生物多样性 ›› 2017, Vol. 25 ›› Issue (10): 1114-1122.  DOI: 10.17520/biods.2017057

• 研究报告: 动物多样性 • 上一篇    下一篇

基于红外相机网络促进我国鸟类多样性监测: 现状、问题与前景

朱淑怡, 段菲, 李晟*()   

  1. 北京大学生命科学学院, 北京 100871
  • 收稿日期:2017-08-03 接受日期:2017-08-23 出版日期:2017-10-20 发布日期:2018-05-05
  • 通讯作者: 李晟
  • 基金资助:
    环境保护部生物多样性保护专项(MM-2016-026)

Promoting diversity inventory and monitoring of birds through the camera-trapping network in China: status, challenges and future outlook

Shuyi Zhu, Fei Duan, Sheng Li*()   

  1. School of Life Sciences, Peking University, Beijing 100871
  • Received:2017-08-03 Accepted:2017-08-23 Online:2017-10-20 Published:2018-05-05
  • Contact: Li Sheng

摘要:

近20年来, 红外相机调查技术在我国生物多样性监测与野生动物研究中得到了广泛应用。已有的红外相机调查不仅关注哺乳动物类群, 而且也记录到了大量鸟类物种, 但大多被作为兽类监测中的兼捕(by-catch)记录。我们系统检索并收集了1992年以来, 在我国使用红外相机技术的野生动物监测与研究所发表的学术文献、会议报告、新闻报道和部分未发表数据集共230篇(份), 从中提取并汇总鸟类物种与分布记录。结果显示, 全国通过红外相机技术共记录到至少393个鸟种, 分属17目56科, 占全国鸟类物种总数的28.67%, 其中雀形目物种数最多(268种)。在科的水平上, 记录到物种数最多的分别是鸫科(58种)、画眉科(50种)与雉科(42种); 另有23科各仅记录到1个物种。在物种数及探测数方面, 地面及林下层活动的森林鸟类均是红外相机记录到的绝对优势类群。已发表的红外相机鸟类记录具有区域性不均衡的特征, 四川(16个)和云南(14个)是红外相机调查点最多的省区, 而四川(160种)、云南(91种)和浙江(66种)则是记录到鸟类物种数最多的省区。据不完全统计, 红外相机共记录到区域性鸟类物种新记录104种(次)。考虑到仍有大量红外相机调查中的鸟类记录被忽视或未及发表报道, 我国红外相机所记录到的实际鸟类物种多样性应该更高。这些结果表明, 红外相机技术在我国鸟类多样性监测和区域性编目工作中具有重要的作用, 可以提供高精度、高质量和大数据量的鸟类物种分布数据。对于以鸡形目为代表的地栖鸟类, 可以作为目标类群之一纳入现有的基于红外相机技术的标准化长期监测体系, 而这样的监测体系也可以为其他鸟类类群的多样性编目和监测提供数据补充和支持。

关键词: 生物多样性监测, 红外相机, 鸟类编目, 地栖鸟类, 监测网络

Abstract

During the past two decades, camera-trapping has been widely used in biodiversity monitoring and wildlife research across China. Most of the existing camera-trapping projects focus on mammals, and birds are frequently considered in by-catch records. We analyzed 230 wildlife camera-trapping research projects in China since 1992, on the basis of an exhaustive review of Chinese and English literature, including published articles, conference reports, public news, and additional unpublished datasets. Results showed that at least 393 wild bird species, belonging to 17 orders and 56 families and accounting for 28.67% of the total number of bird species in China, have been documented using camera-trapping since 1992. The order with the most recorded species was Passeriformes (268). On the family level, Turdidae had the highest number of recorded species (58), followed by Timaliidae (50) and Phasianidae (42). There were 23 families that each only had one recorded species. Ground- and understory-dwelling forest birds accounted for the majority of all birds recorded, in terms of either species richness or camera detections. Published bird records were characterized by regional imbalances. Sichuan and Yunnan provinces were the most surveyed provinces, with 16 and 14 sites, respectively. The highest species richness was recorded in Sichuan (160), followed by Yunnan (91) and Zhejiang (66). A total of 104 new regionally recorded species were reported. Given the fact that there is still an abundance of camera-trapping data that has not been published, we speculated that the actual recorded bird species should be higher. These results indicated that camera-trapping can produce considerable bird distribution data of high accuracy, high quality and large amounts, which may provide a significant contribution to biodiversity monitoring and regional inventories of birds in China. Terrestrial birds, including Galliformes, Turdidae and Timaliidae, should be included as one of the target groups in current and future monitoring networks using standardized camera-trapping techniques, and such networks could also complement data and support the inventory and diversity monitoring of other taxa.

Key words: biodiversity monitoring, camera-trapping, bird inventory, terrestrial birds, monitoring network