生物多样性 ›› 2024, Vol. 32 ›› Issue (12): 24338. DOI: 10.17520/biods.2024338 cstr: 32101.14.biods.2024338
徐凯伦1,2(), 陈小荣3, 张敏华1,2,*(
)(
), 于婉婉1,2(
), 吴素美3, 朱志成3, 陈定云3, 兰荣光3, 董舒1,2(
), 刘宇1,2
收稿日期:
2024-07-29
接受日期:
2024-09-29
出版日期:
2024-12-20
发布日期:
2024-12-28
通讯作者:
E-mail: 基金资助:
Kailun Xu1,2(), Xiaorong Chen3, Minhua Zhang1,2,*(
)(
), Wanwan Yu1,2(
), Sumei Wu3, Zhicheng Zhu3, Dingyun Chen3, Rongguang Lan3, Shu Dong1,2(
), Yu Liu1,2
Received:
2024-07-29
Accepted:
2024-09-29
Online:
2024-12-20
Published:
2024-12-28
Contact:
E-mail: Supported by:
摘要: 植物性系统多样性对森林群落构建和生态系统功能维持具有重要意义。本文以浙江百山祖亚热带森林25 ha动态监测样地中胸径(diameter at breast height, DBH) ≥ 1 cm的木本植物为研究对象, 描述了样地内木本植物性系统多样性的格局, 并检验了地形、土壤理化性质和演替对群落性系统数量特征的影响。结果表明: (1)样地内163种木本种子植物中有两性花植物95种, 雌雄异株植物43种, 雌雄同株异花植物25种, 两性花在科、属、种和个体水平上的数量都占据优势; 雌雄同株异花植物的平均胸径显著大于两性花和雌雄异株植物。(2)在样方水平, 两性花植物数量同样占据主要优势, 其次为雌雄异株植物和雌雄同株异花植物; 在样地内, 较高海拔的北坡性系统多样性较低, 而较低海拔的南坡性系统多样性较高。(3)地形对植物群落性系统数量特征的影响大于理化因子; 演替阶段同样对性系统数量特征具有重要影响, 在演替早期物种黄山松(Pinus taiwanensis)和杉木(Cunninghamia lanceolata)比例较高的样方中雌雄异株植物出现的频率更高, 并因此具有更高的性系统多样性。本研究结果表明: 植物性系统在森林群落构建过程中发挥重要作用, 且地形、演替和土壤理化性质会共同塑造森林群落性系统多样性格局。
徐凯伦, 陈小荣, 张敏华, 于婉婉, 吴素美, 朱志成, 陈定云, 兰荣光, 董舒, 刘宇 (2024) 演替和地形共同影响浙江百山祖森林群落的性系统多样性. 生物多样性, 32, 24338. DOI: 10.17520/biods.2024338.
Kailun Xu, Xiaorong Chen, Minhua Zhang, Wanwan Yu, Sumei Wu, Zhicheng Zhu, Dingyun Chen, Rongguang Lan, Shu Dong, Yu Liu (2024) Succession and topography jointly influence the diversity of plant sexual systems in the Baishanzu forest community. Biodiversity Science, 32, 24338. DOI: 10.17520/biods.2024338.
图2 25 ha样地内不同性系统物种的多度(a)、胸径(b)和重要值(c)云雨图。ns表示垂直样地与水平样地间差异不显著; *** P < 0.001。
Fig. 2 Raincloud plots of species abundance (a), diameter at breast height of species (b), and species importance values (c) of different sexual systems in the 25 ha plot. ns represents no significant difference between the vertical sample plots and the horizontal sample plots; *** P < 0.001.
图3 样地内20 m × 20 m样方水平植物性系统数量特征。(a)不同性系统物种多度云雨图; (b)不同性系统物种相对多度云雨图; (c)基于1D指数的性系统多样性热图; (d)基于2D指数的性系统多样性热图。*** P < 0.001。
Fig. 3 Numerical characteristics of different plant sexual systems at the 20 m × 20 m quadrat scale in the plot. (a) Raincloud plot of species abundance in different sexual systems; (b) Raincloud plots of relative abundance of species in different sexual systems. (c) Heatmap of the 1D index. (d) Heatmap of the 2D index. *** P < 0.001.
图4 环境和演替对性系统数量特征的影响。(a)性系统数量特征与环境因子、演替的冗余分析图, 图中蓝线表示环境因子, 红线表示不同性系统的数量特征。CUNLAN: 杉木在各样方的相对多度; PINTAI: 黄山松在各样方的相对多度; E: 海拔; Slope: 坡度; Aspect: 坡向; Convexity: 凹凸度; pH: 酸碱度; OC: 有机碳; NO3--N: 硝态氮; NH4+-N: 铵态氮; Al: 铝; Cu: 铜; Mn: 锰; TP: 全磷; HN: 两性花植株数量; HP: 两性花物种比例; HR: 两性花相对多度; MN: 雌雄同株异花植株数量; MP: 雌雄同株异花物种比例; MR: 雌雄同株异花相对多度; DN: 雌雄异株植株数量; DP: 雌雄异株物种比例; DR: 雌雄异株相对多度; (b)地形、理化因子和演替变差分解韦恩图。
Fig. 4 Effects of environment and succession on numerical characteristics of plant sexual systems. (a) Redundancy analysis of numerical characteristics of sexual systems and environmental factors and succession. The blue lines in the graph represent the environmental factors and the red lines represent the quantitative characteristics of different systems. CUNLAN, The relative abundance of Cunninghamia lanceolata in each quadrat; PINTAI, The relative abundance of Pinus taiwanensis in each quadrat; E, Elevation; pH, Degree of acidity or alkalinity; OC, Organic carbon; NO3--N, Nitrate nitrogen; NH4+-N, Ammonium nitrogen; Al, Aluminium; Cu, Copper; Mn, Manganese; TP, Total phosphorus; HN, Number of the individual with hermaphrodite; HP, Proportion of hermaphrodite species; HR, Relative abundance of hermaphrodite; MN, Number of individual with monoecy; MP, Proportion of monoecy species; MR, Relative abundance of monoecy; DN, Number of individual with dioecy; DP, Proportion of dioecy species; DR, Relative abundance of dioecy. (b) The Venn diagram of variation partitioning explained by topographic, soil physicochemical properties and succession.
[1] | Ashman TL (2006) The evolution of separate sexes:A focus on the ecological context. In: Ecology and Evolution of Flowers (eds Lawrence DH, Spencer CHB), pp. 204-222. Oxford University Press, Oxford. |
[2] | Baker HG (1955) Self-compatibility and establishment after “long-distance” dispersal. Evolution, 9, 347-349. |
[3] | Baker HG (1967) Support for Baker’s Law—As a rule. Evolution, 21, 853-856. |
[4] | Bawa KS (1980) Evolution of dioecy in flowering plants. Annual Review of Ecology and Systematics, 11, 15-39. |
[5] |
Bruijning M, Visser MD, Muller-Landau HC, Wright SJ, Comita LS, Hubbell SP, de Kroon H, Jongejans E (2017) Surviving in a cosexual world: A cost-benefit analysis of dioecy in tropical trees. The American Naturalist, 189, 297-314.
DOI PMID |
[6] | Cardoso JCF, Viana ML, Matias R, Furtado MT, de Souza Caetano AP, Consolaro H, de Brito VLG (2018) Towards a unified terminology for angiosperm reproductive systems. Acta Botanica Brasilica, 32, 329-348. |
[7] | Case AL, Barrett SCH (2004) Environmental stress and the evolution of dioecy: Wurmbea dioica (Colchicaceae) in Western Australia. Evolutionary Ecology, 18, 145-164. |
[8] | Chao A, Chiu CH, Jost L (2014) Unifying species diversity, phylogenetic diversity, functional diversity, and related similarity and differentiation measures through Hill numbers. Annual Review of Ecology, Evolution, and Systematics, 45, 297-324. |
[9] | Charlesworth B, Charlesworth D (1978) A model for the evolution of dioecy and gynodioecy. The American Naturalist, 112, 975-997. |
[10] | Charlesworth D (1999) Theories of the evolution of dioecy. In: Gender and Sexual Dimorphism in Flowering Plants (eds GeberMA, DawsonTE, DelphLF),pp.33-60. Springer-Verlag, New York. |
[11] | Charlesworth D, Wright SI (2001) Breeding systems and genome evolution. Current Opinion in Genetics & Development, 11, 685-690. |
[12] | Chazdon RL, Careaga S, Webb C, Vargas O (2003) Community and phylogenetic structure of reproductive traits of woody species in wet tropical forests. Ecological Monographs, 73, 331-348. |
[13] |
Chen CJ, Chen H, Zhang Y, Thomas HR, Frank MH, He YH, Xia R (2020) TBtools: An integrative toolkit developed for interactive analyses of big biological data. Molecular Plant, 13, 1194-1202.
DOI PMID |
[14] | Chen XS, Li QJ (2008a) Patterns of plant sexual systems in subtropical evergreen broad-leaved forests in Ailao Mountains, SW China. Journal of Plant Ecology, 1, 179-185. |
[15] | Chen XS, Li QJ (2008b) Sexual systems and ecological correlates in an azonal tropical forests, SW China. Biotropica, 40, 160-167. |
[16] | Condit R (1998) Tropical Forest Census Plots: Methods and Results from Barro Colorado Island, Panama and a Comparison with other Plots. Springer, New York. |
[17] | de Jong TJ, Shmida A, Thuijsman F (2008) Sex allocation in plants and the evolution of monoecy. Evolutionary Ecology Research, 10, 1087-1109. |
[18] | Dixon P (2003) VEGAN, a package of R functions for community ecology. Journal of Vegetation Science, 14, 927-930. |
[19] | Fang JY, Shen ZH, Tang ZY, Wang ZH (2004) The protocol for the survey plan for plant species diversity of China’s Mountains. Biodiversity Science, 12, 5-9. (in Chinese with English abstract) |
[方精云, 沈泽昊, 唐志尧, 王志恒 (2004) “中国山地植物物种多样性调查计划”及若干技术规范. 生物多样性, 12, 5-9.]
DOI |
|
[20] |
Freeman DC, McArthur ED, Harper KT, Blauer AC (1981) Influence of environment on the floral sex ratio of monoecious plants. Evolution, 35, 194-197.
DOI PMID |
[21] | Geber MA, Dawson TE, Delph LF (1999) Gender and Sexual Dimorphism in Flowering Plants. Springer, Berlin. |
[22] |
Goldberg EE, Otto SP, Vamosi JC, Mayrose I, Sabath N, Ming R, Ashman TL (2017) Macroevolutionary synthesis of flowering plant sexual systems. Evolution, 71, 898-912.
DOI PMID |
[23] |
Gross CL (2005) A comparison of the sexual systems in the trees from the Australian tropics with other tropical biomes—More monoecy but why? American Journal of Botany, 92, 907-919.
DOI PMID |
[24] | Hart JA (1985) Evolution of dioecism in Lepechinia Willd. sect. Parviflorae (Lamiaceae). Systematic Botany, 10, 147-154. |
[25] |
Heilbuth JC, Ilves KL, Otto SP (2001) The consequences of dioecy for seed dispersal: Modeling the seed-shadow handicap. Evolution, 55, 880-888.
PMID |
[26] | Hill MO (1973) Diversity and evenness: A unifying notation and its consequences. Ecology, 54, 427-432. |
[27] | Huang SQ, Guo YH (2000) Advances in pollination biology. Chinese Science Bulletin, 45, 225-237. (in Chinese) |
[黄双全, 郭友好 (2000) 传粉生物学的研究进展. 科学通报, 45, 225-237.] | |
[28] | John R, Dalling JW, Harms KE, Yavitt JB, Stallard RF, Mirabello M, Hubbell SP, Valencia R, Navarrete H, Vallejo M, Foster RB (2007) Soil nutrients influence spatial distributions of tropical tree species. Proceedings of the National Academy of Sciences, USA, 104, 864-869. |
[29] | Kong FH, Chen XR, Zhang MH, Liu Y, Jiang S, Chisholm RA, He FL (2023) Pioneer tree species accumulate higher neighbourhood diversity than late-successional species in a subtropical forest. Forest Ecology and Management, 531, 120740. |
[30] | Lambers H, Raven JA, Shaver GR, Smith SE (2008) Plant nutrient-acquisition strategies change with soil age. Trends in Ecology & Evolution, 23, 95-103. |
[31] |
Lebrija-Trejos E, Reich PB, Hernández A, Wright SJ (2016) Species with greater seed mass are more tolerant of conspecific neighbours: A key driver of early survival and future abundances in a tropical forest. Ecology Letters, 19, 1071-1080.
DOI PMID |
[32] | Lewis D (1942) The evolution of sex in flowering plants. Biological Reviews, 17, 46-67. |
[33] |
Liu XL, Wu YG, Zhang MH, Chen XR, Zhu ZC, Chen DY, Dong S, Li BH, Ding BY, Liu Y (2024) Community composition and structure of a 25-ha forest dynamics plot of subtropical forest in Baishanzu, Zhejiang Province. Biodiversity Science, 32, 23294. (in Chinese with English abstract)
DOI |
[刘啸林, 吴友贵, 张敏华, 陈小荣, 朱志成, 陈定云, 董舒, 李步杭, 丁炳扬, 刘宇 (2024) 浙江百山祖25 ha亚热带森林动态监测样地群落组成与结构特征. 生物多样性, 32, 23294.] | |
[34] | Miller ZR, Clenet M, Della Libera K, Massol F, Allesina S (2024) Coexistence of many species under a random competition-colonization trade-off. Proceedings of the National Academy of Sciences, USA, 121, e2314215121. |
[35] | Nagamatsu D, Hirabuki Y, Mochida Y (2003) Influence of micro-landforms on forest structure, tree death and recruitment in a Japanese temperate mixed forest. Ecological Research, 18, 533-547. |
[36] |
Obbard DJ, Harris SA, Pannell JR (2006) Sexual systems and population genetic structure in an annual plant: Testing the metapopulation model. The American Naturalist, 167, 354-366.
DOI PMID |
[37] | Pannell JR (2017) Plant sex determination. Current Biology, 27, R191-R197. |
[38] |
Pannell JR, Auld JR, Brandvain YBM, Busch JW, Cheptou PO, Conner JK, Goldberg EE, Grant AG, Grossenbacher DL (2015) The scope of Baker’s Law. New Phytologist, 208, 656-667.
DOI PMID |
[39] | Peng DL, Ou XK, Xu B, Zhang ZQ, Niu Y, Li ZM, Sun H (2014) Plant sexual systems correlated with morphological traits: Reflecting reproductive strategies of alpine plants. Journal of Systematics and Evolution, 52, 368-377. |
[40] | Queenborough SA, Mazer SJ, Vamosi SM, Garwood NC, Valencia R, Freckleton RP (2009) Seed mass, abundance and breeding system among tropical forest species: Do dioecious species exhibit compensatory reproduction or abundances? Journal of Ecology, 97, 555-566. |
[41] | Ramírez N (2005) Plant sexual systems, dichogamy, and herkogamy in the Venezuelan Central Plain. Flora-Morphology, Distribution, Functional Ecology of Plants, 200, 30-48. |
[42] | Réjou-Méchain M, Cheptou PO (2015) High incidence of dioecy in young successional tropical forests. Journal of Ecology, 103, 725-732. |
[43] | Renner SS, Ricklefs RE (1995) Dioecy and its correlates in the flowering plants. American Journal of Botany, 82, 596-606. |
[44] | Retuerto R, Sánchez Vilas J, Varga S (2018) Sexual dimorphism in response to stress. Environmental and Experimental Botany, 146, 1-4. |
[45] | Sinclair JP, Korte JL, Freeman DC (2013) The pattern of dioecy in terrestrial, temperate plant succession. Evolutionary Ecology Research, 15, 545-556. |
[46] | Tang CQ, Ohsawa M (2002) Coexistence mechanisms of evergreen, deciduous and coniferous trees in a mid-montane mixed forest on Mt. Emei, Sichuan, China. Plant Ecology, 161, 215-230. |
[47] |
Vamosi JC, Vamosi SM (2004) The role of diversification in causing the correlates of dioecy. Evolution, 58, 723-731.
PMID |
[48] | Vamosi JC, Vamosi SM, Barrett SCH (2006) Sex in advertising:Dioecy alters the net benefits of attractiveness in Sagittaria latifolia (Alismataceae). Proceedings of the Royal Society: Biological Sciences, 273, 2401-2407. |
[49] |
Vamosi JC, Zhang Y, Wilson WG (2007) Animal dispersal dynamics promoting dioecy over hermaphroditism. The American Naturalist, 170, 485-491.
PMID |
[50] | Varga S, Soulsbury CD (2020) Environmental stressors affect sex ratios in sexually dimorphic plant sexual systems. Plant Biology, 22, 890-898. |
[51] |
Wang YC, Lin JY, Xu H, Lin MX, Li YD (2019) Numerical characteristics of plant sexual system of the woody plants in the 60 ha plot in the tropical rain forest in Jianfengling, Hainan Island. Biodiversity Science, 27, 297-305. (in Chinese with English abstract)
DOI |
[王颖灿, 林家怡, 许涵, 林明献, 李意德 (2019) 海南尖峰岭热带山地雨林60 ha大样地木本植物性别系统数量特征. 生物多样性, 27, 297-305.]
DOI |
|
[52] |
Wang YY, Freckleton RP, Wang BJ, Kuang X, Yuan ZQ, Lin F, Ye J, Wang XG, Hao ZQ (2018) The role of breeding system in community dynamics: Growth and mortality in forests of different successional stages. Ecology and Evolution, 8, 7285-7296.
DOI PMID |
[53] | Wang YY, Hao ZQ (2022) Angiosperm sexual systems—Concepts, evolution, ecology, and future directions. Biodiversity Science, 30, 22065. (in Chinese with English abstract) |
[王芸芸, 郝占庆 (2022) 被子植物性系统的多样性、生态功能及分布规律. 生物多样性, 30, 22065.]
DOI |
|
[54] | Wang YY, Luo A, Lyu T, Dimitrov D, Xu XT, Freckleton RP, Li YQ, Su XY, Li YC, Liu YP (2021) Global distribution and evolutionary transitions of angiosperm sexual systems. Ecology Letters, 24, 1835-1847. |
[55] | Wang YY, Lyu T, Shrestha N, Lyu LS, Li YQ, Schmid B, Freckleton RP, Dimitrov D, Liu SG, Hao ZQ (2020) Drivers of large-scale geographical variation in sexual systems of woody plants. Global Ecology and Biogeography, 29, 546-557. |
[56] |
Wu MX, An MT, Tian L, Liu F (2022) Effects of environmental factors on quantitative characteristics of woody plant sexual system in Maolan karst forest. Biodiversity Science, 30, 22025. (in Chinese with English abstract)
DOI |
[吴墨栩, 安明态, 田力, 刘锋 (2022) 茂兰喀斯特森林木本植物性系统数量特征及其与环境因子的关系. 生物多样性, 30, 22025.]
DOI |
|
[57] | Xia FC, Cheng FS, Liu ZY, Lin L, Wang H, Wang GR (2020) Sexual system and ecological links of flowering plants in Changbai Mountain. Russian Journal of Ecology, 51, 345-350. |
[58] |
Xiong X, Zhou GY, Zhang DQ (2020) Soil organic carbon accumulation modes between pioneer and old-growth forest ecosystems. Journal of Applied Ecology, 57, 2419-2428.
DOI |
[59] |
Xu GH, Fan XR, Miller AJ (2012) Plant nitrogen assimilation and use efficiency. Annual Review of Plant Biology, 63, 153-182.
DOI PMID |
[60] |
Yang J, Hu LJ, Wang ZK, Zhu WL, Meng LH (2014) Responses to drought stress among sex morphs of Oxyria sinensis (Polygonaceae), a subdioecious perennial herb native to the East Himalayas. Ecology and Evolution, 4, 4033-4040.
DOI PMID |
[61] | Yu JH, Yao FP, Chen XR, Zhou RF, Cheng QB, Ding BY (2003) An introduction to main vegetation types in the Baishanzu National Nature Reserve. Journal of Tropical and Subtropical Botany, 11(2), 93-98. (in Chinese with English abstract) |
[余久华, 姚丰平, 陈小荣, 周荣飞, 程秋波, 丁炳扬 (2003) 百山祖自然保护区主要植被类型概述. 热带亚热带植物学报, 11(2), 93-98.] | |
[62] |
Zhang MH, He FL (2017) Plant sex affects the structure of plant-pollinator networks in a subtropical forest. Oecologia, 185, 269-279.
DOI PMID |
[63] | Zhang MH, Hu XQ, He FL (2024) Regional effects and local climate jointly shape the global distribution of sexual systems in woody flowering plants. Biogeosciences, 21, 2133-2142. |
[1] | 贾贞妮 张意岑 杜彦君 任海保. 干扰对中亚热带森林群落物种多样性演替动态的影响[J]. 生物多样性, 2025, 33(2): 24078-. |
[2] | 李艳朋, 盘李军, 陈洁, 许涵, 杨立新. 亚热带人工混交林叶功能性状对森林演替的响应规律及影响因素[J]. 生物多样性, 2024, 32(7): 24049-. |
[3] | 王腾, 李纯厚, 王广华, 赵金发, 石娟, 谢宏宇, 刘永, 刘玉. 西沙群岛七连屿珊瑚礁鱼类的物种组成与演替[J]. 生物多样性, 2024, 32(6): 23481-. |
[4] | 艾妍雨, 胡海霞, 沈婷, 莫雨轩, 杞金华, 宋亮. 附生维管植物多样性及其与宿主特征的相关性: 以哀牢山中山湿性常绿阔叶林为例[J]. 生物多样性, 2024, 32(5): 24072-. |
[5] | 曲锐, 左振君, 王有鑫, 张良键, 吴志刚, 乔秀娟, 王忠. 基于元素组的生物地球化学生态位及其在不同生态系统中的应用[J]. 生物多样性, 2024, 32(4): 23378-. |
[6] | 郑梦瑶, 李媛, 王雪蓉, 张越, 贾彤. 芦芽山不同植被类型土壤原生动物群落构建机制[J]. 生物多样性, 2024, 32(4): 23419-. |
[7] | 魏嘉欣, 姜治国, 杨林森, 熊欢欢, 金胶胶, 罗方林, 李杰华, 吴浩, 徐耀粘, 乔秀娟, 魏新增, 姚辉, 余辉亮, 杨敬元, 江明喜. 湖北神农架中亚热带山地落叶阔叶林25 ha动态监测样地群落物种组成与结构特征[J]. 生物多样性, 2024, 32(3): 23338-. |
[8] | 陈瑶琪, 郭晶晶, 蔡国俊, 葛依立, 廖宇, 董正, 符辉. 近七十年(1954-2021)长江中下游湖泊沉水植物群落多样性演变特征[J]. 生物多样性, 2024, 32(3): 23319-. |
[9] | 刘啸林, 吴友贵, 张敏华, 陈小荣, 朱志成, 陈定云, 董舒, 李步杭, 丁炳扬, 刘宇. 浙江百山祖25 ha亚热带森林动态监测样地群落组成与结构特征[J]. 生物多样性, 2024, 32(2): 23294-. |
[10] | 单航, 雷祖培, 郑方东, 韦博良, 仲磊, 于明坚. 2013-2023年浙江乌岩岭次生常绿阔叶林群落动态变化[J]. 生物多样性, 2024, 32(12): 24372-. |
[11] | 殷正, 张乃莉, 张春雨, 赵秀海. 长白山不同演替阶段温带森林木本植物菌根类型对林下草本植物多样性的影响[J]. 生物多样性, 2024, 32(1): 23337-. |
[12] | 张雅丽, 张丙昌, 赵康, 李凯凯, 刘燕晋. 毛乌素沙地不同类型生物结皮细菌群落差异及其驱动因子[J]. 生物多样性, 2023, 31(8): 23027-. |
[13] | 杨胜娴, 杨清, 李晓东, 巢欣, 刘惠秋, 魏蓝若雪, 巴桑. 确定性过程主导高原典型河流浮游植物地理分布格局和群落构建[J]. 生物多样性, 2023, 31(7): 23092-. |
[14] | 李发扬, 李滢钰, 蒋文妮, 刘曙光, 霍超, 孙巧奇, 邹红菲. 火后恢复时间影响大兴安岭寒温带森林内部与边缘鸟类多样性[J]. 生物多样性, 2023, 31(7): 22665-. |
[15] | 赵坤明, 陈圣宾, 杨锡福. 基于红外相机技术调查四川都江堰破碎化森林鸟兽多样性及优势种活动节律[J]. 生物多样性, 2023, 31(6): 22529-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn