生物多样性 ›› 2025, Vol. 33 ›› Issue (3): 24540. DOI: 10.17520/biods.2024540 cstr: 32101.14.biods.2024540
马尚飞1,2, 龚鑫1,*()(
), 上官华媛1,3(
), 姚海凤1,3(
), 王滨1(
), 李志鹏1(
), 孙新2,*(
)(
)
收稿日期:
2024-12-06
接受日期:
2025-01-23
出版日期:
2025-03-20
发布日期:
2025-03-03
通讯作者:
*E-mail: xsun@iue.ac.cn; xgong@iue.ac.cn
基金资助:
Ma Shangfei1,2, Gong Xin1,*()(
), Shangguan Huayuan1,3(
), Yao Haifeng1,3(
), Wang Bin1(
), Li Zhipeng1(
), Sun Xin2,*(
)(
)
Received:
2024-12-06
Accepted:
2025-01-23
Online:
2025-03-20
Published:
2025-03-03
Contact:
*E-mail: xsun@iue.ac.cn; xgong@iue.ac.cn
Supported by:
摘要:
随着城市化进程的不断加快, 大量森林和农田土地被城市建筑物、道路和其他基础设施所占用, 这些由城市化引起的土地利用变化会导致生物多样性丧失, 但当前对于地下生物多样性对城市化和土地利用变化的响应研究仍然不足。土壤真核生物作为地下生物多样性的重要组成部分, 在维持土壤健康和土壤生态功能方面发挥着关键作用。为探究城市土壤真核生物的多样性特征及其环境驱动因素, 本研究在宁波市选择了2种非城市用地(森林与农田)和5种城市用地(公园、绿化带、工业区、居民区和医院), 解析了5种关键土壤真核生物类群(真菌、原生生物、线虫、节肢动物和环节动物)的多样性对城市化和不同城市绿地类型的响应规律。研究结果显示, 总体真核生物在城市绿地中的丰富度显著低于农田, 其中城市绿地土壤中节肢动物的丰富度显著低于森林用地, 城市绿化带土壤中原生生物的丰富度下降最为明显。土壤真核生物的β多样性在森林、城市绿地以及农田3种生境中存在显著差异, 其中节肢动物与原生生物在城市绿地中的异质性最高, 而5种城市绿地间除了环节动物外的其余土壤真核生物β多样性无显著差异。所有土壤真核生物类群在不同用地之间的差异主要由β周转组分来驱动。土壤pH和总磷含量可能是影响土壤真核生物群落多样性变化的主要驱动因子。其中, 真菌和环节动物的丰富度与土壤pH呈负相关, 土壤pH、质地以及含水率也会降低原生生物丰富度, 而总磷含量升高则与原生生物丰富度呈正相关。总体上, 城市绿地可能导致真核生物类群均质化, 通过土壤改良等手段提升土壤理化属性的空间异质性, 从而为城市土壤真核生物多样性的提升创造可能。
马尚飞, 龚鑫, 上官华媛, 姚海凤, 王滨, 李志鹏, 孙新 (2025) 城市化过程中不同用地类型对土壤真核生物多样性的影响. 生物多样性, 33, 24540. DOI: 10.17520/biods.2024540.
Ma Shangfei, Gong Xin, Shangguan Huayuan, Yao Haifeng, Wang Bin, Li Zhipeng, Sun Xin (2025) Effects of urbanization and different land use types on soil eukaryotic biodiversity. Biodiversity Science, 33, 24540. DOI: 10.17520/biods.2024540.
图2 基于18S rRNA的土壤真核生物类群序列的占比(去除未分类的真核生物序列)
Fig. 2 The proportion of 18S rRNA-based sequences of soil eukaryotic taxa (Unclassified eukaryotic sequences were removed)
图3 不同用地类型土壤中真菌、原生生物、线虫、节肢动物、环节动物和总体真核生物的α多样性。Kruskal-Wallis检验分析不同用地类型之间(森林、农田、公园、居民区、工业区、绿化带、医院)的差异, P < 0.05表示不同用地类群之间有显著差异。采用Dunn检验对比不同用地类型间土壤真核生物丰富度的差异, 小写字母代表所有用地类型之间的差异, 大写字母代表森林、农田和城市绿地之间的差异。
Fig. 3 The α diversity of fungi, Protozoa, Nematoda, Arthropoda, Annelida and total eukaryotes. Kruskal-Wallis test was used to examine the differences among land use types (forest, farmland, park, residential area, industrial area, greenbelt, hospital), P < 0.05 indicates a significant difference between the different land use types. The Dunn test was employed to compare the differences in soil eukaryotic richness among the different land use types, where lowercase letters represent differences among all land use types, and uppercase letters represent differences among forest, farmland, and urban greenspaces.
图4 不同用地类型土壤中真菌、原生生物、线虫、节肢动物、环节动物和总体真核生物的主坐标分析。椭圆代表95%的置信区间。* P < 0.05, ** P < 0.01, *** P < 0.001。
Fig. 4 Principal coordinate analysis of soil fungi, Protozoa, Nematoda, Arthropoda, Annelida and total eukaryotes among different land use types. Coordinates ellipses representing 95% confidence intervals. * P < 0.05, ** P < 0.01, *** P < 0.001.
土壤理化性质 Soil properties | 真菌 Fungi | 原生生物 Protozoa | 线虫 Nematoda | 节肢动物 Arthropoda | 环节动物 Annelida | 总体真核生物 Total eukaryotes | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
E | P | E | P | E | P | E | P | E | P | E | P | |
含水率 Moisture (%) | -0.56 | 0.67 | -3.84 | 0.05 | -0.16 | 0.40 | -0.13 | 0.53 | -0.10 | 0.18 | -5.29 | 0.09 |
酸碱度 pH | -20.22 | 0.02 | -31.18 | 0.01 | 0.76 | 0.54 | -1.24 | 0.36 | -1.05 | 0.03 | -58.65 | 0.01 |
总磷 TP (g/kg) | 12.69 | 0.50 | 90.09 | 0.01 | -4.72 | 0.09 | -5.89 | 0.06 | -1.92 | 0.08 | 92.18 | 0.04 |
总碳 TC (g/kg) | 2.83 | 0.64 | -13.48 | 0.13 | -0.69 | 0.43 | -1.36 | 0.16 | -0.25 | 0.47 | -14.18 | 0.32 |
总氮 TN (g/kg) | -49.93 | 0.51 | 131.24 | 0.23 | 9.57 | 0.38 | 17.78 | 0.14 | 3.56 | 0.40 | 122.52 | 0.49 |
碳氮比 C/N | -1.94 | 0.82 | 17.94 | 0.16 | 1.26 | 0.33 | 2.32 | 0.10 | 0.30 | 0.55 | 22.58 | 0.28 |
黏粒 Clay (%) | -5.44 | 0.45 | -28.84 | 0.01 | -0.19 | 0.86 | -0.88 | 0.44 | -0.33 | 0.42 | -39.58 | 0.02 |
粉粒 Silt (%) | -9.69 | 0.09 | -20.28 | 0.02 | -0.08 | 0.92 | -1.34 | 0.14 | -0.18 | 0.58 | -34.56 | 0.01 |
砂粒 Sand (%) | -8.88 | 0.19 | -22.56 | 0.03 | -0.07 | 0.94 | -1.16 | 0.28 | -0.23 | 0.50 | -36.07 | 0.03 |
表1 土壤理化因子对真菌、原生生物、线虫、节肢动物、环节动物和总体真核生物丰富度的影响
Table 1 The influence of soil physicochemical factors on the abundance of fungi, Protozoa, Nematoda, Arthropoda, Annelida, and total eukaryotes
土壤理化性质 Soil properties | 真菌 Fungi | 原生生物 Protozoa | 线虫 Nematoda | 节肢动物 Arthropoda | 环节动物 Annelida | 总体真核生物 Total eukaryotes | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
E | P | E | P | E | P | E | P | E | P | E | P | |
含水率 Moisture (%) | -0.56 | 0.67 | -3.84 | 0.05 | -0.16 | 0.40 | -0.13 | 0.53 | -0.10 | 0.18 | -5.29 | 0.09 |
酸碱度 pH | -20.22 | 0.02 | -31.18 | 0.01 | 0.76 | 0.54 | -1.24 | 0.36 | -1.05 | 0.03 | -58.65 | 0.01 |
总磷 TP (g/kg) | 12.69 | 0.50 | 90.09 | 0.01 | -4.72 | 0.09 | -5.89 | 0.06 | -1.92 | 0.08 | 92.18 | 0.04 |
总碳 TC (g/kg) | 2.83 | 0.64 | -13.48 | 0.13 | -0.69 | 0.43 | -1.36 | 0.16 | -0.25 | 0.47 | -14.18 | 0.32 |
总氮 TN (g/kg) | -49.93 | 0.51 | 131.24 | 0.23 | 9.57 | 0.38 | 17.78 | 0.14 | 3.56 | 0.40 | 122.52 | 0.49 |
碳氮比 C/N | -1.94 | 0.82 | 17.94 | 0.16 | 1.26 | 0.33 | 2.32 | 0.10 | 0.30 | 0.55 | 22.58 | 0.28 |
黏粒 Clay (%) | -5.44 | 0.45 | -28.84 | 0.01 | -0.19 | 0.86 | -0.88 | 0.44 | -0.33 | 0.42 | -39.58 | 0.02 |
粉粒 Silt (%) | -9.69 | 0.09 | -20.28 | 0.02 | -0.08 | 0.92 | -1.34 | 0.14 | -0.18 | 0.58 | -34.56 | 0.01 |
砂粒 Sand (%) | -8.88 | 0.19 | -22.56 | 0.03 | -0.07 | 0.94 | -1.16 | 0.28 | -0.23 | 0.50 | -36.07 | 0.03 |
[1] | Adams CA, Dick RP, Diez MC(2015) Soil pollution: Causes, effects, and control. Journal of Environmental Management, 92, 2033-2049. |
[2] | Ahmed ST(2013) The impact of four pesticides on the earthworm Lumbricus terrestris (Annelida; Oligochaeta). International Journal of Current Research and Review, 5, 1-5. |
[3] | Araromi DO, Majekodunmi OT, Adeniran JA, Salawudeen TO(2018) Modeling of an activated sludge process for effluent prediction—A comparative study using ANFIS and GLM regression. Environmental Monitoring and Assessment, 190, 495. |
[4] | Aslani F, Geisen S, Ning DL, Tedersoo L, Bahram M(2022) Towards revealing the global diversity and community assembly of soil eukaryotes. Ecology Letters, 25, 65-76. |
[5] | Bardgett RD,van der Putten WH (2014) Belowground biodiversity and ecosystem functioning. Nature, 515, 505-511. |
[6] | Bennett AB, Lovell ST(2014) A comparison of arthropod abundance and arthropod mediated predation services in urban green spaces. Insect Conservation and Diversity, 7, 405-412. |
[7] | Brussaard L(1997) Biodiversity and ecosystem functioning in soil. Ambio, 26, 563-570. |
[8] |
Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pẽa AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R(2010) QIIME allows analysis of high throughput community sequencing data. Nature Methods, 7, 335-336.
DOI PMID |
[9] | Cheng XL(2021) Study on the Spatial Pattern of Urban Plant Diversity and Its Drivers in Zhanjiang, a Tropical Coastal City. PhD dissertation, Hainan University, Haikou. (in Chinese with English abstract) |
[ 成夏岚 (2021) 城市植物多样性的空间格局及其驱动力研究——以热带滨海城市湛江为例. 博士学位论文, 海南大学, 海口.] | |
[10] | Dasgupta D, Brahmaprakash GP(2021) Soil microbes are shaped by soil physico-chemical properties: A brief review of existing literature. International Journal of Plant & Soil Science, 33, 59-71. |
[11] | De Kimpe CR, Morel JL(2000) Urban soil management: A growing concern. Soil Science, 165, 31-40. |
[12] |
Drenovsky RE, Steenwerth KL, Jackson LE, Scow KM(2010) Land use and climatic factors structure regional patterns in soil microbial communities. Global Ecology and Biogeography, 19, 27-39.
PMID |
[13] | Feng ZZ, Miao QF, Shi HB, Feng WY, Li XY, Yan JW, Liu MH, Sun W, Dai LP, Liu J(2023) Simulation of water balance and irrigation strategy of typical sand-layered farmland in the Hetao Irrigation District, China. Agricultural Water Management, 280, 108236. |
[14] | Fierer N, Leff JW, Adams BJ, Nielsen UN, Bates ST, Lauber CL, Owens S, Gilbert JA, Wall DH, Caporaso JG(2012) Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proceedings of the National Academy of Sciences, USA, 109, 21390-21395. |
[15] | Gadd GM, Raven JA(2010) Geomicrobiology of eukaryotic microorganisms. Geomicrobiology Journal, 27, 491-519. |
[16] | Gong X, Qiao ZH, Yao HF, Zhao D, Eisenhauer N, Scheu S, Liang C, Liu MQ, Zhu YG, Sun X(2024) Urbanization simplifies soil nematode communities and coincides with decreased ecosystem stability. Soil Biology and Biochemistry, 190, 109297. |
[17] | Hafez EE, Elbestawy E(2009) Molecular characterization of soil microorganisms: Effect of industrial pollution on distribution and biodiversity. World Journal of Microbiology and Biotechnology, 25, 215-224. |
[18] | Han Y, Yu CY, Feng Z, Du HC, Huang CS, Wu KN(2021) Construction and optimization of ecological security pattern based on spatial syntax classification—Taking Ningbo, China, as an example. Land, 10, 380. |
[19] | Hassink J, Bouwman LA, Zwart KB, Brussaard L(1993) Relationships between habitable pore space, soil biota and mineralization rates in grassland soils. Soil Biology and Biochemistry, 25, 47-55. |
[20] | Helden AJ, Stamp GC, Leather SR(2012) Urban biodiversity: Comparison of insect assemblages on native and non-native trees. Urban Ecosystems, 15, 611-624. |
[21] | Hoffman RL, Kunkel R(1997) Environmental physiology of arthropods. American Zoologist, 37, 825-836. |
[22] | Jayasinghe BATD, Parkinson D(2008) Actinomycetes as antagonists of litter decomposer fungi. Applied Soil Ecology, 38, 109-118. |
[23] |
Köninger J, Ballabio C, Panagos P, Jones A, Schmid MW, Orgiazzi A, Briones MJI(2023) Ecosystem type drives soil eukaryotic diversity and composition in Europe. Global Change Biology, 29, 5706-5719.
DOI PMID |
[24] |
Korhonen JJ, Soininen J, Hillebrand H(2010) A quantitative analysis of temporal turnover in aquatic species assemblages across ecosystems. Ecology, 91, 508-517.
PMID |
[25] |
Kuddus MA, Tynan E, McBryde E(2020) Urbanization: A problem for the rich and the poor? Public Health Reviews, 41, 1.
DOI PMID |
[26] | Li G, Sun GX, Ren Y, Luo XS, Zhu YG(2018) Urban soil and human health: A review. European Journal of Soil Science, 69, 196-215. |
[27] |
Li GX, Huang J, Xu GZ, Pan XC, Qian XJ, Xu JY, Zhao Y, Zhang T, Liu QC, Guo XB, He TF(2017) Temporal variation in associations between temperature and years of life lost in a Southern China city with typical subtropical climate. Scientific Reports, 7, 4650.
DOI PMID |
[28] | Li J, Li ZA, Wang FM, Zou B, Chen Y, Zhao J, Mo QF, Li YW, Li XB, Xia HP(2015) Effects of nitrogen and phosphorus addition on soil microbial community in a secondary tropical forest of China. Biology and Fertility of Soils, 51, 207-215. |
[29] |
Li JN, Peng PQ, Zhao J(2020) Assessment of soil nematode diversity based on different taxonomic levels and functional groups. Soil Ecology Letters, 2, 33-39.
DOI |
[30] |
Lin YP, Yi Q, Gao DD, Li JN, Zhang W, Wang KL, Xiao D, Hu PL, Zhao J(2025) Soil micro-food web composition determines soil fertility and crop growth. Soil Ecology Letters, 7, 240264.
DOI |
[31] |
Liu J, Ma YL(2024) Distribution of ground-dwelling arthropod communities in farmland and plantation forest habitats of black soil region along a latitudinal gradient. Chinese Journal of Ecology, 43, 494-504. (in Chinese with English abstract)
DOI |
[ 刘洁, 马艳龙 (2024) 黑土区不同纬度农田和人工林生境地表节肢动物群落分布特征. 生态学杂志, 43, 494-504.] | |
[32] | Liu L, Barberán A, Gao C, Zhang ZC, Wang M, Wurzburger N, Wang X, Zhang R, Li JX, Zhang J(2022) Impact of urbanization on soil microbial diversity and composition in the megacity of Shanghai. Land Degradation & Development, 33, 282-293. |
[33] | Liu L, Gundersen P, Zhang T, Mo JM(2012) Effects of phosphorus addition on soil microbial biomass and community composition in three forest types in tropical China. Soil Biology and Biochemistry, 44, 31-38. |
[34] |
Ma Y, Prasad MNV, Rajkumar M, Freitas H(2011) Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnology Advances, 29, 248-258.
DOI PMID |
[35] |
Magoč T, Salzberg SL(2011) FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics, 27, 2957-2963.
DOI PMID |
[36] | Mao QZ, Huang GL, Buyantuev A, Wu JG, Luo SH, Ma KM(2014) Spatial heterogeneity of urban soils: The case of the Beijing metropolitan region, China. Ecological Processes, 3, 23. |
[37] |
Maya C, Torner-Morales FJ, Lucario ES, Hernández E, Jiménez B(2012) Viability of six species of larval and non-larval helminth eggs for different conditions of temperature, pH and dryness. Water Research, 46, 4770-4782.
DOI PMID |
[38] | McKinney ML(2008) Effects of urbanization on species richness: A review of plants and animals. Urban Ecosystems, 11, 161-176. |
[39] |
Mendes R, Kruijt M, de Bruijn I, Dekkers E, van der Voort M, Schneider JHM, Piceno YM, DeSantis TZ, Andersen GL, Bakker PAHM, Raaijmakers JM(2011) Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science, 332, 1097-1100.
DOI PMID |
[40] | Merckx T,Van Dyck H (2019) Urbanization-driven homogenization is more pronounced and happens at wider spatial scales in nocturnal and mobile flying insects. Global Ecology and Biogeography, 28, 1440-1455. |
[41] |
Neher DA(2001) Role of nematodes in soil health and their use as indicators. Journal of Nematology, 33, 161-168.
PMID |
[42] | Ni Z, Yan XM, Chang L, Sun X, Wu DH, Zhang B(2020) Habitat preferences rather than morphological traits affect the recovery process of Collembola (Arthropoda, Hexapoda) on a bare saline-alkaline land. PeerJ, 8, e9519. |
[43] | Nielsen UN, Ayres E, Wall DH, Bardgett RD(2011) Soil biodiversity and carbon cycling: A review and synthesis of studies examining diversity-function relationships. European Journal of Soil Science, 62, 105-116. |
[44] | Nowak DJ, Crane DE, Stevens JC(2006) Air pollution removal by urban trees and shrubs in the United States. Urban Forestry & Urban Greening, 4, 115-123. |
[45] | Oliverio AM, Geisen S, Delgado-Baquerizo M, Maestre FT, Turner BL, Fierer N(2020) The global-scale distributions of soil protists and their contributions to belowground systems. Science Advances, 6, eaax8787. |
[46] | Ostertagová E, Ostertag O, Kováč J(2014) Methodology and application of the Kruskal-Wallis test. Applied Mechanics and Materials, 611, 115-120. |
[47] | Pellegrino E, Piazza G, Helgason T, Ercoli L(2021) Eukaryotes in soil aggregates across conservation managements: Major roles of protists, fungi and taxa linkages in soil structuring and C stock. Soil Biology and Biochemistry, 163, 108463. |
[48] | Robert A, Pinel-Alloul B, Taranu ZE, Harvey E(2024) Green landscape and macrophyte cover influence macroinvertebrate taxonomic and functional feeding groups in urban waterbodies at multiple spatial scales. Aquatic Sciences, 86, 104. |
[49] | Salomon MJ, Watts-Williams SJ, McLaughlin MJ, Cavagnaro TR(2020) Urban soil health: A city-wide survey of chemical and biological properties of urban agriculture soils. Journal of Cleaner Production, 275, 122900. |
[50] | Schwarzenbach RP, Egli T, Hofstetter TB, von Gunten U, Wehrli B(2010) Global water pollution and human health. Annual Review of Environment and Resources, 35, 109-136. |
[51] | Shangguan HY, Geisen S, Li ZP, Yao HF, Li G, Breed MF, Scheu S, Sun X(2024) Urban greenspaces shape soil protist communities in a location-specific manner. Environmental Research, 240, 117485. |
[52] | Tedersoo L, Bahram M, Põlme S, Kõljalg U, Yorou NS, Wijesundera R, Ruiz LV, Vasco-Palacios AM, Thu PQ, Suija A, Smith ME, Sharp C, Saluveer E, Saitta A, Rosas M, Riit T, Ratkowsky D, Pritsch K, Põldmaa K, Piepenbring M, Phosri C, Peterson M, Parts K, Pärtel K, Otsing E, Nouhra E, Njouonkou AL, Henrik Nilsson R, Morgado LN, Mayor J, May TW, Majuakim L, Jean Lodge D, Lee SS, Larsson KH, Kohout P, Hosaka K, Hiiesalu I, Henkel TW, Harend H, Guo LD, Greslebin A, Grelet G, Geml J, Gates G, Dunstan W, Dunk C, Drenkhan R, Dearnaley J, De Kesel A, Dang T, Chen X, Buegger F, Brearley FQ, Bonito G, Anslan S, Abell S, Abarenkov K(2014) Global diversity and geography of soil fungi. Science, 346, 1256688. |
[53] |
Tragin M, Zingone A, Vaulot D(2018) Comparison of coastal phytoplankton composition estimated from the V4 and V9 regions of the 18S rRNA gene with a focus on photosynthetic groups and especially Chlorophyta. Environmental Microbiology, 20, 506-520.
DOI PMID |
[54] | Tu XP, Qian YZ(2006) Spatial and temporal characteristics of annual precipitation in Ningbo. Meteorological Science and Technology, 34, 271-274. (in Chinese with English abstract) |
[ 涂小萍, 钱燕珍 (2006) 宁波市年降水量时空变化特征. 气象科技, 34, 271-274.] | |
[55] |
Vannette RL, Fukami T(2017) Dispersal enhances beta diversity in nectar microbes. Ecology Letters, 20, 901-910.
DOI PMID |
[56] | Vinogradova ON, Darienko TM(2008) Algae of Azovo-Syvashsky National Nature Park (Ukraine). International Journal on Algae, 10, 163-178. |
[57] | Wang C, Masoudi A, Wang M, Yang J, Yu ZJ, Liu JZ(2021) Land-use types shape soil microbial compositions under rapid urbanization in the Xiong’an New Area, China. Science of the Total Environment, 777, 145976. |
[58] | Wang JN, Azam W(2024) Natural resource scarcity, fossil fuel energy consumption, and total greenhouse gas emissions in top emitting countries. Geoscience Frontiers, 15, 101757. |
[59] | Wang XH, Dai ZM, Zhao HC, Hu LF, Dahlgren RA, Xu JM(2023) Heavy metal effects on multitrophic level microbial communities and insights for ecological restoration of an abandoned electroplating factory site. Environmental Pollution, 327, 121548. |
[60] | Weisse T, Stadler P(2006) Effect of pH on growth, cell volume, and production of freshwater ciliates, and implications for their distribution. Limnology & Oceanography, 51, 1708-1715. |
[61] | Wolters V(2001) Biodiversity of soil animals and its function. European Journal of Soil Biology, 37, 221-227. |
[62] | Xin Y, Zhang JY, Lu TD, Wei YS, Shen PH(2023) Response of prokaryotic, eukaryotic and algal communities to heavy rainfall in a reservoir supplied with reclaimed water. Journal of Environmental Management, 334, 117394. |
[63] | Yang WH, Huang XE, Wang L, Guo CG, Tang WW, He SX(2024) Research progress of symbiotic fungi in Orchidaceae. Journal of Anhui Agricultural Sciences, 52(12), 25-27. (in Chinese with English abstract) |
[ 杨文宏, 黄杏娥, 王玲, 郭承刚, 汤王外, 和寿星 (2024) 兰科植物共生真菌研究进展. 安徽农业科学, 52(12), 25-27.] | |
[64] | Yao HF, Li ZP, Geisen S, Qiao ZH, Breed MF, Sun X(2023) Degree of urbanization and vegetation type shape soil biodiversity in city parks. Science of the Total Environment, 899, 166437. |
[65] | Yuan JJ, Lu YL, Ferrier RC, Liu ZY, Su HQ, Meng J, Song S, Jenkins A(2018) Urbanization, rural development and environmental health in China. Environmental Development, 28, 101-110. |
[66] | Zhang GL, Zhu YG, Fu BJ(2003) Quality changes of soils in urban and suburban areas and its eco-environmental impacts—A review. Acta Ecologica Sinica, 23, 539-546. (in Chinese with English abstract) |
[ 张甘霖, 朱永官, 傅伯杰 (2003) 城市土壤质量演变及其生态环境效应. 生态学报, 23, 539-546.] | |
[67] | Zhao YC, Zhao XF, Kuang D(2014) Multi-index analysis of heat island dynamics with the process of urbanisation in Ningbo City. Ecology and Environmental Sciences, 23, 1628-1635. (in Chinese with English abstract) |
[ 赵颜创, 赵小锋, 旷达 (2014) 宁波城市热岛随城市化演变的多指标综合分析. 生态环境学报, 23, 1628-1635.] | |
[68] | Zimmermann J, Jahn R, Gemeinholzer B(2011) Barcoding diatoms: Evaluation of the V4 subregion on the 18S rRNA gene, including new primers and protocols. Organisms Diversity & Evolution, 11, 173-192. |
[69] | Zvereva EL, Kozlov MV(2010) Responses of terrestrial arthropods to air pollution: A meta-analysis. Environmental Science and Pollution Research, 17, 297-311. |
[1] | 李佳琪, 冯一迪, 王蕾, 潘盆艳, 刘潇如, 李雪阳, 王怡涵, 王放. 上海城市环境中貉的食性分析及家域范围内的栖息地选择[J]. 生物多样性, 2024, 32(8): 24131-. |
[2] | 金泉泉, 向颖, 王华, 习新强. 南京仙林大学城三种绿地类型中果蝇多样性及其被寄生率[J]. 生物多样性, 2024, 32(8): 24156-. |
[3] | 牛红玉, 陈璐, 赵恒月, 古丽扎尔·阿不都克力木, 张洪茂. 城市化对动物的影响: 从群落到个体[J]. 生物多样性, 2024, 32(8): 23489-. |
[4] | 耿江天, 王菲, 赵华斌. 城市化对中国蝙蝠影响的研究进展[J]. 生物多样性, 2024, 32(8): 24109-. |
[5] | 卢佳玉, 石小亿, 多立安, 王天明, 李治霖. 基于红外相机技术的天津城市地栖哺乳动物昼夜活动节律评价[J]. 生物多样性, 2024, 32(8): 23369-. |
[6] | 段菲, 刘鸣章, 卜红亮, 俞乐, 李晟. 城市化对鸟类群落组成及功能特征的影响——以京津冀地区为例[J]. 生物多样性, 2024, 32(8): 23473-. |
[7] | 胡志清, 董路. 城市化对鸟类参与的种间互作的影响[J]. 生物多样性, 2024, 32(8): 24048-. |
[8] | 高翔, 潘淑芳, 孙争争, 李霁筱, 高天雨, 董路, 王宁. 广东珠海凤凰山和淇澳岛小灵猫的分布与活动节律[J]. 生物多样性, 2024, 32(8): 24045-. |
[9] | 李雪原, 孙智闲, 王凤震, 席蕊, 方雨田, 郝浚源, 盛冬, 孙书雅, 赵亚辉. 城市发展对鱼类功能多样性的影响: 以超大城市北京为例[J]. 生物多样性, 2024, 32(8): 24150-. |
[10] | 董廷玮, 黄美玲, 韦旭, 马硕, 岳衢, 刘文丽, 郑佳鑫, 王刚, 马蕊, 丁由中, 薄顺奇, 王正寰. 上海地区金线侧褶蛙种群的潜在空间分布格局及其景观连通性[J]. 生物多样性, 2023, 31(8): 22692-. |
[11] | 王文婷, 王蓉, 牛翠平, 白杨, 杨效东. 西双版纳农林复合橡胶林土壤多营养级生物网络结构[J]. 生物多样性, 2023, 31(6): 22626-. |
[12] | 张琼悦, 邓卓迪, 胡学斌, 丁志锋, 肖荣波, 修晨, 吴政浩, 汪光, 韩东晖, 张语克, 梁健超, 胡慧建. 粤港澳大湾区城市化进程对区域内鸟类分布及栖息地连通性的影响[J]. 生物多样性, 2023, 31(3): 22161-. |
[13] | 闫冰, 陆晴, 夏嵩, 李俊生. 城市土壤微生物多样性研究进展[J]. 生物多样性, 2022, 30(8): 22186-. |
[14] | 田璐嘉, 杨小波, 李东海, 李龙, 陈琳, 梁彩群, 张培春, 李晨笛. 海口和三亚两城市破碎化林地中鸟类群落多样性与嵌套分布格局[J]. 生物多样性, 2022, 30(6): 21424-. |
[15] | 姚海凤, 张赛超, 上官华媛, 李志鹏, 孙新. 城市化对土壤动物群落结构和多样性的影响[J]. 生物多样性, 2022, 30(12): 22547-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn