生物多样性 ›› 2023, Vol. 31 ›› Issue (8): 22692. DOI: 10.17520/biods.2022692
董廷玮1, 黄美玲1, 韦旭1, 马硕1, 岳衢1, 刘文丽1, 郑佳鑫1, 王刚1, 马蕊1, 丁由中1, 薄顺奇2, 王正寰1,3,4,*()
收稿日期:
2022-12-23
接受日期:
2023-03-29
出版日期:
2023-08-20
发布日期:
2023-08-14
通讯作者:
*E-mail: zhwang@bio.ecnu.edu.cn
基金资助:
Tingwei Dong1, Meiling Huang1, Xu Wei1, Shuo Ma1, Qu Yue1, Wenli Liu1, Jiaxin Zheng1, Gang Wang1, Rui Ma1, Youzhong Ding1, Shunqi Bo2, Zhenghuan Wang1,3,4,*()
Received:
2022-12-23
Accepted:
2023-03-29
Online:
2023-08-20
Published:
2023-08-14
Contact:
*E-mail: zhwang@bio.ecnu.edu.cn
摘要:
城市化导致的栖息地破碎和丧失是全球范围内威胁野生动物生存的重要因素。两栖动物是受城市化威胁最严重的陆生脊椎动物类群。研究城市化区域两栖动物空间分布格局, 探究影响其片断化小种群间基因交流的景观连通性等问题, 有助于我们深入理解城市化对野生动物种群的作用机制及造成的影响, 能够为当地生物多样性保护提供理论指导。本研究以上海地区金线侧褶蛙(Pelophylax plancyi)为研究对象, 基于Landsat-8卫星影像, 获取上海地区土地利用类型、归一化植被指数(normalized difference vegetation index, NDVI)、地表温度等景观、环境数据。结合野外种群调查, 通过最大熵(maximum entropy, MaxEnt)模型得到金线侧褶蛙在本地区的潜在空间分布格局; 基于电路理论(Circuitscape)计算各小种群间的扩散阻力距离; 结合微卫星位点(simple sequence repeat, SSR)和单核苷酸多态性位点(single nucleotide polymorphism, SNP)计算各小种群间的遗传距离(FST), 通过Mantel相关性检验探讨地理距离和阻力距离对各小种群间遗传分化的作用效果。结果显示: (1)金线侧褶蛙栖息地适宜性随城市化水平的增高而显著降低; (2) NDVI是影响其潜在空间分布的主要因素, 金线侧褶蛙更倾向于栖息在植被覆盖度较高的区域; (3)遗传距离与地理距离之间没有显著的相关性, 但随着景观扩散阻力的增大而显著增大。因此, 保护和维持郊区连续栖息地以及市区仍然保留的斑块化栖息地是现阶段保护以金线侧褶蛙为代表的本土两栖动物的首要措施。而通过优化城市景观结构, 加强针对不同野生动物类群的廊道建设, 促进野生动物小种群间的基因交流, 则是实现城市化区域野生动物多样性自维持和长期保护的有效途径。
董廷玮, 黄美玲, 韦旭, 马硕, 岳衢, 刘文丽, 郑佳鑫, 王刚, 马蕊, 丁由中, 薄顺奇, 王正寰 (2023) 上海地区金线侧褶蛙种群的潜在空间分布格局及其景观连通性. 生物多样性, 31, 22692. DOI: 10.17520/biods.2022692.
Tingwei Dong, Meiling Huang, Xu Wei, Shuo Ma, Qu Yue, Wenli Liu, Jiaxin Zheng, Gang Wang, Rui Ma, Youzhong Ding, Shunqi Bo, Zhenghuan Wang (2023) Potential spatial distribution pattern and landscape connectivity of Pelophylax plancyi in Shanghai, China. Biodiversity Science, 31, 22692. DOI: 10.17520/biods.2022692.
图1 上海地区金线侧褶蛙15个采样点分布图。CP: 世纪公园; BG: 上海植物园; GQ: 共青森林公园; CS: 辰山植物园; SN: 松南郊野公园; PJ: 浦江郊野公园; XY: 奉贤向阳村; WG: 浦东五灶港; JB: 嘉北郊野公园; QX: 青西郊野公园; LX: 廊下郊野公园; BF: 海湾郊野公园; LG: 南汇临港新城; PS: 长兴岛潘石镇; CJ: 崇明岛陈家镇。
Fig. 1 The map of 15 sampling sites of Pelophylax plancyi in Shanghai. CP, Century Park; BG, Shanghai Botanical Garden; GQ, Gongqing Forest Park; CS, Chenshan Botanical Garden; SN, Songnan Country Park; PJ, Pujiang Country Park; XY, Fengxian Xiangyang Village; WG, Pudong Wuzao Port; JB, Jiabei Country Park; QX, Qingxi Country Park; LX, Langxia Country Park; BF, Bay Country Park; LG, Nanhui Lingang New City; PS, Changxing Island Panshi Town; CJ, Chongming Island Chenjia Town.
采样点 Sampling site | 分布区域 Region | 城市化水平 Urbanization degree | 生境适宜 均值 Mean of habitat suitability | GPS坐标数 Number of GPS positions | 样本量(只) Sampling size | |
---|---|---|---|---|---|---|
微卫星位点分析样本Samples for SSR analysis | 单核苷酸多肽位点分析样本 Samples for SNP analysis | |||||
世纪公园 Century Park (CP) | 中心城区 Central urban area | 0.734 | 0.236 | 15 | 32 | 10 |
上海植物园 Shanghai Botanical Garden (BG) | 中心城区 Central urban area | 0.773 | 0.147 | 10 | 28 | 10 |
共青森林公园 Gongqing Forest Park (GQ) | 中心城区 Central urban area | 0.705 | 0.135 | 7 | 16 | 10 |
辰山植物园 Chenshan Botanical Garden (CS) | 近郊 Suburb | 0.393 | 0.472 | - | 36 | 10 |
松南郊野公园 Songnan Country Park (SN) | 近郊 Suburb | 0.371 | 0.417 | 34 | 35 | 10 |
浦江郊野公园 Pujiang Country Park (PJ) | 近郊 Suburb | 0.469 | 0.526 | 12 | 15 | 10 |
奉贤向阳村 Fengxian Xiangyang Village (XY) | 近郊 Suburb | 0.412 | 0.372 | - | 25 | 10 |
浦东五灶港 Pudong Wuzao Port (WG) | 近郊 Suburb | 0.489 | 0.410 | - | 34 | 10 |
嘉北郊野公园 Jiabei Country Park (JB) | 远郊 Outer suburb | 0.530 | 0.455 | 14 | 17 | 10 |
青西郊野公园 Qingxi Country Park (QX) | 远郊 Outer suburb | 0.217 | 0.469 | 31 | 33 | 10 |
廊下郊野公园 Langxia Country Park (LX) | 远郊 Outer suburb | 0.313 | 0.463 | 25 | 39 | 10 |
海湾郊野公园 Bay Country Park (BF) | 远郊 Outer suburb | 0.262 | 0.519 | 3 | 11 | 10 |
南汇临港新城 Nanhui Lingang New City (LG) | 远郊 Outer suburb | 0.530 | 0.353 | - | 28 | 10 |
长兴岛潘石镇 Changxing Island Panshi Town (PS) | 远郊 Outer suburb | 0.085 | 0.280 | 14 | 30 | 10 |
崇明岛陈家镇 Chongming Island Chenjia Town (CJ) | 远郊 Outer suburb | 0.570 | 0.281 | - | 28 | 10 |
总计 Total | 165 | 407 | 150 |
表1 上海市15个金线侧褶蛙采样点信息及两种分子标记使用到的样本信息
Table 1 The detail information of 15 sampling sites and sample sizes of the two types of molecular markers for Pelophylax plancyi in Shanghai
采样点 Sampling site | 分布区域 Region | 城市化水平 Urbanization degree | 生境适宜 均值 Mean of habitat suitability | GPS坐标数 Number of GPS positions | 样本量(只) Sampling size | |
---|---|---|---|---|---|---|
微卫星位点分析样本Samples for SSR analysis | 单核苷酸多肽位点分析样本 Samples for SNP analysis | |||||
世纪公园 Century Park (CP) | 中心城区 Central urban area | 0.734 | 0.236 | 15 | 32 | 10 |
上海植物园 Shanghai Botanical Garden (BG) | 中心城区 Central urban area | 0.773 | 0.147 | 10 | 28 | 10 |
共青森林公园 Gongqing Forest Park (GQ) | 中心城区 Central urban area | 0.705 | 0.135 | 7 | 16 | 10 |
辰山植物园 Chenshan Botanical Garden (CS) | 近郊 Suburb | 0.393 | 0.472 | - | 36 | 10 |
松南郊野公园 Songnan Country Park (SN) | 近郊 Suburb | 0.371 | 0.417 | 34 | 35 | 10 |
浦江郊野公园 Pujiang Country Park (PJ) | 近郊 Suburb | 0.469 | 0.526 | 12 | 15 | 10 |
奉贤向阳村 Fengxian Xiangyang Village (XY) | 近郊 Suburb | 0.412 | 0.372 | - | 25 | 10 |
浦东五灶港 Pudong Wuzao Port (WG) | 近郊 Suburb | 0.489 | 0.410 | - | 34 | 10 |
嘉北郊野公园 Jiabei Country Park (JB) | 远郊 Outer suburb | 0.530 | 0.455 | 14 | 17 | 10 |
青西郊野公园 Qingxi Country Park (QX) | 远郊 Outer suburb | 0.217 | 0.469 | 31 | 33 | 10 |
廊下郊野公园 Langxia Country Park (LX) | 远郊 Outer suburb | 0.313 | 0.463 | 25 | 39 | 10 |
海湾郊野公园 Bay Country Park (BF) | 远郊 Outer suburb | 0.262 | 0.519 | 3 | 11 | 10 |
南汇临港新城 Nanhui Lingang New City (LG) | 远郊 Outer suburb | 0.530 | 0.353 | - | 28 | 10 |
长兴岛潘石镇 Changxing Island Panshi Town (PS) | 远郊 Outer suburb | 0.085 | 0.280 | 14 | 30 | 10 |
崇明岛陈家镇 Chongming Island Chenjia Town (CJ) | 远郊 Outer suburb | 0.570 | 0.281 | - | 28 | 10 |
总计 Total | 165 | 407 | 150 |
图3 环境因子对金线侧褶蛙潜在分布的相对贡献率(a)及响应图(b-d)
Fig. 3 Schematic diagram of the contribution rate of environmental factors to the potential distribution of Pelophylax plancyi (a) and the response of environmental factors to the potential distribution (b-d)
CP | BG | GQ | CS | SN | PJ | XY | WG | JB | QX | LX | BF | LG | PS | CJ | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CP | - | 8.921 | 10.583 | 7.182 | 6.970 | 7.395 | 7.299 | 5.691 | 8.779 | 8.835 | 7.912 | 6.766 | 6.943 | 12.184 | 19.107 |
BG | 13.092 | - | 13.819 | 7.759 | 7.633 | 8.225 | 8.681 | 7.829 | 9.858 | 9.460 | 8.627 | 8.260 | 8.816 | 14.709 | 21.486 |
GQ | 11.502 | 21.893 | - | 11.321 | 11.353 | 12.329 | 12.160 | 10.787 | 11.826 | 13.005 | 12.284 | 11.578 | 11.779 | 14.775 | 21.914 |
CS | 38.632 | 26.020 | 44.400 | - | 3.223 | 6.173 | 6.094 | 5.651 | 5.873 | 4.033 | 4.085 | 5.543 | 6.352 | 12.049 | 18.753 |
SN | 38.143 | 25.329 | 47.017 | 14.861 | - | 5.695 | 5.540 | 5.228 | 6.495 | 4.721 | 3.481 | 4.975 | 5.877 | 12.014 | 18.738 |
PJ | 20.314 | 13.272 | 31.584 | 30.861 | 23.018 | - | 5.935 | 5.435 | 8.586 | 7.787 | 6.666 | 5.698 | 6.356 | 12.952 | 19.726 |
XY | 30.711 | 27.821 | 42.069 | 43.910 | 32.645 | 15.007 | - | 4.826 | 8.526 | 7.674 | 6.447 | 4.485 | 5.339 | 12.598 | 19.361 |
WG | 18.445 | 22.859 | 28.488 | 46.662 | 39.897 | 16.884 | 16.375 | - | 7.768 | 7.261 | 6.154 | 4.269 | 4.300 | 11.210 | 18.016 |
JB | 38.090 | 34.177 | 34.380 | 32.553 | 45.087 | 46.981 | 61.885 | 55.283 | - | 7.615 | 7.402 | 7.972 | 8.546 | 12.503 | 19.053 |
QX | 55.905 | 43.777 | 60.139 | 18.119 | 29.195 | 48.796 | 61.102 | 64.778 | 38.533 | - | 5.428 | 7.115 | 7.946 | 13.715 | 20.421 |
LX | 60.891 | 48.251 | 69.988 | 31.233 | 22.971 | 43.667 | 48.216 | 59.805 | 63.727 | 33.378 | - | 5.858 | 6.782 | 12.937 | 19.659 |
BF | 41.736 | 40.070 | 52.729 | 55.036 | 42.461 | 27.280 | 12.290 | 24.799 | 74.170 | 71.550 | 54.098 | - | 4.068 | 11.904 | 18.654 |
LG | 40.987 | 46.146 | 49.087 | 68.159 | 58.566 | 37.302 | 26.395 | 23.480 | 78.639 | 86.020 | 74.354 | 22.382 | - | 11.801 | 18.530 |
PS | 24.212 | 36.120 | 14.477 | 58.697 | 61.387 | 44.372 | 52.475 | 36.883 | 43.953 | 73.881 | 84.346 | 61.639 | 52.830 | - | 13.680 |
CJ | 39.235 | 51.594 | 30.122 | 74.281 | 76.911 | 58.910 | 65.210 | 48.951 | 56.961 | 89.118 | 99.844 | 72.958 | 60.178 | 15.649 | - |
表2 15个金线侧褶蛙地方小种群间的欧式距离系数(左下)及阻力距离系数(右上)
Table 2 Pairwise Euclidean distance (below diagonal) and resistance distance (above diagonal) between 15 local populations of Pelophylax plancyi
CP | BG | GQ | CS | SN | PJ | XY | WG | JB | QX | LX | BF | LG | PS | CJ | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CP | - | 8.921 | 10.583 | 7.182 | 6.970 | 7.395 | 7.299 | 5.691 | 8.779 | 8.835 | 7.912 | 6.766 | 6.943 | 12.184 | 19.107 |
BG | 13.092 | - | 13.819 | 7.759 | 7.633 | 8.225 | 8.681 | 7.829 | 9.858 | 9.460 | 8.627 | 8.260 | 8.816 | 14.709 | 21.486 |
GQ | 11.502 | 21.893 | - | 11.321 | 11.353 | 12.329 | 12.160 | 10.787 | 11.826 | 13.005 | 12.284 | 11.578 | 11.779 | 14.775 | 21.914 |
CS | 38.632 | 26.020 | 44.400 | - | 3.223 | 6.173 | 6.094 | 5.651 | 5.873 | 4.033 | 4.085 | 5.543 | 6.352 | 12.049 | 18.753 |
SN | 38.143 | 25.329 | 47.017 | 14.861 | - | 5.695 | 5.540 | 5.228 | 6.495 | 4.721 | 3.481 | 4.975 | 5.877 | 12.014 | 18.738 |
PJ | 20.314 | 13.272 | 31.584 | 30.861 | 23.018 | - | 5.935 | 5.435 | 8.586 | 7.787 | 6.666 | 5.698 | 6.356 | 12.952 | 19.726 |
XY | 30.711 | 27.821 | 42.069 | 43.910 | 32.645 | 15.007 | - | 4.826 | 8.526 | 7.674 | 6.447 | 4.485 | 5.339 | 12.598 | 19.361 |
WG | 18.445 | 22.859 | 28.488 | 46.662 | 39.897 | 16.884 | 16.375 | - | 7.768 | 7.261 | 6.154 | 4.269 | 4.300 | 11.210 | 18.016 |
JB | 38.090 | 34.177 | 34.380 | 32.553 | 45.087 | 46.981 | 61.885 | 55.283 | - | 7.615 | 7.402 | 7.972 | 8.546 | 12.503 | 19.053 |
QX | 55.905 | 43.777 | 60.139 | 18.119 | 29.195 | 48.796 | 61.102 | 64.778 | 38.533 | - | 5.428 | 7.115 | 7.946 | 13.715 | 20.421 |
LX | 60.891 | 48.251 | 69.988 | 31.233 | 22.971 | 43.667 | 48.216 | 59.805 | 63.727 | 33.378 | - | 5.858 | 6.782 | 12.937 | 19.659 |
BF | 41.736 | 40.070 | 52.729 | 55.036 | 42.461 | 27.280 | 12.290 | 24.799 | 74.170 | 71.550 | 54.098 | - | 4.068 | 11.904 | 18.654 |
LG | 40.987 | 46.146 | 49.087 | 68.159 | 58.566 | 37.302 | 26.395 | 23.480 | 78.639 | 86.020 | 74.354 | 22.382 | - | 11.801 | 18.530 |
PS | 24.212 | 36.120 | 14.477 | 58.697 | 61.387 | 44.372 | 52.475 | 36.883 | 43.953 | 73.881 | 84.346 | 61.639 | 52.830 | - | 13.680 |
CJ | 39.235 | 51.594 | 30.122 | 74.281 | 76.911 | 58.910 | 65.210 | 48.951 | 56.961 | 89.118 | 99.844 | 72.958 | 60.178 | 15.649 | - |
空间距离 Spatial distance | FST | FST/(1-FST) | ||
---|---|---|---|---|
SSR | SNP | SSR | SNP | |
欧氏距离 Euclidean distance | 0.030 | 0.005 | 0.031 | 0.005 |
阻力距离 Resistance distance | 0.593** | 0.420* | 0.598** | 0.419* |
表3 距离隔离模型和阻力隔离模型的Mantel检验验证
Table 3 Mantel test for isolation by distance and isolation by resistance
空间距离 Spatial distance | FST | FST/(1-FST) | ||
---|---|---|---|---|
SSR | SNP | SSR | SNP | |
欧氏距离 Euclidean distance | 0.030 | 0.005 | 0.031 | 0.005 |
阻力距离 Resistance distance | 0.593** | 0.420* | 0.598** | 0.419* |
[1] |
Botzat A, Fischer LK, Kowarik I (2016) Unexploited opportunities in understanding liveable and biodiverse cities. A review on urban biodiversity perception and valuation. Global Environmental Change, 39, 220-233.
DOI URL |
[2] |
Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, Handsaker RE, Lunter G, Marth GT, Sherry ST, McVean G, Durbin R, 1000 Genomes Project Analysis Group (2011) The variant call format and VCFtools. Bioinformatics, 27, 2156-2158.
DOI URL |
[3] | Deng SB, Du HJ, Xu EH, Chen JQ (2014) ENVI Remote Sensing Image Processing Method, 2nd edn. Higher Education Press, Beijing. (in Chinese) |
[ 邓书斌, 杜会建, 徐恩惠, 陈秋锦 (2014) ENVI遥感图像处理方法(第二版). 高等教育出版社, 北京.] | |
[4] |
Diao YX, Zhao QQ, Weng Y, Huang ZX, Wu YQ, Gu BJ, Zhao Q, Wang F (2022) Predicting current and future species distribution of the raccoon dog (Nyctereutes procyonoides) in Shanghai, China. Landscape and Urban Planning, 228, 104581.
DOI URL |
[5] | Dray S, Dufour AB (2007) The ade 4 package: Implementing the duality diagram for ecologists. Journal of Statistical Software, 22(4), 1-20. |
[6] | Excoffier L, Laval G, Schneider S (2007) Arlequin (version 3.0): An integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online, 1, 47-50. |
[7] |
Gippet JMW, Mondy N, Diallo-Dudek J, Bellec A, Dumet A, Mistler L, Kaufmann B (2017) I’m not like everybody else: Urbanization factors shaping spatial distribution of native and invasive ants are species-specific. Urban Ecosystems, 20, 157-169.
DOI URL |
[8] |
Grimm NB, Faeth SH, Golubiewski NE, Redman CL, Wu JG, Bai XM, Briggs JM (2008) Global change and the ecology of cities. Science, 319, 756-760.
DOI PMID |
[9] |
Guzy JC, McCoy ED, Deyle AC, Gonzalez SM, Halstead N, Mushinsky HR (2012) Urbanization interferes with the use of amphibians as indicators of ecological integrity of wetlands. Journal of Applied Ecology, 49, 941-952.
DOI PMID |
[10] |
Hamer AJ, McDonnell MJ (2008) Amphibian ecology and conservation in the urbanising world: A review. Biological Conservation, 141, 2432-2449.
DOI URL |
[11] | Hu HY (1987) Demography in China (Shanghai Part). China Financial & Economic Publishing House, Beijing. (in Chinese) |
[ 胡焕庸 (1987) 中国人口(上海分册). 中国财政经济出版社, 北京.] | |
[12] | Huang ZY, Tang ZY, Zong Y (1980) Amphibian and reptile species in Shanghai. Natural Science, (3), 17-20. (in Chinese) |
[ 黄正一, 唐子英, 宗愉 (1980) 上海地区的两栖爬行动物. 博物, (3), 17-20.] | |
[13] | IUCN International Union for Conservation of Nature (2021) The IUCN Red List of Threatened Species, Version, Version 2021-3. https://www.iucnredlist.org/. (accessed on 2022-07-12) |
[14] | Johnson MTJ, Munshi-South J (2017) Evolution of life in urban environments. Science, 358, eaam8327. |
[15] |
Kuang WH, Chi WF, Lu DS, Dou YY (2014) A comparative analysis of megacity expansions in China and the U.S.: Patterns, rates and driving forces. Landscape and Urban Planning, 132, 121-135.
DOI URL |
[16] | Li B, Zhang W, Shu XX, Pei EL, Yuan X, Wang TH, Wang ZH (2018) Influence of breeding habitat characteristics and landscape heterogeneity on anuran species richness and abundance in urban parks of Shanghai, China. Urban Forestry & Urban Greening, 32, 56-63. |
[17] |
Lin P, Yang L, Zhao SQ (2020) Urbanization effects on Chinese mammal and amphibian richness: A multi-scale study using the urban-rural gradient approach. Environmental Research Communications, 2, 125002.
DOI |
[18] |
Magle SB, Hunt VM, Vernon M, Crooks KR (2012) Urban wildlife research: Past, present, and future. Biological Conservation, 155, 23-32.
DOI URL |
[19] |
Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Research, 27, 209-220.
PMID |
[20] |
McRae BH (2006) Isolation by resistance. Evolution, 60, 1551-1561.
PMID |
[21] | McRae BH, Beier P (2007) Circuit theory predicts gene flow in plant and animal populations. Proceedings of the National Academy of Sciences, USA, 104, 19885-19890. |
[22] |
Munshi-South J, Zolnik CP, Harris SE (2016) Population genomics of the Anthropocene: Urbanization is negatively associated with genome-wide variation in white-footed mouse populations. Evolutionary Applications, 9, 546-564.
DOI PMID |
[23] |
Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190, 231-259.
DOI URL |
[24] |
Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics, 145, 1219-1228.
DOI PMID |
[25] | Semlitsch RD (2000) Principles for management of aquatic- breeding amphibians. The Journal of Wildlife Management, 64, 615-631. |
[26] | Semlitsch RD (2008) Differentiating migration and dispersal processes for pond-breeding amphibians. The Journal of Wildlife Management, 72, 260-267. |
[27] | Seto KC, Güneralp B, Hutyra LR (2012) Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proceedings of the National Academy of Sciences, USA, 109, 16083-16088. |
[28] | Shanghai Bureau of Statistics (2022) Shanghai Statistical Yearbook 2022. China Statistics Press, Beijing. (in Chinese) |
[ 上海市统计局 (2022) 2022年上海统计年鉴. 中国统计出版社, 北京.] | |
[29] |
Smith MA, Green DM (2005) Dispersal and the metapopulation paradigm in amphibian ecology and conservation: Are all amphibian populations metapopulations? Ecography, 28, 110-128.
DOI URL |
[30] |
Swets JA (1988) Measuring the accuracy of diagnostic systems. Science, 240, 1285-1293.
DOI PMID |
[31] | Tewksbury JJ, Levey DJ, Haddad NM, Sargent S, Orrock JL, Weldon A, Danielson BJ, Brinkerhoff J, Damschen EI, Townsend P (2002) Corridors affect plants, animals, and their interactions in fragmented landscapes. Proceedings of the National Academy of Sciences, USA, 99, 12923-12926. |
[32] |
Tsuji M, Ushimaru A, Osawa T, Mitsuhashi H (2011) Paddy-associated frog declines via urbanization: A test of the dispersal-dependent-decline hypothesis. Landscape and Urban Planning, 103, 318-325.
DOI URL |
[33] | United Nations (2019) World Urbanization Prospects: The 2018 Revision. https://esa.un.org/unpd/wup/publications. (accessed on 2022-11-28) |
[34] |
Wang IJ (2013) Examining the full effects of landscape heterogeneity on spatial genetic variation: A multiple matrix regression approach for quantifying geographic and ecological isolation. Evolution, 67, 3403-3411.
DOI PMID |
[35] |
Wang IJ, Glor RE, Losos JB (2013) Quantifying the roles of ecology and geography in spatial genetic divergence. Ecology Letters, 16, 175-182.
DOI PMID |
[36] |
Wang M, Li JX, Kuang SJ, He YJ, Chen GJ, Huang Y, Song CH, Anderson P, Łowicki D (2020) Plant diversity along the urban-rural gradient and its relationship with urbanization degree in Shanghai, China. Forests, 11, 171.
DOI URL |
[37] | Wang YH, Yang KC, Bridgman CL, Lin LK (2008) Habitat suitability modelling to correlate gene flow with landscape connectivity. Landscape Ecology, 23, 989-1000. |
[38] |
Ward DF (2007) Modelling the potential geographic distribution of invasive ant species in New Zealand. Biological Invasions, 9, 723-735.
DOI URL |
[39] |
Wei X, Huang ML, Yue Q, Ma S, Li B, Mu ZQ, Peng C, Gao WX, Liu WL, Zheng JX, Weng XD, Sun XH, Zuo QQ, Bo SQ, Yuan X, Zhang W, Yang G, Ding YZ, Wang XM, Wang TH, Hua PY, Wang ZH (2020) Long-term urbanization impacts the eastern golden frog (Pelophylax plancyi) in Shanghai City: Demographic history, genetic structure, and implications for amphibian conservation in intensively urbanizing environments. Evolutionary Applications, 14, 117-135.
DOI URL |
[40] |
Wright S (1943) Isolation by distance. Genetics, 28, 114-138.
DOI PMID |
[41] |
Yang L, Zhao SQ, Liu SG (2022) A global analysis of urbanization effects on amphibian richness: Patterns and drivers. Global Environmental Change, 73, 102476.
DOI URL |
[42] | Zhang W, Li B, Shu XX, Pei EL, Yuan X, Sun YJ, Wang TH, Wang ZH (2016) Responses of anuran communities to rapid urban growth in Shanghai, China. Urban Forestry & Urban Greening, 20, 365-374. |
[43] |
Zhao SQ, Da LJ, Tang ZY, Fang HJ, Song K, Fang JY (2006) Ecological consequences of rapid urban expansion: Shanghai, China. Frontiers in Ecology and the Environment, 4, 341-346.
DOI URL |
[1] | 刘伟, 王濡格, 范天巧, 娜依曼·阿不都力江, 宋新航, 肖书平, 郭宁, 帅凌鹰. 福建省明溪县黑冠鹃隼生境适宜性[J]. 生物多样性, 2023, 31(7): 22660-. |
[2] | 杜诚, 汪远, 闫小玲, 严靖, 李惠茹, 张庆费, 胡永红. 上海市植物物种多样性组成和历史变化暨上海维管植物名录更新(2022版)[J]. 生物多样性, 2023, 31(6): 23093-. |
[3] | 鲍虞园, 李银康, 林吴颖, 周志琴, 肖晓波, 颉晓勇. 中国南海北部近海鲎资源调查及北部湾潮间带中华鲎幼鲎潜在栖息地评估[J]. 生物多样性, 2023, 31(5): 22407-. |
[4] | 邓昶, 郝杰威, 高德, 任明迅, 张莉娜. 海南受威胁苔藓植物适生热点区域识别与保护[J]. 生物多样性, 2023, 31(4): 22580-. |
[5] | 闫冰, 陆晴, 夏嵩, 李俊生. 城市土壤微生物多样性研究进展[J]. 生物多样性, 2022, 30(8): 22186-. |
[6] | 田璐嘉, 杨小波, 李东海, 李龙, 陈琳, 梁彩群, 张培春, 李晨笛. 海口和三亚两城市破碎化林地中鸟类群落多样性与嵌套分布格局[J]. 生物多样性, 2022, 30(6): 21424-. |
[7] | 姚海凤, 张赛超, 上官华媛, 李志鹏, 孙新. 城市化对土壤动物群落结构和多样性的影响[J]. 生物多样性, 2022, 30(12): 22547-. |
[8] | 施雨含, 任宗昕, 王维嘉, 徐鑫, 刘杰, 赵延会, 王红. 中国-喜马拉雅三种黄耆属植物与其传粉熊蜂的空间分布预测[J]. 生物多样性, 2021, 29(6): 759-769. |
[9] | 郑进凤, 唐蓉, 贺霜, 陈月红, 伍素, 张凯, 徐雨, 邹晓. 贵州花溪大学城破碎化林地鸟类多样性与嵌套分布格局[J]. 生物多样性, 2021, 29(5): 661-667. |
[10] | 蓝方源, 马行健, 逯金瑶, 李雨果, 柴汝松, 李翔, 罗亦欧, 张宇泽, 叶子凌, 付昌健, 暴文爽, 李立, 邢晓莹. 城市化对鸟类筑巢的影响研究综述[J]. 生物多样性, 2021, 29(11): 1539-1553. |
[11] | 袁海生, 魏玉莲, 周丽伟, 秦问敏, 崔宝凯, 何双辉. 东北4种林木干基腐朽病原真菌潜在分布范围预测及其生态位分析[J]. 生物多样性, 2019, 27(8): 873-879. |
[12] | 刘秀嶶, Douglas Chesters, 武春生, 周青松, 朱朝东. 环境变化对中国野生蜜蜂多样性的影响[J]. 生物多样性, 2018, 26(7): 760-765. |
[13] | 武晓宇, 董世魁, 刘世梁, 刘全儒, 韩雨晖, 张晓蕾, 苏旭坤, 赵海迪, 冯憬. 基于MaxEnt模型的三江源区草地濒危保护植物热点区识别[J]. 生物多样性, 2018, 26(2): 138-148. |
[14] | 崔绍朋, 罗晓, 李春旺, 胡慧建, 蒋志刚. 基于MaxEnt模型预测白唇鹿的潜在分布区[J]. 生物多样性, 2018, 26(2): 171-176. |
[15] | 褚建民, 李毅夫, 张雷, 李斌, 高明远, 唐晓倩, 倪建伟, 许新桥. 濒危物种长柄扁桃的潜在分布与保护策略[J]. 生物多样性, 2017, 25(8): 799-806. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn