生物多样性 ›› 2023, Vol. 31 ›› Issue (3): 22161. DOI: 10.17520/biods.2022161
张琼悦1, 邓卓迪2, 胡学斌3, 丁志锋1, 肖荣波4, 修晨5, 吴政浩1,6, 汪光7, 韩东晖7, 张语克8, 梁健超1,*(), 胡慧建1,*()
收稿日期:
2022-10-28
接受日期:
2022-12-16
出版日期:
2023-03-20
发布日期:
2023-03-20
通讯作者:
梁健超,胡慧建
作者简介:
13922339577@139.com (胡慧建)#共同第一作者
基金资助:
Qiongyue Zhang1, Zhuodi Deng2, Xuebin Hu3, Zhifeng Ding1, Rongbo Xiao4, Chen Xiu5, Zhenghao Wu1,6, Guang Wang7, Donghui Han7, Yuke Zhang8, Jianchao Liang1,*(), Huijian Hu1,*()
Received:
2022-10-28
Accepted:
2022-12-16
Online:
2023-03-20
Published:
2023-03-20
Contact:
Jianchao Liang,Huijian Hu
About author:
First author contact:#Co-first authors
摘要:
粤港澳大湾区经济快速发展和城市迅速扩张引起土地利用类型的剧烈转变, 这对当地物种的栖息地、物种分布区乃至区域生物多样性均造成了影响。本研究基于82种鸟类的分布数据和15个环境变量数据, 利用最大熵(maximum entropy, MaxEnt)模型及等效连接面积(the equivalent connected area, ECA)指数分析了粤港澳大湾区鸟类多样性的空间分布格局及连通性。结果表明: 2000-2015年, 大湾区林地、水体、耕地等用地类型分别减少3.22%、0.97%和23.19%, 草地、建设用地、裸地与滩涂用地类型分别增加33.95%、80.34%和453.52%。30种以森林、农田为主要栖息生境的鸟类分布区面积减少, 52种常见的城市鸟类及各类水鸟分布面积增加, 鸟类分布面积与土地利用类型密切相关。此外, 鸟类栖息地连接度表现出与分布区相一致的变化趋势。其中, 对4种分布面积变化最大的鸟类的分析结果显示, 乌鹃(Surniculus lugubris)与栗耳凤鹛(Yuhina castaniceps)分布面积及栖息地连通性随城市化进程(包括土地利用类型、植被覆盖度、水源距离和干扰距离等的变化)而下降, 而牛背鹭(Bubulcus ibis)与苍鹭(Ardea cinerea)的分布面积及栖息地连通性则随城市化进程而上升。此外栖息地斑块面积的增加也显著提高了栖息地的连通性。因此建议对城市化进程中粤港澳大湾区的生境质量变化进行评估, 根据评估结果构建鸟类生态廊道和生物多样性保护网络, 从而维持大湾区区域生态系统的安全和稳定。
张琼悦, 邓卓迪, 胡学斌, 丁志锋, 肖荣波, 修晨, 吴政浩, 汪光, 韩东晖, 张语克, 梁健超, 胡慧建 (2023) 粤港澳大湾区城市化进程对区域内鸟类分布及栖息地连通性的影响. 生物多样性, 31, 22161. DOI: 10.17520/biods.2022161.
Qiongyue Zhang, Zhuodi Deng, Xuebin Hu, Zhifeng Ding, Rongbo Xiao, Chen Xiu, Zhenghao Wu, Guang Wang, Donghui Han, Yuke Zhang, Jianchao Liang, Huijian Hu (2023) The impact of urbanization on regional bird distribution and habitat connectivity in the Guangdong-Hong Kong-Macao Greater Bay Area. Biodiversity Science, 31, 22161. DOI: 10.17520/biods.2022161.
图1 粤港澳大湾区2015年非城市化环境因子(气候)。a: 年平均气温; b: 气温季节变化; c: 最暖月最高气温; d: 最冷月最低气温; e: 气温年变化; f: 年均降水量; g: 最湿月降水量; h: 最干月降水量; i: 降水量季节变化; j: 海拔; k: 坡度。
Fig. 1 Climate factors in Guangdong-Hong Kong-Macao Greater Bay Area during 2015. a, Annual mean temperature, AMT; b, Temperature seasonality, TS; c, Maximum temperature of the warmest month, MTWM; d, Minimum temperature of the coldest month, MTCM; e, Temperature annual range, TAR; f, Annual precipitation, AP; g, Precipitation of the wettest month, PWM; h, Precipitation of the driest month, PDM; i, Precipitation seasonality, PS; j, Elevation, ELEV; k, Slope, SLP.
图2 粤港澳大湾区2000-2015年城市化环境因子变化(土地利用类型、增强型植被指数EVI)
Fig. 2 Changes of urbanization environmental factors (land cover, enhanced vegetation index, EVI) in Guangdong-Hong Kong-Macao Greater Bay Area from 2000 to 2015
图3 粤港澳大湾区2000-2015年城市化环境因子变化(干扰距离、水源距离)
Fig. 3 Changes of urbanization environmental factors (distance to disturbance, distance to water) in Guangdong-Hong Kong-Macao Greater Bay Area from 2000 to 2015
2000年各土地利用类型 Land use types in 2000 | 2015年各土地利用类型面积 Areas of each land use type in 2015 (km2) | |||||||
---|---|---|---|---|---|---|---|---|
草地 Grassland | 耕地 Farmland | 建设用地 Building | 林地 Forest | 裸地与滩涂 Bare land and mudflat | 水体 Water | 合计 Total | 变化比例 Change proportion | |
草地 Grassland | 41.78 | 3.48 | 10.34 | 10.54 | 0.60 | 2.09 | 68.82 | 33.95% |
耕地 Farmland | 4.28 | 7,189.09 | 2,281.25 | 1,098.99 | 18.08 | 1,166.84 | 11,758.51 | -23.19% |
建设用地 Building | 4.08 | 193.32 | 4,029.98 | 201.58 | 2.59 | 61.64 | 4,493.19 | 80.34% |
林地 Forest | 38.37 | 1,159.69 | 982.76 | 30,786.88 | 235.41 | 252.75 | 33,455.86 | -3.22% |
裸地与滩涂 Bare land and mudflat | 0.00 | 4.18 | 6.47 | 34.06 | 1.89 | 1.70 | 48.29 | 453.52% |
水体 Water | 3.69 | 481.67 | 792.11 | 246.15 | 8.74 | 3,341.68 | 4,874.04 | -0.97% |
合计 Total | 92.19 | 9,031.43 | 8,102.90 | 32,378.20 | 267.30 | 4,826.70 | 54,698.71 |
表1 2000-2015年大湾区土地利用类型变化转移矩阵
Table 1 Matrix of the change of land use types in the Guangdong-Hong Kong-Macao Greater Bay Area between 2000 and 2015
2000年各土地利用类型 Land use types in 2000 | 2015年各土地利用类型面积 Areas of each land use type in 2015 (km2) | |||||||
---|---|---|---|---|---|---|---|---|
草地 Grassland | 耕地 Farmland | 建设用地 Building | 林地 Forest | 裸地与滩涂 Bare land and mudflat | 水体 Water | 合计 Total | 变化比例 Change proportion | |
草地 Grassland | 41.78 | 3.48 | 10.34 | 10.54 | 0.60 | 2.09 | 68.82 | 33.95% |
耕地 Farmland | 4.28 | 7,189.09 | 2,281.25 | 1,098.99 | 18.08 | 1,166.84 | 11,758.51 | -23.19% |
建设用地 Building | 4.08 | 193.32 | 4,029.98 | 201.58 | 2.59 | 61.64 | 4,493.19 | 80.34% |
林地 Forest | 38.37 | 1,159.69 | 982.76 | 30,786.88 | 235.41 | 252.75 | 33,455.86 | -3.22% |
裸地与滩涂 Bare land and mudflat | 0.00 | 4.18 | 6.47 | 34.06 | 1.89 | 1.70 | 48.29 | 453.52% |
水体 Water | 3.69 | 481.67 | 792.11 | 246.15 | 8.74 | 3,341.68 | 4,874.04 | -0.97% |
合计 Total | 92.19 | 9,031.43 | 8,102.90 | 32,378.20 | 267.30 | 4,826.70 | 54,698.71 |
图4 2000-2015年大湾区城市化进程下鸟类栖息地面积变化
Fig. 4 Changes in the area of bird habitats in the process of urbanization of the Guangdong-Hong Kong-Macao Greater Bay Area from 2000 to 2015
图5 2000-2015年粤港澳大湾区城市化进程下鸟类(乌鹃、栗耳凤鹛)栖息地核心斑块分布与斑块间最小耗费路径变化
Fig. 5 Distribution changes of the core patches of bird habitat (Surniculus lugubris, Yuhina castaniceps) and the least cost path among them under the process of urbanization in Guangdong-Hong Kong-Macao Greater Bay Area from 2000 to 2015
图6 城市化进程下鸟类栖息地核心斑块与斑块间最小耗费路径变化(牛背鹭、苍鹭)
Fig. 6 Changes in the core patch of bird habitat and the least cost path between the core patches under the process of urbanization (Bubulcus ibis, Ardea cinerea)
物种 Species | 分布面积 Distribution area (km2) | 栖息地面积变化 The change of habitat area (dA) | 等效连接面积 The equivalent connected area (ECA) (km2) | 等效连接面积的变化 dECA | 等效连接面积变化比值 rECA | ||
---|---|---|---|---|---|---|---|
2000 | 2015 | 2000 | 2015 | ||||
苍鹭 Ardea cinerea | 21.68 | 33.22 | 0.53 | 1,140.81 | 2,150.92 | 0.89 | 1.66 |
牛背鹭 Bubulcus ibis | 47.27 | 80.05 | 0.69 | 3,113.29 | 5,993.31 | 0.93 | 1.33 |
乌鹃 Surniculus lugubris | 41.30 | 23.75 | -0.43 | 3,506.69 | 2,152.00 | -0.39 | 0.91 |
栗耳凤鹛 Yuhina castaniceps | 17.65 | 10.80 | -0.39 | 1,396.05 | 916.29 | -0.34 | 0.88 |
表2 2000-2015年大湾区4种代表性鸟类的分布面积与等效连接面积指数变化
Table 2 Changes of distribution area and the equivalent connected area index of the four representative bird species in Guangdong-Hong Kong-Macao Greater Bay Area from 2000 to 2015.
物种 Species | 分布面积 Distribution area (km2) | 栖息地面积变化 The change of habitat area (dA) | 等效连接面积 The equivalent connected area (ECA) (km2) | 等效连接面积的变化 dECA | 等效连接面积变化比值 rECA | ||
---|---|---|---|---|---|---|---|
2000 | 2015 | 2000 | 2015 | ||||
苍鹭 Ardea cinerea | 21.68 | 33.22 | 0.53 | 1,140.81 | 2,150.92 | 0.89 | 1.66 |
牛背鹭 Bubulcus ibis | 47.27 | 80.05 | 0.69 | 3,113.29 | 5,993.31 | 0.93 | 1.33 |
乌鹃 Surniculus lugubris | 41.30 | 23.75 | -0.43 | 3,506.69 | 2,152.00 | -0.39 | 0.91 |
栗耳凤鹛 Yuhina castaniceps | 17.65 | 10.80 | -0.39 | 1,396.05 | 916.29 | -0.34 | 0.88 |
[1] |
Alagador D, Cerdeira JO, Araújo MB (2016) Climate change, species range shifts and dispersal corridors: An evaluation of spatial conservation models. Methods in Ecology and Evolution, 7, 853-866.
DOI URL |
[2] |
Aráujo MB, New M (2007) Ensemble forecasting of species distributions. Trends in Ecology & Evolution, 22, 42-47.
DOI URL |
[3] | Bai XH, Wang WJ, Jiang WG, Shi HD, Chen K, Chen M (2019) Simulation of potential suitable distribution of endangered waterfowl and its gap analysis of national nature reserves in Beijing-Tianjin-Hebei region under climate change scenarios. Research of Environmental Sciences, 32, 1001-1011. (in Chinese with English abstract) |
[白雪红, 王文杰, 蒋卫国, 师华定, 陈坤, 陈民 (2019) 气候变化背景下京津冀地区濒危水鸟潜在适宜区模拟及保护空缺分析. 环境科学研究, 32, 1001-1011.] | |
[4] |
Bonier F, Martin PR, Wingfield JC (2007) Urban birds have broader environmental tolerance. Biology Letters, 3, 670-673.
PMID |
[5] |
Brodie JF, Paxton M, Nagulendran K, Balamurugan G, Clements GR, Reynolds G, Jain A, Hon J (2016) Connecting science, policy, and implementation for landscape-scale habitat connectivity. Conservation Biology, 30, 950-961.
DOI PMID |
[6] | Chen JSH, Yang MZ (2017) Characteristics and driving factors of land use transfer in economically developed coastal regions—A case of Nanshan District, Shenzhen. Territory & Natural Resources Study, (2), 41-44. (in Chinese with English abstract) |
[陈江实浩, 杨木壮 (2017) 沿海经济发达地区土地利用转移特征及驱动因素: 以深圳市南山区为例. 国土与自然资源研究, (2), 41-44.] | |
[7] |
Cumming GS, Buerkert A, Hoffmann EM, Schlecht E, von Cramon-Taubadel S, Tscharntke T (2014) Implications of agricultural transitions and urbanization for ecosystem services. Nature, 515, 50-57.
DOI |
[8] | Ding ZF, Liang JC, Feng YJ, Liu JC, Hu HJ (2020) Functional and phylogenetic diversity of birds in urban habitat patches in Macao, China. Chinese Journal of Ecology, 39, 1238-1247. (in Chinese with English abstract) |
[丁志锋, 梁健超, 冯永军, 刘金成, 胡慧建 (2020) 澳门城市栖息地斑块中鸟类群落功能和谱系多样性. 生态学杂志, 39, 1238-1247.] | |
[9] |
Dilts TE, Weisberg PJ, Leitner P, Matocq MD, Inman RD, Nussear KE, Esque TC (2016) Multiscale connectivity and graph theory highlight critical areas for conservation under climate change. Ecological Applications, 26, 1223-1237.
DOI URL |
[10] |
Elith J, Graham CH, Anderson RP, Dudík M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, Li J, Lohmann LG, Loiselle BA, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton JM, Townsend Peterson A, Phillips SJ, Richardson K, Scachetti-Pereira R, Schapire RE, Soberón J, Williams S, Wisz MS, Zimmermann NE (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 29, 129-151.
DOI URL |
[11] |
Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ (2011) A statistical explanation of MaxEnt for ecologists. Diversity and Distributions, 17, 43-57.
DOI URL |
[12] |
Fang CL, Liu HM, Li GD (2016) International progress and evaluation on interactive coupling effects between urbanization and the eco-environment. Journal of Geographical Sciences, 26, 1081-1116.
DOI URL |
[13] |
Feng SS, Fan FL (2018) Spatiotemporal changes of landscape pattern using impervious surface in Guangdong-Hong Kong-Macao Greater Bay Area, China. Chinese Journal of Applied Ecology, 29, 2907-2914. (in Chinese with English abstract)
DOI |
[冯珊珊, 樊风雷 (2018) 基于不透水面的粤港澳大湾区景观格局时空变化. 应用生态学报, 29, 2907-2914.]
DOI |
|
[14] | Gao M, Zeng H (2012) Dynamic change of the shoreline in Shenzhen during 1986-2020. Tropical Geography, 32, 274-279. (in Chinese) |
[高梅, 曾辉 (2012) 深圳市1986-2020年间海岸线动态变化特征及成因分析. 热带地理, 32, 274-279.] | |
[15] | Ghosal TK, Hossain S (2011) Conservation of globlally threatened migratorty waders through restoration of wetlands in an ecologically critical area—An experience from St. Martin’s Island, Bangladesh. China Wetland Culture Festival and Asian Wetland Forum, Wuxi, Jiangsu. (in Chinese with English abstract) |
Ghosal TK, Hossain S (2011) 孟加拉圣马丁岛恢复湿地生态关键区保护全球濒危迁徙涉禽的经验. 中国湿地文化节暨亚洲湿地论坛, 江苏无锡.] | |
[16] | Gibson L, Mcneill A, Tores P, Wayne A, Yates C (2010) Will future climate change threaten a range restricted endemic species, the quokka (Setonix brachyurus), in south west Australia? Biological Conservation, 143, 2453-2461. |
[17] |
Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecological Modelling, 135, 147-186.
DOI URL |
[18] | Guo L, Xia BC, Liu WQ, Jiang XD (2006) Spatio-temporal change and gradient differentiation of landscape pattern in Guangzhou City during its urbanization. Chinese Journal of Applied Ecology, 17, 1671-1676. (in Chinese with English abstract) |
[郭泺, 夏北成, 刘蔚秋, 江学顶 (2006) 城市化进程中广州市景观格局的时空变化与梯度分异. 应用生态学报, 17, 1671-1676.] | |
[19] |
Hu JH, Hu HJ, Jiang ZG (2010) The impacts of climate change on the wintering distribution of an endangered migratory bird. Oecologia, 164, 555-565.
DOI PMID |
[20] | Kindlmann P, Burel F (2008) Connectivity measures: A review. Landscape Ecology, 23, 879-890. |
[21] | Kong WY, Li XH, Zou HF (2019) Optimizing MaxEnt model in the prediction of species distribution. Chinese Journal of Applied Ecology, 30, 2116-2128. (in Chinese with English abstract) |
[孔维尧, 李欣海, 邹红菲 (2019) 最大熵模型在物种分布预测中的优化. 应用生态学报, 30, 2116-2128.]
DOI |
|
[22] |
Liu CR, White M, Newell G (2013) Selecting thresholds for the prediction of species occurrence with presence-only data. Journal of Biogeography, 40, 778-789.
DOI URL |
[23] |
Luo ZH, Jiang ZG, Tang SH (2015) Impacts of climate change on distributions and diversity of ungulates on the Tibetan Plateau. Ecological Applications, 25, 24-38.
DOI URL |
[24] |
Ma ZJ, Cai YT, Li B, Chen JK (2010) Managing wetland habitats for waterbirds: An international perspective. Wetlands, 30, 15-27.
DOI URL |
[25] |
Man WD, Liu MY, Wang ZM, Mao DH, Tian YL, Jia MM, Li X, Ren CY, Ouyang L (2017) Dynamics of habitat suitability for waterfowls from 1990 to 2015 in the ecological function zone of Sanjiang Plain, Northeast China. Chinese Journal of Applied Ecology, 28, 4083-4091. (in Chinese with English abstract)
DOI |
[满卫东, 刘明月, 王宗明, 毛德华, 田艳林, 贾明明, 李想, 任春颖, 欧阳玲 (2017) 1990-2015年三江平原生态功能区水禽栖息地适宜性动态. 应用生态学报, 28, 4083-4091.] | |
[26] |
Marmion M, Luoto M, Heikkinen RK, Thuiller W (2009) The performance of state-of-the-art modelling techniques depends on geographical distribution of species. Ecological Modelling, 220, 3512-3520.
DOI URL |
[27] |
McMahon R, Stauffacher M, Knutti R (2015) The unseen uncertainties in climate change: Reviewing comprehension of an IPCC scenario graph. Climatic Change, 133, 141-154.
DOI URL |
[28] |
Minor ES, Urban DL (2008) A graph-theory framework for evaluating landscape connectivity and conservation planning. Conservation Biology, 22, 297-307.
DOI PMID |
[29] |
Opdam P, Wascher D (2004) Climate change meets habitat fragmentation: Linking landscape and biogeographical scale levels in research and conservation. Biological Conservation, 117, 285-297.
DOI URL |
[30] | Ouyang ZY, Zheng H (2009) Ecological mechanisms of ecosystem services. Acta Ecologica Sinica, 29, 6183-6188. (in Chinese with English abstract) |
[欧阳志云, 郑华 (2009) 生态系统服务的生态学机制研究进展. 生态学报, 29, 6183-6188.] | |
[31] |
Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190, 231-259.
DOI URL |
[32] |
Sala OE, Chapin FS III, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH (2000) Global biodiversity scenarios for the year 2100. Science, 287, 1770-1774.
DOI PMID |
[33] |
Saura S, Estreguil C, Mouton C, Freire MR (2011) Network analysis to assess landscape connectivity trends: Application to European forests (1990-2000). Ecological Indicators, 11, 407-416.
DOI URL |
[34] |
Shcheglovitova M, Anderson RP (2013) Estimating optimal complexity for ecological niche models: A Jackknife approach for species with small sample sizes. Ecological Modelling, 269, 9-17.
DOI URL |
[35] |
Thuiller W, Broennimann O, Hughes G, Alkemades JRM, Midgley GF, Corsi F (2006) Vulnerability of African mammals to anthropogenic climate change under conservative land transformation assumptions. Global Change Biology, 12, 424-440.
DOI URL |
[36] | Wang CX, He JH, Liu DF, Yu XB, Shi QQ (2022) Impact of land use change on bird habitat connectivity: A case study in Ezhou City. Acta Ecologica Sinica, 42, 4197-4208. (in Chinese with English abstract) |
[王春晓, 何建华, 刘殿锋, 于秀波, 石青青 (2022) 土地利用变化对鸟类栖息地连通性的影响——以鄂州市为例. 生态学报, 42, 4197-4208.] | |
[37] | Wang WJ, Han BL, Zheng H, Ouyang ZY (2020) Evolution and simulation of ecosystem patterns in Guangdong-Hong Kong-Macau Bay Area. Acta Ecologica Sinica, 40, 3364-3374. (in Chinese with English abstract) |
[王文静, 韩宝龙, 郑华, 欧阳志云 (2020) 粤港澳大湾区生态系统格局变化与模拟. 生态学报, 40, 3364-3374.] | |
[38] |
Watling JI, Nowakowski AJ, Donnelly MA, Orrock JL (2011) Meta-analysis reveals the importance of matrix composition for animals in fragmented habitat. Global Ecology and Biogeography, 20, 209-217.
DOI URL |
[39] | Xu S, Xu ZQ, Cui J, Yu XP (2013) Impact of urbanization on avian diversity in different landscapes in Xi’an City. Chinese Journal of Wildlife, 34, 327-330. (in Chinese with English abstract) |
[徐沙, 许志强, 崔进, 于晓平 (2013) 城市化对西安市不同景观鸟类多样性的影响. 野生动物, 34, 327-330.] | |
[40] | Yang D, Wang WJ (2019) Changes and driving forces of Anatidae’s potential habitat connectivity in Beijing-Tianjin- Hebei region from 1980 to 2015. Research of Environmental Sciences, 32, 547-556. (in Chinese with English abstract) |
[杨丹, 王文杰 (2019) 1980-2015年京津冀地区雁鸭类潜在栖息地连接度变化及驱动因素. 环境科学研究, 32, 547-556.] | |
[41] |
Yang XQ, Kushwaha SPS, Saran S, Xu JC, Roy PS (2013) MaxEnt modeling for predicting the potential distribution of medicinal plant, Justicia adhatoda L. in Lesser Himalayan foothills. Ecological Engineering, 51, 83-87.
DOI URL |
[42] |
Zhang JP, Zhang YL, Liu LS, Nie Y (2011) Predicting potential distribution of Tibetan spruce (Picea smithiana) in Qomolangma (Mount Everest) National Nature Preserve using maximum entropy niche-based model. Chinese Geographical Science, 21, 417-426.
DOI URL |
[43] |
Zhang KL, Yao LJ, Meng JS, Tao J (2018) MaxEnt modeling for predicting the potential geographical distribution of two peony species under climate change. Science of the Total Environment, 634, 1326-1334.
DOI URL |
[44] |
Zhang YK, Mathewson PD, Zhang QY, Porter WP, Ran JH (2018) An ecophysiological perspective on likely giant panda habitat responses to climate change. Global Change Biology, 24, 1804-1816.
DOI PMID |
[45] | Zhao N, Xia SX, Yu XB, Duan HL, Li JP, Chen YH (2020) Habitat suitability assessment of shorebirds in Bohai Bay coast using MaxEnt model. Chinese Journal of Ecology, 39, 194-205. (in Chinese with English abstract) |
[赵宁, 夏少霞, 于秀波, 段后浪, 李瑾璞, 陈亚恒 (2020) 基于MaxEnt模型的渤海湾沿岸鸻鹬类栖息地适宜性评价. 生态学杂志, 39, 194-205.] | |
[46] |
Zhou DQ, Fung T, Chu LM (2012) Avian community structure of urban parks in developed and new growth areas: A landscape-scale study in Southeast Asia. Landscape and Urban Planning, 108, 91-102.
DOI URL |
[1] | 姜熠辉, 刘岳, 曾旭, 林喆滢, 王楠, 彭吉豪, 曹玲, 曾聪. 东海六个国家级海洋保护区鱼类多样性和连通性[J]. 生物多样性, 2024, 32(6): 24128-. |
[2] | 滕继荣, 刘兴明, 何礼文, 王钧亮, 黄建, 冯杰, 王放, 翁悦. 甘肃白水江国家级自然保护区林缘社区饲养犬只对大熊猫时空节律的影响[J]. 生物多样性, 2022, 30(1): 21204-. |
[3] | 张晨, 马伟, 陈晨, 汪沐阳, 徐文轩, 杨维康. 重大工程影响下新疆卡拉麦里山有蹄类野生动物自然保护区鹅喉羚的生境格局变化[J]. 生物多样性, 2022, 30(1): 21176-. |
[4] | 马星, 王浩, 余蔚, 杜勇, 梁健超, 胡慧建, 邱胜荣, 刘璐. 基于MaxEnt模型分析广东省鸟类多样性热点分布及保护空缺[J]. 生物多样性, 2021, 29(8): 1097-1107. |
[5] | 周润, 慈秀芹, 肖建华, 曹关龙, 李捷. 气候变化对亚热带常绿阔叶林优势类群樟属植物的影响及保护评估[J]. 生物多样性, 2021, 29(6): 697-711. |
[6] | 孙孝平,李双,余建平,方彦君,张银龙,曹铭昌. 基于土地利用变化情景的生态系统服务价值评估: 以钱江源国家公园体制试点区为例[J]. 生物多样性, 2019, 27(1): 51-63. |
[7] | 庄鸿飞, 张殷波, 王伟, 任月恒, 刘方正, 杜金鸿, 周越. 基于最大熵模型的不同尺度物种分布概率优化热点分析: 以红色木莲为例[J]. 生物多样性, 2018, 26(9): 931-940. |
[8] | 刘继亮, 李锋瑞. 干旱区绿洲扩张方式对土壤生物优势类群及功能的影响[J]. 生物多样性, 2018, 26(10): 1116-1126. |
[9] | 朱耿平, 乔慧捷. Maxent模型复杂度对物种潜在分布区预测的影响[J]. 生物多样性, 2016, 24(10): 1189-1196. |
[10] | 穆少杰, 周可新, 方颖, 朱超. 构建大尺度绿色廊道, 保护区域生物多样性[J]. 生物多样性, 2014, 22(2): 242-249. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn