生物多样性 ›› 2024, Vol. 32 ›› Issue (10): 24262. DOI: 10.17520/biods.2024262 cstr: 32101.14.biods.2024262
收稿日期:
2024-06-25
接受日期:
2024-09-12
出版日期:
2024-10-20
发布日期:
2024-12-09
通讯作者:
*E-mail: wangm@saes.sh.cn
基金资助:
Juan Tan1,2, Dandan Zhu3, Qing Wang1, Min Wang1,*()
Received:
2024-06-25
Accepted:
2024-09-12
Online:
2024-10-20
Published:
2024-12-09
Contact:
*E-mail: wangm@saes.sh.cn
Supported by:
摘要:
公园绿地是维持城市生物多样性的关键生境。鸟类作为城市生物多样性的指示类群, 其生物多样性格局和保护已成为城市生态学研究的热点, 近年来被动声学技术的应用逐渐成为鸟类多样性监测的发展趋势。为了探讨被动声学技术与传统样线调查方法在城市公园绿地鸟类监测中的有效性差异, 本研究于2023年7月至2024年4月选择上海外环林带典型公园绿地, 采用声纹设备和样线调查法监测鸟类多样性, 在3种生境类型中各布设1套声纹设备, 每天24 h每小时采集前15 min的动物声音数据, 基于无监督音节聚类分析对数据进行处理, 将监测结果与样线调查进行深入比较分析, 评估了两种监测方法的有效性。结果表明: 声纹设备共记录鸟类11目28科49种, 样线调查共记录鸟类5目19科32种, 二者均记录到雀形目种类最多。两种方法监测到的共有种为24种, 监测到的鸟类居留型组成特征一致, 均以留鸟为主。声纹设备记录到的优势种种类多于样线调查, 白头鹎(Pycnonotus sinensis)、珠颈斑鸠(Spilopelia chinensis)、乌鸫(Turdus mandarinus)和灰喜鹊(Cyanopica cyanus)为二者均记录到的优势种。就不同生境而言, 两种方法均以林湿复合混交林监测到种类数最多, 而林湿复合纯林和混交林种类水平相当, 各生境类型均以春秋季鸟类种类和数量相对较多, 但两种方法监测到的鸟类优势度指数、多样性和均匀度指数等群落特征及其季节变化存在较大差异。基于被动声学的鸟类智慧化监测为城市生物多样性保护研究提供了新的技术路径, 可与传统调查技术方法相结合, 提升监测数据的准确性和全面性。
谭娟, 朱丹丹, 王卿, 王敏 (2024) 被动声学技术在城市公园绿地鸟类多样性监测中的应用: 以上海闵行区春申公园为例. 生物多样性, 32, 24262. DOI: 10.17520/biods.2024262.
Juan Tan, Dandan Zhu, Qing Wang, Min Wang (2024) Application of passive acoustic technology in monitoring bird diversity in urban park green space: A case study of Chunshen Park in Minhang District, Shanghai. Biodiversity Science, 32, 24262. DOI: 10.17520/biods.2024262.
图1 春申公园鸟类多样性监测声纹设备及调查样线布设图。CS1: 林湿复合混交林; CS2: 林湿复合纯林; CS3: 混交林。
Fig. 1 Distribution of voicing equipments and survey transects for bird biodiversity monitoring in Chunshen Park. CS1, Mixed forest in forest-wetland complex; CS2, Monotypic forest in forest-wetland complex; CS3, Mixed forest.
处理流程 Process flow | 数据状态 Data status | 数据量 Data volume | ||
---|---|---|---|---|
林湿复合混交林 Mixed forest in forest-wetland complex (CS1) | 林湿复合纯林 Monotypic forest in forest-wetland complex (CS2) | 混交林 Mixed forest (CS3) | ||
1. 筛选置信度 ≥ 60%的独立事件数据 Filter independent event data with a confidence level of at least 60% | 有效数据 Valid data | 6,368 | 3,335 | 1,650 |
2. 专家初步确认 Preliminary confirmation by experts | 确认 Confirm | 6,289 | 3,298 | 1,624 |
待确认 To be confirmed | 79 | 37 | 26 | |
3. 二次识别确认 Secondary identification confirmation | 无效数据 Invalid data | 14 | 2 | 4 |
确认 Confirm | 26 | 10 | 8 | |
修改 Modify | 39 | 25 | 14 | |
4. 最终确认 Final confirmation | 准确数据 Accurate data | 6,354 | 3,333 | 1,646 |
表1 春申公园鸟类多样性监测声纹设备监测数据处理信息表
Table 1 Data processing information of acoustic equipment for bird biodiversity monitoring in Chunshen Park
处理流程 Process flow | 数据状态 Data status | 数据量 Data volume | ||
---|---|---|---|---|
林湿复合混交林 Mixed forest in forest-wetland complex (CS1) | 林湿复合纯林 Monotypic forest in forest-wetland complex (CS2) | 混交林 Mixed forest (CS3) | ||
1. 筛选置信度 ≥ 60%的独立事件数据 Filter independent event data with a confidence level of at least 60% | 有效数据 Valid data | 6,368 | 3,335 | 1,650 |
2. 专家初步确认 Preliminary confirmation by experts | 确认 Confirm | 6,289 | 3,298 | 1,624 |
待确认 To be confirmed | 79 | 37 | 26 | |
3. 二次识别确认 Secondary identification confirmation | 无效数据 Invalid data | 14 | 2 | 4 |
确认 Confirm | 26 | 10 | 8 | |
修改 Modify | 39 | 25 | 14 | |
4. 最终确认 Final confirmation | 准确数据 Accurate data | 6,354 | 3,333 | 1,646 |
图2 声纹监测与样线调查的春申公园鸟类群落组成对比。CS1: 林湿复合混交林; CS2: 林湿复合纯林; CS3: 混交林。
Fig. 2 Comparison of bird community composition between acoustic monitoring and line transect surveys in Chunshen Park. CS1, Mixed forest in forest-wetland complex; CS2, Monotypic forest in forest-wetland complex; CS3, Mixed forest.
监测方法 Monitoring method | 多样性指数 Diversity index | 林湿复合混交林 Mixed forest in forest-wetland complex (CS1) | 林湿复合纯林 Monotypic forest in forest-wetland complex (CS2) | 混交林 Mixed forest (CS3) |
---|---|---|---|---|
声纹监测 Acoustic monitoring | Simpson优势度指数 Simpson dominance index | 0.269 | 0.210 | 0.172 |
Shannon-Wiener多样性指数 Shannon-Wiener diversity index | 1.408 | 1.336 | 1.600 | |
Pielou均匀度指数 Pielou evenness index | 0.374 | 0.376 | 0.458 | |
样线调查 Line transect surveys | Simpson优势度指数 Simpson dominance index | 0.106 | 0.159 | 0.486 |
Shannon-Wiener多样性指数 Shannon-Wiener diversity index | 2.646 | 2.135 | 1.316 | |
Pielou均匀度指数 Pielou evenness index | 0.771 | 0.788 | 0.475 |
表2 声纹监测和样线调查的春申公园鸟类群落特征
Table 2 Characteristics of bird communities investigated by acoustic monitoring and line transect surveys in Chunshen Park
监测方法 Monitoring method | 多样性指数 Diversity index | 林湿复合混交林 Mixed forest in forest-wetland complex (CS1) | 林湿复合纯林 Monotypic forest in forest-wetland complex (CS2) | 混交林 Mixed forest (CS3) |
---|---|---|---|---|
声纹监测 Acoustic monitoring | Simpson优势度指数 Simpson dominance index | 0.269 | 0.210 | 0.172 |
Shannon-Wiener多样性指数 Shannon-Wiener diversity index | 1.408 | 1.336 | 1.600 | |
Pielou均匀度指数 Pielou evenness index | 0.374 | 0.376 | 0.458 | |
样线调查 Line transect surveys | Simpson优势度指数 Simpson dominance index | 0.106 | 0.159 | 0.486 |
Shannon-Wiener多样性指数 Shannon-Wiener diversity index | 2.646 | 2.135 | 1.316 | |
Pielou均匀度指数 Pielou evenness index | 0.771 | 0.788 | 0.475 |
图3 声纹监测和样线调查鸟类群落结构季节变化特征。CS1: 林湿复合混交林; CS2: 林湿复合纯林; CS3: 混交林。
Fig. 3 Seasonal variation characteristics of bird community structure surveyed by acoustic monitoring and line transect surveys. CS1, Mixed forest in forest-wetland complex; CS2, Monotypic forest in forest-wetland complex; CS3, Mixed forest.
[1] |
Alcocer I, Lima H, Sugai LSM, Llusia D (2022) Acoustic indices as proxies for biodiversity: A meta-analysis. Biological Reviews of the Cambridge Philosophical Society, 97, 2209-2236.
DOI PMID |
[2] | Budka M, Jobda M, Szałański P, Piórkowski H (2022) Acoustic approach as an alternative to human-based survey in bird biodiversity monitoring in agricultural meadows. PLoS ONE, 17, e0266557. |
[3] | Campos IB, Landers TJ, Lee KD, Lee WG, Friesen MR, Gaskett AC, Ranjard L (2019) Assemblage of focal species recognizers-AFSR: A technique for decreasing false indications of presence from acoustic automatic identification in a multiple species context. PLoS ONE, 14, e0212727. |
[4] |
Cen YH, Wang P, Chen QC, Zhang CY, Yu S, Hu K, Liu Y, Xiao RB (2023) Spatiotemporal characteristics and influencing factors of animal soundscape in urban green spaces. Biodiversity Science, 31, 22359. (in Chinese with English abstract)
DOI |
[岑渝华, 王鹏, 陈庆春, 张承云, 余上, 胡珂, 刘阳, 肖荣波 (2023) 城市绿地动物声景的时空特征及其驱动因素. 生物多样性, 31, 22359.]
DOI |
|
[5] | Da Silva A, Samplonius JM, Schlicht E, Valcu M, Kempenaers B (2014) Artificial night lighting rather than traffic noise affects the daily timing of dawn and dusk singing in common European songbirds. Behavioral Ecology, 25, 1037-1047. |
[6] | Kahl S (2020) Bird NET: A deep learning solution for avian diversity monitoring. Ecological Informatics, 55, 101019. |
[7] |
Keitt TH, Abelson ES (2021) Ecology in the age of automation. Science, 373, 858-859.
DOI PMID |
[8] | Knight EC, Hannah KC, Foley GJ, Scott CD, Brigham RM, Bayne E (2017) Recommendations for acoustic recognizer performance assessment with application to five common automated signal recognition programs. Avian Conservation and Ecology, 12, 14. |
[9] | Kumar P, Singh R (2023) Artificial intelligence and machine learning for automatic wildlife identification: Recent trends and future directions. Computer Applications in Engineering Education, 31, 220-237. |
[10] |
Li G, Fang C, Li Y, Wang Z, Sun S, He S, Qi W, Bao C, Ma H, Fan Y, Feng Y, Liu X (2022) Global impacts of future urban expansion on terrestrial vertebrate diversity. Nature Communications, 13, 1628.
DOI PMID |
[11] | Lu Y, Yang Y, Sun B, Yuan J, Yu M, Stenseth NC, Bullock JM, Obersteiner M (2020) Spatial variation in biodiversity loss across China under multiple environmental stressors. Science Advances, 6, eabd0952. |
[12] | Lun KH, Zhang YY, Xia CW (2017) Bird diversity monitoring based on sound index. Bulletin of Biology, 52(11), 1-5. (in Chinese) |
[伦可环, 张雁云, 夏灿玮 (2017) 基于声音指数的鸟类多样性监测. 生物学通报, 52(11), 1-5.] | |
[13] | McDonald RI, Mansur AV, Ascensão F, Colbert M, Crossman K, Elmqvist T, Gonzalez A, Güneralp B, Haase D, Hamann M, Hillel O, Huang K, Kahnt B, Maddox D, Pacheco A, Pereira HM, Seto KC, Simkin R, Walsh B, Werner AS, Ziter C (2020) Research gaps in knowledge of the impact of urban growth on biodiversity. Nature Sustainability, 3, 16-24. |
[14] | Mendes R, Nunes VL, Marabuto E, Costa GJ, Silva SE, Paulo OS, Simões PC (2023) Testing drivers of acoustic divergence in cicadas (Cicadidae: Tettigettalna). Journal of Evolutionary Biology, 36, 461-479. |
[15] | Oestreich WK, Oliver RY, Chapman MS, Go M, McKenna MF (2024) Listening to animal behavior to understand changing ecosystems. Trends in Ecology & Evolution, 39, 961-973. |
[16] | Ortega-Álvarez R, MacGregor-Fors I (2009) Living in the big city: Effects of urban land-use on bird community structure, diversity, and composition. Landscape and Urban Planning, 90, 189-195. |
[17] | Peet RK (1975) Relative diversity indices. Ecology, 56, 496-498. |
[18] | Pellissier V, Cohen M, Boulay A, Clergeau P (2012) Birds are also sensitive to landscape composition and configuration within the city centre. Landscape and Urban Planning, 104, 181-188. |
[19] | Pielou EC (1966) The measurement of diversity in different types of biological collections. Journal of Theoretical Biology, 13, 131-144. |
[20] |
Rajan SC, Athira K, Jaishanker R, Sooraj NP, Sarojkumar V (2019) Rapid assessment of biodiversity using acoustic indices. Biodiversity and Conservation, 28, 2371-2383.
DOI |
[21] | Sharma S, Sato K, Gautam BP (2023) A methodological literature review of acoustic wildlife monitoring using artificial intelligence tools and techniques. Sustainability, 15, 7128. |
[22] | Scott JM, Csuti B, Jacobi JD, Estes JE (1987) Species richness. BioScience, 37, 782-788. |
[23] | Simkin RD, Seto KC, McDonald RI, Jetz W (2022) Biodiversity impacts and conservation implications of urban land expansion projected to 2050. Proceedings of the National Academy of Sciences, USA, 119, e2117297119. |
[24] |
Stowell D, Wood MD, Pamuła H, Stylianou Y, Glotin H (2019) Automatic acoustic detection of birds through deep learning: The first Bird Audio Detection challenge. Methods in Ecology and Evolution, 10, 368-380.
DOI |
[25] |
Sugai LSM, Silva TSF, Ribeiro JW Jr, Llusia D (2019) Terrestrial passive acoustic monitoring: Review and perspectives. BioScience, 69, 15-25.
DOI |
[26] | Tian YL, Sun XF, Lü XY, Li X (2022) Characteristics and influencing factors of urban bird diversity in China. Journal of Southwest University (Natural Science Edition), 44(12), 39-49. (in Chinese with English abstract) |
[田永莲, 孙秀锋, 吕鲜艳, 李旭 (2022) 我国城市鸟类多样性特征及其影响因素研究. 西南大学学报(自然科学版), 44(12), 39-49.] | |
[27] |
Tuia D, Kellenberger B, Beery S, Costelloe BR, Zuffi S, Risse B, Mathis A, Mathis MW, van Langevelde F, Burghardt T, Kays R, Klinck H, Wikelski M, Couzin ID, van Horn G, Crofoot MC, Stewart CV, Berger-Wolf T (2022) Perspectives in machine learning for wildlife conservation. Nature Communications, 13, 792.
DOI PMID |
[28] | Wang X, Chen X, Zhang Z (2023) A review of low-power wildlife monitoring devices and their applications in ecological research. Ecological Informatics, 78, 10163. |
[29] | Wang YP, Ding P, Chen SH, Zheng GM (2013) Nestedness of bird assemblages on urban woodlots: Implications for conservation. Landscape and Urban Planning, 111, 59-67. |
[30] | Wei C, Luo CQ (2014) Review of studies on acoustic behavior of cicadas and its systematic and ecological significances. Acta Agriculturae Boreali-Occidentalis Sinica, 23(6), 1-10. (in Chinese with English abstract) |
[魏琮, 罗昌庆 (2014) 蝉总科昆虫的发声行为及相关系统学与生态学研究进展. 西北农业学报, 23(6), 1-10.] | |
[31] |
Whelan CJ, Şekercioğlu ÇH, Wenny DG (2015) Why birds matter: From economic ornithology to ecosystem services. Journal of Ornithology, 156, 227-238.
DOI |
[32] |
Wu KY, Ruan WD, Zhou DF, Chen QC, Zhang CY, Pan XY, Yu S, Liu Y, Xiao RB (2023) Syllable clustering analysis-based passive acoustic monitoring technology and its application in bird monitoring. Biodiversity Science, 31, 22370. (in Chinese with English abstract)
DOI |
[吴科毅, 阮文达, 周棣锋, 陈庆春, 张承云, 潘新园, 余上, 刘阳, 肖荣波 (2023) 基于音节聚类分析的被动声学监测技术及其在鸟类监测中的应用. 生物多样性, 31, 22370.]
DOI |
|
[33] | Yang G, Wang Y, Xu J, Ding YZ, Wu SY, Tang HM, Li HQ, Wang XM, Ma B, Wang ZH (2015) The influence of habitat types on bird community in urban parks. Acta Ecologica Sinica, 35, 4186-4195. (in Chinese with English abstract) |
[杨刚, 王勇, 许洁, 丁由中, 吴时英, 唐海明, 李宏庆, 王小明, 马波, 王正寰 (2015) 城市公园生境类型对鸟类群落的影响. 生态学报, 35, 4186-4195.] | |
[34] | Zhang WW (2024) Community structure and diversity analysis of forest land birds on urban-rural gradients in Shanghai. Forest Inventory and Planning, 49, 164-169. (in Chinese with English abstract) |
[张文文 (2024) 上海市城乡梯度上林地鸟类群落结构及多样性研究. 林业调查规划, 49, 164-169.] | |
[35] | Zhao K, Chen G, Zhang YY (2023) Monitoring bird diversity in Xiao Longmen Forest Area of Beijing based on acoustic index. Journal of Beijing Normal University (Natural Sciences), 59, 607-613. (in Chinese with English abstract) |
[赵凯, 陈功, 张雁云 (2023) 基于声学指数监测北京小龙门林区鸟类多样性. 北京师范大学学报(自然科学版), 59, 607-613.] |
[1] | 吴晓晴 张美惠 葛苏婷 李漫淑 宋坤 沈国春 达良俊 张健. 上海近自然林重建过程中木本植物物种多样性与地上生物量的时空动态——以闵行区生态岛为例[J]. 生物多样性, 2025, 33(5): 24444-. |
[2] | 干靓 刘巷序 鲁雪茗 岳星. 全球生物多样性热点地区大城市的保护政策与优化方向[J]. 生物多样性, 2025, 33(5): 24529-. |
[3] | 曾子轩 杨锐 黄越 陈路遥. 清华大学校园鸟类多样性特征与环境关联[J]. 生物多样性, 2025, 33(5): 24373-. |
[4] | 周昊, 王茗毅, 张楚格, 肖治术, 欧阳芳. 昆虫旅馆在独栖蜂多样性保护中的现状与挑战[J]. 生物多样性, 2025, 33(5): 24472-. |
[5] | 臧明月, 刘立, 马月, 徐徐, 胡飞龙, 卢晓强, 李佳琦, 于赐刚, 刘燕. 《昆明-蒙特利尔全球生物多样性框架》下的中国城市生物多样性保护[J]. 生物多样性, 2025, 33(5): 24482-. |
[6] | 祝晓雨, 王晨灏, 王忠君, 张玉钧. 城市绿地生物多样性研究进展与展望[J]. 生物多样性, 2025, 33(5): 25027-. |
[7] | 袁琳, 王思琦, 侯静轩. 大都市地区的自然留野:趋势与展望[J]. 生物多样性, 2025, 33(5): 24481-. |
[8] | 胡敏, 李彬彬, Coraline Goron. 只绿是不够的: 一个生物多样性友好的城市公园管理框架[J]. 生物多样性, 2025, 33(5): 24483-. |
[9] | 王欣, 鲍风宇. 基于鸟类多样性提升的南滇池国家湿地公园生态修复效果分析[J]. 生物多样性, 2025, 33(5): 24531-. |
[10] | 明玥, 郝培尧, 谭铃千, 郑曦. 基于城市绿色高质量发展理念的中国城市生物多样性保护与提升研究[J]. 生物多样性, 2025, 33(5): 24524-. |
[11] | 徐欢, 辛凤飞, 施宏亮, 袁琳, 薄顺奇, 赵欣怡, 邓帅涛, 潘婷婷, 余婧, 孙赛赛, 薛程. 生态修复技术集成应用对长江口北支生境与鸟类多样性提升效果评估[J]. 生物多样性, 2025, 33(5): 24478-. |
[12] | 谢淦, 宣晶, 付其迪, 魏泽, 薛凯, 雒海瑞, 高吉喜, 李敏. 草地植物多样性无人机调查的物种智能识别模型构建[J]. 生物多样性, 2025, 33(4): 24236-. |
[13] | 王太, 宋福俊, 张永胜, 娄忠玉, 张艳萍, 杜岩岩. 河西走廊内陆河水系鱼类多样性及资源现状[J]. 生物多样性, 2025, 33(4): 24387-. |
[14] | 褚晓琳, 张全国. 演化速率假说的实验验证研究进展[J]. 生物多样性, 2025, 33(4): 25019-. |
[15] | 张浩斌, 肖路, 刘艳杰. 夜间灯光对外来入侵植物和本地植物群落多样性和生长的影响[J]. 生物多样性, 2025, 33(4): 24553-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn