samples from the South Alantic Ocean. PhD dissertation, Xiamen University, Xiamen. (in Chinese with English abstract) |
[ 徐炜 (2014) 太平洋深海沉积物与南大西洋深海热液区样品的真菌群落结构和丰度研究. 博士学位论文, 厦门大学, 厦门.]. | |
[33] | Yan H, Ouyang M, Zhang XH, Duo Y, Zhao XJ, Zhang YJ, Zheng JF, Liu XY, Pan GX, Bian RJ, Li LQ (2018) Effects of different gradients of heavy metal contamination on soil fungi community structure in paddy soils. Soils, 50,513-521. (in Chinese with English abstract) |
[ 闫华, 欧阳明, 张旭辉, 多应, 赵熙君, 张玉娇, 郑聚锋, 刘晓雨, 潘根兴, 卞荣军, 李恋卿 (2018) 不同程度重金属污染对稻田土壤真菌群落结构的影响. 土壤, 50,513-521.]. | |
[34] | Yang ZX, Tian CK, Dang CY, Chang F, Ni JR (2015) Comparative study on Pb(II), Cd(II), As(III), Cr(VI) resistance characteristics of fungus. Acta Scientiarum Naturalium Universitatis Pekinensis (Natural Science), 51,667-676. (in Chinese with English abstract) |
[ 杨振兴, 田从魁, 党晨原, 常方, 倪晋仁 (2015) 真菌对重金属Pb(II), Cd(II), As(III)和Cr(VI)耐受性的比较研究. 北京大学学报(自然科学版), 51,667-676.].
DOI URL |
|
[35] |
Zhou JZ, Deng Y, Luo F, He ZL, Yang YF (2011) Phylogenetic molecular ecological network of soil microbial communities in response to elevated CO 2. mBio, 2,e00122-11.
DOI URL PMID |
[1] | 边琦 王成 程贺 韩丹 赵伊琳 殷鲁秦. 声学指数在城市森林鸟类多样性评估中的应用探索[J]. 生物多样性, 2023, 31(1): 22080-. |
[2] | 张超 李娟 程海云 段家充 潘昭. 秦岭西段地区蝴蝶群落多样性与环境因子相关性[J]. 生物多样性, 2023, 31(1): 22272-. |
[3] | 王言一 张屹美 夏灿玮 Anders Pape M?ller. Alpha声学指数效用的meta分析[J]. 生物多样性, 2023, 31(1): 22369-. |
[4] | 马海港 范鹏来. 被动声学监测技术在陆生哺乳动物研究中的应用、进展和展望[J]. 生物多样性, 2023, 31(1): 22374-. |
[5] | 孙翊斐 王士政 冯佳伟 王天明. 东北虎豹国家公园森林声景的昼夜和季节变化[J]. 生物多样性, 2023, 31(1): 22523-. |
[6] | 张屹美 王言一 何衍 周冰 田苗 夏灿玮. Beta声学指数的特征和应用[J]. 生物多样性, 2023, 31(1): 22513-. |
[7] | 万霞, 张丽兵. 世界维管植物新分类群2021年年度报告[J]. 生物多样性, 2022, 30(8): 22116-. |
[8] | 张露丹, 卢影, 褚畅, 何巧巧, 姚志远. 2021年世界蜘蛛新分类单元[J]. 生物多样性, 2022, 30(8): 22163-. |
[9] | 郭淳鹏, 钟茂君, 汪晓意, 杨胜男, 唐科, 贾乐乐, 张春兰, 胡军华. 福建省两栖、爬行动物更新名录[J]. 生物多样性, 2022, 30(8): 22090-. |
[10] | 牛铜钢, 刘为. 双碳战略背景下城市生态系统的碳汇功能与生物多样性可以兼得[J]. 生物多样性, 2022, 30(8): 22168-. |
[11] | 闫冰, 陆晴, 夏嵩, 李俊生. 城市土壤微生物多样性研究进展[J]. 生物多样性, 2022, 30(8): 22186-. |
[12] | 刘童祎, 姜立云, 乔格侠. 中国半翅目等29目昆虫新分类单元2021年年度报告[J]. 生物多样性, 2022, 30(8): 22300-. |
[13] | 钱宏, 张健, 赵静超. 世界上已知维管植物有多少种? 基于多个全球植物数据库的整合[J]. 生物多样性, 2022, 30(7): 22254-. |
[14] | 宋蕊, 邓晶, 秦涛. 野生动物肇事公众责任保险发展困境与优化路径[J]. 生物多样性, 2022, 30(7): 22291-. |
[15] | 朱瑞良, 马晓英, 曹畅, 曹子寅. 中国苔藓植物多样性研究进展[J]. 生物多样性, 2022, 30(7): 22378-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn