生物多样性 ›› 2023, Vol. 31 ›› Issue (6): 22626. DOI: 10.17520/biods.2022626
王文婷1,2,*(), 王蓉3, 牛翠平3, 白杨1, 杨效东1,4
收稿日期:
2022-11-03
接受日期:
2023-01-27
出版日期:
2023-06-20
发布日期:
2023-06-16
通讯作者:
* E-mail: wangwenting@xtbg.ac.cn
基金资助:
Wenting Wang1,2,*(), Rong Wang3, Cuiping Niu3, Yang Bai1, Xiaodong Yang1,4
Received:
2022-11-03
Accepted:
2023-01-27
Online:
2023-06-20
Published:
2023-06-16
Contact:
* E-mail: wangwenting@xtbg.ac.cn
摘要:
过度扩张的单一种植橡胶(Hevea brasiliensis)林会导致土壤生物多样性丧失和生态系统服务功能衰退, 为探究橡胶农林复合措施的实施对土壤生态系统的缓解效应, 解析多营养级土壤生物网络结构复杂性对不同橡胶林种植模式生态系统功能的影响有重要意义。本研究在西双版纳地区选取单一种植的橡胶林、橡胶 + 茶树(Camellia sinensis)、橡胶 + 大叶千斤拔(Flemingia macrophylla)和热带雨林作为研究对象, 分别在干季(3月)和雨季(9月)采集凋落物和土壤样品, 进一步鉴定土壤生物群落, 测定土壤理化性质、土壤酶活性、凋落物生物量和根系生物量, 分析并构建了不同复合种植模式橡胶林的土壤多营养级生物网络。结果表明: (1)总体而言, 不同种植模式橡胶林的土壤真菌和节肢动物丰富度均显著低于热带雨林, 但橡胶林间作大叶千斤拔可提升土壤细菌和线虫丰富度; (2)相较于单一种植橡胶林, 橡胶 + 茶树模式在干季显著增加了土壤多营养级生物网络的复杂性(边数目增加38.26%、节点数目增加37.59%), 且土壤节肢动物在网络结构中占比增加; 而橡胶 + 大叶千斤拔模式则在雨季显著增加此网络的复杂性(边数目增加23.38%、节点数目增加31.58%), 且网络结构以植食性线虫、根结线虫、外生菌根和根瘤菌为主的连接中心和模块中心增多; (3)橡胶 + 大叶千斤拔复合种植模式在干季显著提升土壤总碳氮含量, 在雨季则显著增加β-1,4-葡萄糖苷酶和酸性磷酸酶的活性。由此表明, 通过间作方式增加橡胶林植物多样性可提高土壤生物多样性和资源输入, 有助于土壤多营养级食物网络复杂性和土壤养分协调发展, 本文可为探索可持续发展的环境友好型橡胶园种植模式提供重要理论基础和数据支持。
王文婷, 王蓉, 牛翠平, 白杨, 杨效东 (2023) 西双版纳农林复合橡胶林土壤多营养级生物网络结构. 生物多样性, 31, 22626. DOI: 10.17520/biods.2022626.
Wenting Wang, Rong Wang, Cuiping Niu, Yang Bai, Xiaodong Yang (2023) Soil multitrophic ecological network structure of agroforestry rubber plantation in Xishuangbanna. Biodiversity Science, 31, 22626. DOI: 10.17520/biods.2022626.
图1 研究地点位置和不同橡胶林种植模式
Fig. 1 Location of the study site and different rubber plantations. NBH, Nabanhe National Nature Reserve; XTBG, Xishuangbanna Tropical Botanical Garden; LL, Longlin Village in Mengla County.
图2 不同橡胶林种植模式下干季和雨季土壤生物丰富度的多重比较
Fig. 2 Multiple comparison of the soil organisms in dry season and rain season in different rubber plantations. MRP, Monoculture rubber plantation; RCS, Rubber with Camellia sinensis; RFM, Rubber with Flemingia macrophylla; TRF, Tropical rainforest.
图3 基于Bray-Curtis差异度的非度量多维标度(NMDS)排序显示了不同橡胶林种植模式下细菌、真菌、线虫和节肢动物群落的变化。不同颜色/形状代表样本所属的分组信息。
Fig. 3 Non-metric multidimensional scaling (NMDS) ordination based on Bray-Curtis dissimilarity shows the variation of bacteria, fungi, nematode and arthropod communities in different rubber plantations. The different colors/shapes represent the grouping information to which the sample belongs. MRP, Monoculture rubber plantation; RCS, Rubber with Camellia sinensis; RFM, Rubber with Flemingia macrophylla; TRF, Tropical rainforest.
测定项目 Item | 季节 Season | 橡胶林 MRP | 橡胶 + 茶树 RCS | 橡胶 + 大叶千斤拔 RFM | 热带雨林 TRF |
---|---|---|---|---|---|
土壤总碳 Total carbon (TC, g/kg) | 干季 Dry | 15.75 ± 1.13b | 17.71 ± 1.38b | 19.47 ± 1.21ab | 22.44 ± 1.78a |
雨季 Rain | 16.29 ± 0.89b | 17.27 ± 1.09b | 18.67 ± 1.07b | 22.25 ± 1.35a | |
土壤总氮 Total nitrogen (TN, g/kg) | 干季 Dry | 1.73 ± 0.09b | 1.87 ± 0.13b | 2.04 ± 0.09ab | 2.34 ± 0.15a |
雨季 Rain | 1.78 ± 0.08b | 1.81 ± 0.10b | 1.98 ± 0.07b | 2.36 ± 0.14a | |
土壤总磷 Total phosphorus (TP, g/kg) | 干季 Dry | 0.35 ± 0.02a | 0.36 ± 0.03a | 0.41 ± 0.04a | 0.36 ± 0.02a |
雨季 Rain | 0.44 ± 0.05a | 0.36 ± 0.03a | 0.38 ± 0.02a | 0.39 ± 0.04a | |
β-1,4-葡萄糖苷酶 β-1,4-glucosidase (BG, μmol?g-1 dry soil?h-1) | 干季 Dry | 5.03 ± 1.39a | 2.66 ± 0.33a | 6.31 ± 2.41a | 3.95 ± 0.51a |
雨季 Rain | 3.90 ± 1.41ab | 3.38 ± 0.99b | 8.28 ± 2.31ab | 9.00 ± 2.51a | |
β-N-乙酰氨基葡萄糖酶 β-N-acetyl-glucosaminidase (NAG, μmol?g-1 dry soil?h-1) | 干季 Dry | 0.71 ± 0.21a | 0.93 ± 0.14a | 1.07 ± 0.35a | 0.74 ± 0.13a |
雨季 Rain | 0.87 ± 0.27a | 0.46 ± 0.13a | 1.08 ± 0.26a | 1.06 ± 0.28a | |
酸性磷酸酶 Acid phosphatase (AP, μmol?g-1 dry soil?h-1) | 干季 Dry | 6.97 ± 1.59a | 5.84 ± 1.08a | 8.73 ± 1.90a | 7.21 ± 1.02a |
雨季 Rain | 4.77 ± 1.06ab | 1.93 ± 0.46b | 5.87 ± 1.51a | 6.38 ± 1.51a | |
pH | 干季 Dry | 5.30 ± 0.13b | 5.27 ± 0.10b | 5.74 ± 0.08a | 5.26 ± 0.12b |
雨季 Rain | 5.09 ± 0.15ab | 4.95 ± 0.10b | 5.45 ± 0.06a | 5.21 ± 0.21ab | |
土壤含水量 Soil moisture (SM, %) | 干季 Dry | 29.18 ± 1.60a | 24.38 ± 1.64b | 26.86 ± 1.40ab | 19.34 ± 1.08c |
雨季 Rain | 35.37 ± 2.17a | 31.49 ± 2.20a | 34.03 ± 2.17a | 33.64 ± 1.75a | |
凋落物生物量 Litter mass (LM, kg/m2) | 干季 Dry | 2.42 ± 0.30a | 3.28 ± 0.60a | 2.25 ± 0.27a | 2.77 ± 0.25a |
雨季 Rain | 0.64 ± 0.13b | 0.89 ± 0.30ab | 0.75 ± 0.09b | 1.25 ± 0.09a | |
减少比率 Rate of decrease (%) | 6个月 6 months | 73.42 | 72.88 | 66.66 | 54.74 |
根系生物量 Root mass (RM, g/100g) | 干季 Dry | 0.15 ± 0.05b | 0.17 ± 0.06b | 0.13 ± 0.05b | 0.27 ± 0.06a |
雨季 Rain | 0.50 ± 0.19a | 0.36 ± 0.09a | 0.34 ± 0.12a | 0.47 ± 0.14a | |
增加比率 Rate of increase (%) | 6个月 6 months | 71.00 | 53.52 | 62.69 | 43.62 |
表1 不同橡胶林种植模式下土壤理化性质的多重比较(平均值 ± 标准误)
Table 1 Multiple comparison of the soil properties in the different rubber plantations (mean ± SE)
测定项目 Item | 季节 Season | 橡胶林 MRP | 橡胶 + 茶树 RCS | 橡胶 + 大叶千斤拔 RFM | 热带雨林 TRF |
---|---|---|---|---|---|
土壤总碳 Total carbon (TC, g/kg) | 干季 Dry | 15.75 ± 1.13b | 17.71 ± 1.38b | 19.47 ± 1.21ab | 22.44 ± 1.78a |
雨季 Rain | 16.29 ± 0.89b | 17.27 ± 1.09b | 18.67 ± 1.07b | 22.25 ± 1.35a | |
土壤总氮 Total nitrogen (TN, g/kg) | 干季 Dry | 1.73 ± 0.09b | 1.87 ± 0.13b | 2.04 ± 0.09ab | 2.34 ± 0.15a |
雨季 Rain | 1.78 ± 0.08b | 1.81 ± 0.10b | 1.98 ± 0.07b | 2.36 ± 0.14a | |
土壤总磷 Total phosphorus (TP, g/kg) | 干季 Dry | 0.35 ± 0.02a | 0.36 ± 0.03a | 0.41 ± 0.04a | 0.36 ± 0.02a |
雨季 Rain | 0.44 ± 0.05a | 0.36 ± 0.03a | 0.38 ± 0.02a | 0.39 ± 0.04a | |
β-1,4-葡萄糖苷酶 β-1,4-glucosidase (BG, μmol?g-1 dry soil?h-1) | 干季 Dry | 5.03 ± 1.39a | 2.66 ± 0.33a | 6.31 ± 2.41a | 3.95 ± 0.51a |
雨季 Rain | 3.90 ± 1.41ab | 3.38 ± 0.99b | 8.28 ± 2.31ab | 9.00 ± 2.51a | |
β-N-乙酰氨基葡萄糖酶 β-N-acetyl-glucosaminidase (NAG, μmol?g-1 dry soil?h-1) | 干季 Dry | 0.71 ± 0.21a | 0.93 ± 0.14a | 1.07 ± 0.35a | 0.74 ± 0.13a |
雨季 Rain | 0.87 ± 0.27a | 0.46 ± 0.13a | 1.08 ± 0.26a | 1.06 ± 0.28a | |
酸性磷酸酶 Acid phosphatase (AP, μmol?g-1 dry soil?h-1) | 干季 Dry | 6.97 ± 1.59a | 5.84 ± 1.08a | 8.73 ± 1.90a | 7.21 ± 1.02a |
雨季 Rain | 4.77 ± 1.06ab | 1.93 ± 0.46b | 5.87 ± 1.51a | 6.38 ± 1.51a | |
pH | 干季 Dry | 5.30 ± 0.13b | 5.27 ± 0.10b | 5.74 ± 0.08a | 5.26 ± 0.12b |
雨季 Rain | 5.09 ± 0.15ab | 4.95 ± 0.10b | 5.45 ± 0.06a | 5.21 ± 0.21ab | |
土壤含水量 Soil moisture (SM, %) | 干季 Dry | 29.18 ± 1.60a | 24.38 ± 1.64b | 26.86 ± 1.40ab | 19.34 ± 1.08c |
雨季 Rain | 35.37 ± 2.17a | 31.49 ± 2.20a | 34.03 ± 2.17a | 33.64 ± 1.75a | |
凋落物生物量 Litter mass (LM, kg/m2) | 干季 Dry | 2.42 ± 0.30a | 3.28 ± 0.60a | 2.25 ± 0.27a | 2.77 ± 0.25a |
雨季 Rain | 0.64 ± 0.13b | 0.89 ± 0.30ab | 0.75 ± 0.09b | 1.25 ± 0.09a | |
减少比率 Rate of decrease (%) | 6个月 6 months | 73.42 | 72.88 | 66.66 | 54.74 |
根系生物量 Root mass (RM, g/100g) | 干季 Dry | 0.15 ± 0.05b | 0.17 ± 0.06b | 0.13 ± 0.05b | 0.27 ± 0.06a |
雨季 Rain | 0.50 ± 0.19a | 0.36 ± 0.09a | 0.34 ± 0.12a | 0.47 ± 0.14a | |
增加比率 Rate of increase (%) | 6个月 6 months | 71.00 | 53.52 | 62.69 | 43.62 |
参数 Parameter | 干季 Dry season | 雨季 Rain season | ||||||
---|---|---|---|---|---|---|---|---|
橡胶林 | 橡胶 + 茶树 | 橡胶 + 大叶千斤拔 | 热带雨林 | 橡胶林 | 橡胶 + 茶树 | 橡胶 + 大叶千斤拔 | 热带雨林 | |
MRP | RCS | RFM | TRF | MRP | RCS | RFM | TRF | |
边数目 Number of edges | 531 | 860 | 530 | 879 | 557 | 642 | 727 | 707 |
正相关边数目 Number of positive edges | 445 | 713 | 461 | 767 | 437 | 538 | 575 | 530 |
负相关边数目 Number of negative edges | 86 | 147 | 69 | 112 | 120 | 104 | 152 | 177 |
正相关性比例 Proportion of positive edges | 0.84 | 0.83 | 0.87 | 0.87 | 0.78 | 0.84 | 0.79 | 0.75 |
平均路径长度 Average path length | 4.39 | 4.17 | 4.90 | 3.74 | 4.16 | 4.39 | 4.01 | 4.19 |
节点数目 Number of nodes | 270 | 334 | 293 | 316 | 270 | 295 | 291 | 299 |
表2 不同橡胶林种植模式下土壤生物类群的网络拓扑结构参数
Table 2 Network topology parameters of soil biological groups in different rubber plantations
参数 Parameter | 干季 Dry season | 雨季 Rain season | ||||||
---|---|---|---|---|---|---|---|---|
橡胶林 | 橡胶 + 茶树 | 橡胶 + 大叶千斤拔 | 热带雨林 | 橡胶林 | 橡胶 + 茶树 | 橡胶 + 大叶千斤拔 | 热带雨林 | |
MRP | RCS | RFM | TRF | MRP | RCS | RFM | TRF | |
边数目 Number of edges | 531 | 860 | 530 | 879 | 557 | 642 | 727 | 707 |
正相关边数目 Number of positive edges | 445 | 713 | 461 | 767 | 437 | 538 | 575 | 530 |
负相关边数目 Number of negative edges | 86 | 147 | 69 | 112 | 120 | 104 | 152 | 177 |
正相关性比例 Proportion of positive edges | 0.84 | 0.83 | 0.87 | 0.87 | 0.78 | 0.84 | 0.79 | 0.75 |
平均路径长度 Average path length | 4.39 | 4.17 | 4.90 | 3.74 | 4.16 | 4.39 | 4.01 | 4.19 |
节点数目 Number of nodes | 270 | 334 | 293 | 316 | 270 | 295 | 291 | 299 |
图4 不同橡胶林种植模式的土壤多营养级生物共存网络拓扑结构
Fig. 4 Topological structure of the soil multitrophic ecological co-occurrence network in different rubber plantations. MRP, Monoculture rubber plantation; RCS, Rubber with Camellia sinensis; RFM, Rubber with Flemingia macrophylla; TRF, Tropical rainforest.
图5 不同种植模式橡胶林的多营养级土壤生物共存网络节点模块化的关键类群
Fig. 5 Node modularity of the soil multitrophic ecological co-occurrence network in different rubber plantations. MRP, Monoculture rubber plantation; RCS, Rubber with Camellia sinensis; RFM, Rubber with Flemingia macrophylla; TRF, Tropical rainforest. Acau, Acaulosporaceae; Acid, Acidobacteriales; Apha, Aphanolaimus; Aphe, Aphelenchoides; Bolb, Bolbitiaceae; Bole, Boleodorus; Cand, Candida; Cera, Cerasicoccales; Conl, Conlarium; Cyto, Cytophagales; Desu, Desulfovibrionales; Eart, Earthworm; Elap, Elaphomyces; Entol, Entolomataceae; Entot, Entotheonellales; File, Filenchus; Flav, Flavobacteriales; Fuso, Fusobacteriales; Gemm, Gemmatimonadales; Glom, Glomeraceae; Grac, Gracilacus; Lyop, Lyophyllaceae; Melo, Meloidogyne; Mono, Mononchus; Muco, Mucor; Nitr, Nitrospirales; Phyc, Phycisphaerales; Plan, Planctomycetales; Rhiz, Rhizobiales; Rhod, Rhodospirillales; Rubr, Rubrobacterales; Sage, Sagenomella; Seba, Sebacinaceae; Sphi, Sphingobacteriales; Spir, Spirobacillales; Stec, Steccherinaceae; Step, Stephanosporaceae; Ther, Thermogemmatisporales; Tric, Trichoderma; Trid, Tridenchthonidae; Tyle, Tylenchorhynchus.
图6 网络拓扑结构参数、植物属性、土壤生物和土壤理化性质的相关性分析, 相同颜色的文字代表其聚在一类。英文缩写与中文翻译见表1和表2。
Fig. 6 Correlation analysis of ecological network topology parameters, plant attributes, soil organisms and soil properties. Words with the same color represent the same cluster. The English abbreviations and Chinese translations are shown in Table 1 and 2.
[1] | Allen K, Corre MD, Tjoa A, Veldkamp E (2015) Soil nitrogen-cycling responses to conversion of lowland forests to oil palm and rubber plantations in Sumatra, Indonesia. PLoS ONE, 10, e0133325. |
[2] |
Altieri AH, Silliman BR, Bertness MD (2007) Hierarchical organization via a facilitation cascade in intertidal cordgrass bed communities. The American Naturalist, 169, 195-206.
PMID |
[3] | Andresen E, Arroyo-Rodríguez V, Escobar F (2018) Tropical biodiversity:The importance of biotic interactions for its origin, maintenance, function, and conservation. In: Ecological Networks in the Tropics (eds Dáttilo W, Rico-Gray V), pp.1-13. Springer, Cham. |
[4] |
Barberán A, Bates ST, Casamayor EO, Fierer N (2012) Using network analysis to explore co-occurrence patterns in soil microbial communities. The ISME Journal, 6, 343-351.
DOI |
[5] |
Beng KC, Tomlinson KW, Shen XH, Surget-Groba Y, Hughes AC, Corlett RT, Slik JWF (2016) The utility of DNA metabarcoding for studying the response of arthropod diversity and composition to land-use change in the tropics. Scientific Reports, 6, 24965.
DOI PMID |
[6] |
Cai ZQ, Zhang YH, Yang C, Wang S (2018) Land-use type strongly shapes community composition, but not always diversity of soil microbes in tropical China. CATENA, 165, 369-380.
DOI URL |
[7] | Chen YF, Tang Z, Li H, Han XM, Li YF, Hu C (2014) Research progress on ecosystem complexity-stability relationships based on soil food web. Acta Ecologica Sinica, 34, 2173-2186. (in Chinese with English abstract) |
[陈云峰, 唐政, 李慧, 韩雪梅, 李钰飞, 胡诚 (2014) 基于土壤食物网的生态系统复杂性-稳定性关系研究进展. 生态学报, 34, 2173-2186.] | |
[8] | Corlett RT (2019) The Ecology of Tropical East Asia, 3rd edn. Oxford University Press, Oxford. |
[9] | Crowther TW, Thomas SM, Maynard DS, Baldrian P, Covey K, Frey SD, Bradford MA (2015) Biotic interactions mediate soil microbial feedbacks to climate change. Proceedings of the National Academy of Sciences, USA, 112, 7033-7038. |
[10] | de Deyn GB, van der Putten WH (2005) Linking aboveground and belowground diversity. Trends in Ecology & Evolution, 20, 625-633. |
[11] | de Vries FT, Thébault E, Liiri M, Birkhofer K, Tsiafouli MA, Bjørnlund L, Bracht Jørgensen H, Brady MV, Christensen S, de Ruiter PC, D’Hertefeldt T, Frouz J, Hedlund K, Hemerik L, Gera Hol WH, Hotes S, Mortimer SR, Setälä H, Sgardelis SP, Uteseny K, van der Putten WH, Wolters V, Bardgett RD (2013) Soil food web properties explain ecosystem services across European land use systems. Proceedings of the National Academy of Sciences, USA, 110, 14296-14301. |
[12] | Delgado-Baquerizo M, Reich PB, Trivedi C, Eldridge DJ, Abades S, Alfaro FD, Bastida F, Berhe AA, Cutler NA, Gallardo A, García-Velázquez L, Hart SC, Hayes PE, He JZ, Hseu ZY, Hu HW, Kirchmair M, Neuhauser S, Pérez CA, Reed SC, Santos F, Sullivan BW, Trivedi P, Wang JT, Weber-Grullon L, Williams MA, Singh BK (2020) Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nature Ecology & Evolution, 4, 210-220. |
[13] | Du J, Yang XD, Zhang H, Yu GB (2008) Quantitative distribution of earthworms and its relationships with environmental factors in tropical secondary forest and rubber plantation in Xishuangbanna. Chinese Journal of Ecology, 27, 1941-1947. (in Chinese with English abstract) |
[杜杰, 杨效东, 张花, 余广彬 (2008) 西双版纳热带次生林和橡胶林蚯蚓数量分布及其与环境因子的关系. 生态学杂志, 27, 1941-1947.] | |
[14] | Eisenhauer N, Dobies T, Cesarz S, Hobbie SE, Meyer RJ, Worm K, Reich PB (2013) Plant diversity effects on soil food webs are stronger than those of elevated CO2 and N deposition in a long-term grassland experiment. Proceedings of the National Academy of Sciences, USA, 110, 6889-6894. |
[15] |
Fu SL (2007) A review and perspective on soil biodiversity research. Biodiversity Science, 15, 109-115. (in Chinese with English abstract)
DOI |
[傅声雷 (2007) 土壤生物多样性的研究概况与发展趋势. 生物多样性, 15, 109-115.]
DOI |
|
[16] | Gossner MM, Lewinsohn TM, Kahl T, Grassein F, Boch S, Prati D, Birkhofer K, Renner SC, Sikorski J, Wubet T, Arndt H, Baumgartner V, Blaser S, Blüthgen N, Börschig C, Buscot F, Diekötter T, Jorge LR, Jung K, Keyel AC, Klein AM, Klemmer S, Krauss J, Lange M, Müller J, Overmann J, Pašalić E, Penone C, Perović DJ, Purschke O, Schall P, Socher SA, Sonnemann I, Tschapka M, Tscharntke T, Türke M, Venter PC, Weiner CN, Werner M, Wolters V, Wurst S, Westphal C, Fischer M, Weisser WW, Allan E (2016) Land-use intensification causes multitrophic homogenization of grassland communities. Nature, 540, 266-269. |
[17] |
Gross T, Rudolf L, Levin SA, Dieckmann U (2009) Generalized models reveal stabilizing factors in food webs. Science, 325, 747-750.
DOI PMID |
[18] | Heleno R, Garcia C, Jordano P, Traveset A, Gómez JM, Blüthgen N, Memmott J, Moora M, Cerdeira J, Rodríguez-Echeverría S, Freitas H, Olesen JM (2014) Ecological networks: Delving into the architecture of biodiversity. Biology Letters, 10, 20131000. |
[19] | Huang CM, Yang LL (1998) Influences of habitat changes in the tropical rainforest on the fauna and species diversity of Acridoidea in Xishuangbanna. Chinese Biodiversity, 6, 122-131. (in Chinese with English abstract) |
[黄春梅, 杨龙龙 (1998) 西双版纳热带雨林环境变化对蝗虫区系成分和物种多样性的影响. 生物多样性, 6, 122-131.] | |
[20] |
Kardol P, Martijn Bezemer T, van der Putten WH (2006) Temporal variation in plant-soil feedback controls succession. Ecology Letters, 9, 1080-1088.
DOI PMID |
[21] |
Kerfahi D, Tripathi BM, Dong K, Go R, Adams JM (2016) Rainforest conversion to rubber plantation may not result in lower soil diversity of bacteria, fungi, and nematodes. Microbial Ecology, 72, 359-371.
DOI PMID |
[22] |
Kou XC, Su TQ, Ma NN, Li Q, Wang P, Wu ZF, Liang WJ, Cheng WX (2018) Soil micro-food web interactions and rhizosphere priming effect. Plant and Soil, 432, 129-142.
DOI |
[23] | Lan GY, Li YW, Jatoi MT, Tan ZH, Wu ZX, Xie GS (2017a) Change in soil microbial community compositions and diversity following the conversion of tropical forest to rubber plantations in Xishuangbanna, Southwest China. Tropical Conservation Science, 10, 194008291773323. |
[24] |
Lan GY, Li YW, Wu ZX, Xie GS (2017b) Impact of tropical forest conversion on soil bacterial diversity in tropical region of China. European Journal of Soil Biology, 83, 91-97.
DOI URL |
[25] |
Lan GY, Wu ZX, Yang C, Sun R, Chen BQ, Zhang X (2020) Tropical rainforest conversion into rubber plantations results in changes in soil fungal composition, but underling mechanisms of community assembly remain unchanged. Geoderma, 375, 114505.
DOI URL |
[26] |
Li HM, Aide TM, Ma YX, Liu WJ, Cao M (2007) Demand for rubber is causing the loss of high diversity rain forest in SW China. Biodiversity and Conservation, 16, 1731-1745.
DOI URL |
[27] | Lin XB, Liu SJ, Xiao HF, Xia SW, Yang XD (2017) Effects of rubber plantation on structure and diversity of termite community. Chinese Journal of Ecology, 36, 2847-2854. (in Chinese with English abstract) |
[林小兵, 刘胜杰, 肖海峰, 夏尚文, 杨效东 (2017) 橡胶林种植对白蚁群落结构和多样性的影响. 生态学杂志, 36, 2847-2854.] | |
[28] |
Lin YX, Zhang YP, Zhou LG, Li J, Zhou RW, Guan HL, Zhang J, Sha LQ, Song QH (2022) Phenology-related water-use efficiency and its responses to site heterogeneity in rubber plantations in Southwest China. European Journal of Agronomy, 137, 126519.
DOI URL |
[29] |
Liu CA, Liang MY, Tang JW, Jin YQ, Guo ZB, Siddique KHM (2021) Challenges of the establishment of rubber-based agroforestry systems: Decreases in the diversity and abundance of ground arthropods. Journal of Environmental Management, 292, 112747.
DOI URL |
[30] |
Liu CA, Nie Y, Zhang YM, Tang JW, Siddique KHM (2018) Introduction of a leguminous shrub to a rubber plantation changed the soil carbon and nitrogen fractions and ameliorated soil environments. Scientific Reports, 8, 17324.
DOI |
[31] |
Liu CG, Jin YQ, Hu YN, Tang JW, Xiong QL, Xu MX, Bibi F, Beng KC (2019) Drivers of soil bacterial community structure and diversity in tropical agroforestry systems. Agriculture, Ecosystems & Environment, 278, 24-34.
DOI URL |
[32] |
Meng LZ, Martin K, Weigel A, Liu JX (2012) Impact of rubber plantation on carabid beetle communities and species distribution in a changing tropical landscape (southern Yunnan, China). Journal of Insect Conservation, 16, 423-432.
DOI URL |
[33] |
Mo YY, Peng F, Gao XF, Xiao P, Logares R, Jeppesen E, Ren KX, Xue YY, Yang JZ (2021) Low shifts in salinity determined assembly processes and network stability of microeukaryotic plankton communities in a subtropical urban reservoir. Microbiome, 9, 128.
DOI PMID |
[34] |
Monkai J, Goldberg SD, Hyde KD, Harrison RD, Mortimer PE, Xu JC (2018) Natural forests maintain a greater soil microbial diversity than that in rubber plantations in Southwest China. Agriculture, Ecosystems & Environment, 265, 190-197.
DOI URL |
[35] |
Monkai J, Hyde KD, Xu JC, Mortimer PE (2017) Diversity and ecology of soil fungal communities in rubber plantations. Fungal Biology Reviews, 31, 1-11.
DOI URL |
[36] |
Morriën E (2016) Understanding soil food web dynamics, how close do we get? Soil Biology and Biochemistry, 102, 10-13.
DOI URL |
[37] |
Morriën E, Hannula SE, Snoek LB, Helmsing NR, Zweers H, de Hollander M, Soto RL, Bouffaud ML, Buée M, Dimmers W, Duyts H, Geisen S, Girlanda M, Griffiths RI, Jørgensen HB, Jensen J, Plassart P, Redecker D, Schmelz RM, Schmidt O, Thomson BC, Tisserant E, Uroz S, Winding A, Bailey MJ, Bonkowski M, Faber JH, Martin F, Lemanceau P, de Boer W, van Veen JA, van der Putten WH (2017) Soil networks become more connected and take up more carbon as nature restoration progresses. Nature Communications, 8, 14349.
DOI PMID |
[38] |
Neher DA (2001) Role of nematodes in soil health and their use as indicators. Journal of Nematology, 33, 161-168.
PMID |
[39] |
Neutel AM, Thorne MAS (2014) Interaction strengths in balanced carbon cycles and the absence of a relation between ecosystem complexity and stability. Ecology Letters, 17, 651-661.
DOI URL |
[40] |
Paz-Ferreiro J, Gascó G, Gutiérrez B, Méndez A (2012) Soil biochemical activities and the geometric mean of enzyme activities after application of sewage sludge and sewage sludge biochar to soil. Biology and Fertility of Soils, 48, 511-517.
DOI URL |
[41] |
Porazinska DL, Bardgett RD, Blaauw MB, Hunt HW, Parsons AN, Seastedt TR, Wall DH (2003) Relationships at the aboveground-belowground interface: Plants, soil biota, and soil processes. Ecological Monographs, 73, 377-395.
DOI URL |
[42] |
Porazinska DL, Giblin-davis RM, Faller L, Farmerie W, Kanzaki N, Morris K, Powers TO, Tucker AE, Sung W, Thomas WK (2009) Evaluating high-throughput sequencing as a method for metagenomic analysis of nematode diversity. Molecular Ecology Resources, 9, 1439-1450.
DOI PMID |
[43] |
Rao X, Liu CA, Tang JW, Nie Y, Liang MY, Shen WJ, Siddique KHM (2021) Rubber-leguminous shrub systems stimulate soil N2O but reduce CO2 and CH4 emissions. Forest Ecology and Management, 480, 118665.
DOI URL |
[44] |
Rieske LK, Buss LJ (2001) Effects of gypsy moth suppression tactics on litter- and ground-dwelling arthropods in the central hardwood forests of the Cumberland Plateau. Forest Ecology and Management, 149, 181-195.
DOI URL |
[45] |
Rooney N, McCann K, Gellner G, Moore JC (2006) Structural asymmetry and the stability of diverse food webs. Nature, 442, 265-269.
DOI |
[46] |
Schneider D, Engelhaupt M, Allen K, Kurniawan S, Krashevska V, Heinemann M, Nacke H, Wijayanti M, Meryandini A, Corre MD, Scheu S, Daniel R (2015) Impact of lowland rainforest transformation on diversity and composition of soil prokaryotic communities in Sumatra (Indonesia). Frontiers in Microbiology, 6, 1339.
DOI PMID |
[47] | Shao ZZ, Wu PF (2019) Responses of epigeic microarthropods to alpine wetland degradation. Acta Ecologica Sinica, 39, 6990-7001. (in Chinese with English abstract) |
[邵珍珍, 吴鹏飞 (2019) 小型表栖节肢动物群落对高寒湿地退化的响应. 生态学报, 39, 6990-7001.] | |
[48] |
Soong JL, Nielsen UN (2016) The role of microarthropods in emerging models of soil organic matter. Soil Biology and Biochemistry, 102, 37-39.
DOI URL |
[49] | Sun X, Li Q, Yao HF, Liu MQ, Wu DH, Zhu D, Zhu YG (2021) Soil fauna and soil health. Acta Pedologica Sinica, 58, 1073-1083. (in Chinese with English abstract) |
[孙新, 李琪, 姚海凤, 刘满强, 吴东辉, 朱冬, 朱永官 (2021) 土壤动物与土壤健康. 土壤学报, 58, 1073-1083.] | |
[50] |
Tylianakis JM, Tscharntke T, Lewis OT (2007) Habitat modification alters the structure of tropical host-parasitoid food webs. Nature, 445, 202-205.
DOI |
[51] | van der Zee EM, Angelini C, Govers LL, Christianen MJA, Altieri AH, van der Reijden KJ, Silliman BR, van de Koppel J, van der Geest M, van Gils JA, van der Veer HW, Piersma T, de Ruiter PC, Olff H, van der Heide T (2016) How habitat-modifying organisms structure the food web of two coastal ecosystems. Proceedings of the Royal Society B: Biological Sciences, 283, 20152326. |
[52] |
Waldrop MP, Zak DR, Blackwood CB, Curtis CD, Tilman D (2006) Resource availability controls fungal diversity across a plant diversity gradient. Ecology Letters, 9, 1127-1135.
DOI PMID |
[53] |
Wall DH, Nielsen UN, Six J (2015) Soil biodiversity and human health. Nature, 528, 69-76.
DOI |
[54] | Wang WT, Sun ZH, Mishra S, Xia SW, Lin LX, Yang XD (2022) Body size determines multitrophic soil microbiota community assembly associated with soil and plant attributes in a tropical seasonal rainforest. Molecular Ecology, 2022, 1-10. |
[55] | Wen T, Xie PH, Yang SD, Niu GQ, Liu XY, Ding ZX, Xue C, Liu YX, Shen QR, Yuan J (2022) ggClusterNet: An R package for microbiome network analysis and modularity-based multiple network layouts. iMeta, 1, e32. |
[56] |
Wu JN, Liu WJ, Chen CF (2017) How do plants share water sources in a rubber-tea agroforestry system during the pronounced dry season? Agriculture, Ecosystems & Environment, 236, 69-77.
DOI URL |
[57] |
Xiao HF, Tian YH, Zhou HP, Ai XS, Yang XD, Schaefer DA (2014) Intensive rubber cultivation degrades soil nematode communities in Xishuangbanna, southwest China. Soil Biology and Biochemistry, 76, 161-169.
DOI URL |
[58] | Yin WY (2000) Soil Animals of China. Science Press, Beijing. (in Chinese) |
[尹文英 (2000) 中国土壤动物. 科学出版社, 北京.] | |
[59] |
Yuan MM, Guo XE, Wu LW, Zhang Y, Xiao NJ, Ning DL, Shi Z, Zhou XS, Wu LY, Yang YF, Tiedje JM, Zhou JZ (2021) Climate warming enhances microbial network complexity and stability. Nature Climate Change, 11, 343-348.
DOI |
[60] | Zhang WX, Shen ZF, Song B, Ma ZH, Shao YH, Fu SL (2022) Soil food web manipulation and ecological functions: Challenges and perspectives. Science & Technology Review, 40(3), 52-63. (in Chinese with English abstract) |
[张卫信, 申智锋, 宋博, 马子鹤, 邵元虎, 傅声雷 (2022) 土壤食物网调控及其生态功能研究的困境与思考. 科技导报, 40(3), 52-63.] | |
[61] | Zheng G, Yang XD, Li SQ (2009) Biodiversity of ground-dwelling spider in six forest types in Xishuangbanna, S.W. China. Acta Entomologica Sinica, 52, 875-884. (in Chinese with English abstract) |
[郑国, 杨效东, 李枢强 (2009) 西双版纳地区六种林型地表蜘蛛多样性比较研究. 昆虫学报, 52, 875-884.] | |
[62] |
Zou X, Zhu XA, Zhu P, Singh AK, Zakari S, Yang B, Chen CF, Liu WJ (2021) Soil quality assessment of different Hevea brasiliensis plantations in tropical China. Journal of Environmental Management, 285, 112147.
DOI URL |
[1] | 冯志荣, 陈有城, 彭艳琼, 李莉, 王波. 生态网络分析: 从集合群落到集合网络[J]. 生物多样性, 2023, 31(8): 23171-. |
[2] | 张琼悦, 邓卓迪, 胡学斌, 丁志锋, 肖荣波, 修晨, 吴政浩, 汪光, 韩东晖, 张语克, 梁健超, 胡慧建. 粤港澳大湾区城市化进程对区域内鸟类分布及栖息地连通性的影响[J]. 生物多样性, 2023, 31(3): 22161-. |
[3] | 丁洪波, 王立彦, 全东丽, 杨斌, 岳麻买, 王平元, 杨勇婧雯, 龚强帮, 周仕顺, 王力, 李剑武, 谭运洪. 中国云南种子植物区系新资料[J]. 生物多样性, 2023, 31(10): 23254-. |
[4] | 徐鹏, 荣晓莹, 刘朝红, 杜芳, 尹本丰, 陶冶, 张元明. 极端干旱对温带荒漠土壤真菌群落和生态网络的影响[J]. 生物多样性, 2022, 30(3): 21327-. |
[5] | 黄正良, 刘翰伦, 储诚进, 李远智. 生物间非传递性竞争研究进展[J]. 生物多样性, 2022, 30(2): 21282-. |
[6] | 姚海凤, 张赛超, 上官华媛, 李志鹏, 孙新. 城市化对土壤动物群落结构和多样性的影响[J]. 生物多样性, 2022, 30(12): 22547-. |
[7] | 宋成军, 孙锋. 干旱对不同花椒种植模式下土壤微生物和线虫群落的影响[J]. 生物多样性, 2021, 29(10): 1348-1357. |
[8] | 董乙乂,彭艳琼,王波. 垂叶榕榕小蜂群落及种间互作网络季节动态[J]. 生物多样性, 2020, 28(4): 496-503. |
[9] | 周昌艳, 王彬, 邓云, 乌俊杰, 曹敏, 林露湘. 林冠结构是局域尺度木本植物功能性状beta多样性形成的重要驱动力[J]. 生物多样性, 2020, 28(12): 1546-1557. |
[10] | 李远智, 肖俊丽, 刘翰伦, 王酉石, 储诚进. 生物间高阶相互作用研究进展[J]. 生物多样性, 2020, 28(11): 1333-1344. |
[11] | 杨云卉, 白可喻, Devra Jarvis, 龙春林. 西双版纳黄瓜农家品种及其传统知识[J]. 生物多样性, 2019, 27(7): 743-748. |
[12] | 朱柏菁,薛敬荣,夏蓉,靳苗苗,吴攸,田善义,陈小云,刘满强,胡锋. 不同土壤线虫功能团对水稻生长及地上部植食者的影响[J]. 生物多样性, 2019, 27(4): 409-418. |
[13] | 王凤珍, 唐毅. 食物网关键种的判定及其对稳健性的影响[J]. 生物多样性, 2019, 27(10): 1132-1137. |
[14] | 孙孝平,李双,余建平,方彦君,张银龙,曹铭昌. 基于土地利用变化情景的生态系统服务价值评估: 以钱江源国家公园体制试点区为例[J]. 生物多样性, 2019, 27(1): 51-63. |
[15] | 张中华, 周华坤, 赵新全, 姚步青, 马真, 董全民, 张振华, 王文颖, 杨元武. 青藏高原高寒草地生物多样性与生态系统功能的关系[J]. 生物多样性, 2018, 26(2): 111-129. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn