生物多样性 ›› 2024, Vol. 32 ›› Issue (10): 24262. DOI: 10.17520/biods.2024262 cstr: 32101.14.biods.2024262
收稿日期:
2024-06-25
接受日期:
2024-09-12
出版日期:
2024-10-20
发布日期:
2024-12-09
通讯作者:
*E-mail: wangm@saes.sh.cn
基金资助:
Juan Tan1,2, Dandan Zhu3, Qing Wang1, Min Wang1,*()
Received:
2024-06-25
Accepted:
2024-09-12
Online:
2024-10-20
Published:
2024-12-09
Contact:
*E-mail: wangm@saes.sh.cn
Supported by:
摘要:
公园绿地是维持城市生物多样性的关键生境。鸟类作为城市生物多样性的指示类群, 其生物多样性格局和保护已成为城市生态学研究的热点, 近年来被动声学技术的应用逐渐成为鸟类多样性监测的发展趋势。为了探讨被动声学技术与传统样线调查方法在城市公园绿地鸟类监测中的有效性差异, 本研究于2023年7月至2024年4月选择上海外环林带典型公园绿地, 采用声纹设备和样线调查法监测鸟类多样性, 在3种生境类型中各布设1套声纹设备, 每天24 h每小时采集前15 min的动物声音数据, 基于无监督音节聚类分析对数据进行处理, 将监测结果与样线调查进行深入比较分析, 评估了两种监测方法的有效性。结果表明: 声纹设备共记录鸟类11目28科49种, 样线调查共记录鸟类5目19科32种, 二者均记录到雀形目种类最多。两种方法监测到的共有种为24种, 监测到的鸟类居留型组成特征一致, 均以留鸟为主。声纹设备记录到的优势种种类多于样线调查, 白头鹎(Pycnonotus sinensis)、珠颈斑鸠(Spilopelia chinensis)、乌鸫(Turdus mandarinus)和灰喜鹊(Cyanopica cyanus)为二者均记录到的优势种。就不同生境而言, 两种方法均以林湿复合混交林监测到种类数最多, 而林湿复合纯林和混交林种类水平相当, 各生境类型均以春秋季鸟类种类和数量相对较多, 但两种方法监测到的鸟类优势度指数、多样性和均匀度指数等群落特征及其季节变化存在较大差异。基于被动声学的鸟类智慧化监测为城市生物多样性保护研究提供了新的技术路径, 可与传统调查技术方法相结合, 提升监测数据的准确性和全面性。
谭娟, 朱丹丹, 王卿, 王敏 (2024) 被动声学技术在城市公园绿地鸟类多样性监测中的应用: 以上海闵行区春申公园为例. 生物多样性, 32, 24262. DOI: 10.17520/biods.2024262.
Juan Tan, Dandan Zhu, Qing Wang, Min Wang (2024) Application of passive acoustic technology in monitoring bird diversity in urban park green space: A case study of Chunshen Park in Minhang District, Shanghai. Biodiversity Science, 32, 24262. DOI: 10.17520/biods.2024262.
图1 春申公园鸟类多样性监测声纹设备及调查样线布设图。CS1: 林湿复合混交林; CS2: 林湿复合纯林; CS3: 混交林。
Fig. 1 Distribution of voicing equipments and survey transects for bird biodiversity monitoring in Chunshen Park. CS1, Mixed forest in forest-wetland complex; CS2, Monotypic forest in forest-wetland complex; CS3, Mixed forest.
处理流程 Process flow | 数据状态 Data status | 数据量 Data volume | ||
---|---|---|---|---|
林湿复合混交林 Mixed forest in forest-wetland complex (CS1) | 林湿复合纯林 Monotypic forest in forest-wetland complex (CS2) | 混交林 Mixed forest (CS3) | ||
1. 筛选置信度 ≥ 60%的独立事件数据 Filter independent event data with a confidence level of at least 60% | 有效数据 Valid data | 6,368 | 3,335 | 1,650 |
2. 专家初步确认 Preliminary confirmation by experts | 确认 Confirm | 6,289 | 3,298 | 1,624 |
待确认 To be confirmed | 79 | 37 | 26 | |
3. 二次识别确认 Secondary identification confirmation | 无效数据 Invalid data | 14 | 2 | 4 |
确认 Confirm | 26 | 10 | 8 | |
修改 Modify | 39 | 25 | 14 | |
4. 最终确认 Final confirmation | 准确数据 Accurate data | 6,354 | 3,333 | 1,646 |
表1 春申公园鸟类多样性监测声纹设备监测数据处理信息表
Table 1 Data processing information of acoustic equipment for bird biodiversity monitoring in Chunshen Park
处理流程 Process flow | 数据状态 Data status | 数据量 Data volume | ||
---|---|---|---|---|
林湿复合混交林 Mixed forest in forest-wetland complex (CS1) | 林湿复合纯林 Monotypic forest in forest-wetland complex (CS2) | 混交林 Mixed forest (CS3) | ||
1. 筛选置信度 ≥ 60%的独立事件数据 Filter independent event data with a confidence level of at least 60% | 有效数据 Valid data | 6,368 | 3,335 | 1,650 |
2. 专家初步确认 Preliminary confirmation by experts | 确认 Confirm | 6,289 | 3,298 | 1,624 |
待确认 To be confirmed | 79 | 37 | 26 | |
3. 二次识别确认 Secondary identification confirmation | 无效数据 Invalid data | 14 | 2 | 4 |
确认 Confirm | 26 | 10 | 8 | |
修改 Modify | 39 | 25 | 14 | |
4. 最终确认 Final confirmation | 准确数据 Accurate data | 6,354 | 3,333 | 1,646 |
图2 声纹监测与样线调查的春申公园鸟类群落组成对比。CS1: 林湿复合混交林; CS2: 林湿复合纯林; CS3: 混交林。
Fig. 2 Comparison of bird community composition between acoustic monitoring and line transect surveys in Chunshen Park. CS1, Mixed forest in forest-wetland complex; CS2, Monotypic forest in forest-wetland complex; CS3, Mixed forest.
监测方法 Monitoring method | 多样性指数 Diversity index | 林湿复合混交林 Mixed forest in forest-wetland complex (CS1) | 林湿复合纯林 Monotypic forest in forest-wetland complex (CS2) | 混交林 Mixed forest (CS3) |
---|---|---|---|---|
声纹监测 Acoustic monitoring | Simpson优势度指数 Simpson dominance index | 0.269 | 0.210 | 0.172 |
Shannon-Wiener多样性指数 Shannon-Wiener diversity index | 1.408 | 1.336 | 1.600 | |
Pielou均匀度指数 Pielou evenness index | 0.374 | 0.376 | 0.458 | |
样线调查 Line transect surveys | Simpson优势度指数 Simpson dominance index | 0.106 | 0.159 | 0.486 |
Shannon-Wiener多样性指数 Shannon-Wiener diversity index | 2.646 | 2.135 | 1.316 | |
Pielou均匀度指数 Pielou evenness index | 0.771 | 0.788 | 0.475 |
表2 声纹监测和样线调查的春申公园鸟类群落特征
Table 2 Characteristics of bird communities investigated by acoustic monitoring and line transect surveys in Chunshen Park
监测方法 Monitoring method | 多样性指数 Diversity index | 林湿复合混交林 Mixed forest in forest-wetland complex (CS1) | 林湿复合纯林 Monotypic forest in forest-wetland complex (CS2) | 混交林 Mixed forest (CS3) |
---|---|---|---|---|
声纹监测 Acoustic monitoring | Simpson优势度指数 Simpson dominance index | 0.269 | 0.210 | 0.172 |
Shannon-Wiener多样性指数 Shannon-Wiener diversity index | 1.408 | 1.336 | 1.600 | |
Pielou均匀度指数 Pielou evenness index | 0.374 | 0.376 | 0.458 | |
样线调查 Line transect surveys | Simpson优势度指数 Simpson dominance index | 0.106 | 0.159 | 0.486 |
Shannon-Wiener多样性指数 Shannon-Wiener diversity index | 2.646 | 2.135 | 1.316 | |
Pielou均匀度指数 Pielou evenness index | 0.771 | 0.788 | 0.475 |
图3 声纹监测和样线调查鸟类群落结构季节变化特征。CS1: 林湿复合混交林; CS2: 林湿复合纯林; CS3: 混交林。
Fig. 3 Seasonal variation characteristics of bird community structure surveyed by acoustic monitoring and line transect surveys. CS1, Mixed forest in forest-wetland complex; CS2, Monotypic forest in forest-wetland complex; CS3, Mixed forest.
[1] |
Alcocer I, Lima H, Sugai LSM, Llusia D (2022) Acoustic indices as proxies for biodiversity: A meta-analysis. Biological Reviews of the Cambridge Philosophical Society, 97, 2209-2236.
DOI PMID |
[2] | Budka M, Jobda M, Szałański P, Piórkowski H (2022) Acoustic approach as an alternative to human-based survey in bird biodiversity monitoring in agricultural meadows. PLoS ONE, 17, e0266557. |
[3] | Campos IB, Landers TJ, Lee KD, Lee WG, Friesen MR, Gaskett AC, Ranjard L (2019) Assemblage of focal species recognizers-AFSR: A technique for decreasing false indications of presence from acoustic automatic identification in a multiple species context. PLoS ONE, 14, e0212727. |
[4] |
Cen YH, Wang P, Chen QC, Zhang CY, Yu S, Hu K, Liu Y, Xiao RB (2023) Spatiotemporal characteristics and influencing factors of animal soundscape in urban green spaces. Biodiversity Science, 31, 22359. (in Chinese with English abstract)
DOI |
[岑渝华, 王鹏, 陈庆春, 张承云, 余上, 胡珂, 刘阳, 肖荣波 (2023) 城市绿地动物声景的时空特征及其驱动因素. 生物多样性, 31, 22359.]
DOI |
|
[5] | Da Silva A, Samplonius JM, Schlicht E, Valcu M, Kempenaers B (2014) Artificial night lighting rather than traffic noise affects the daily timing of dawn and dusk singing in common European songbirds. Behavioral Ecology, 25, 1037-1047. |
[6] | Kahl S (2020) Bird NET: A deep learning solution for avian diversity monitoring. Ecological Informatics, 55, 101019. |
[7] |
Keitt TH, Abelson ES (2021) Ecology in the age of automation. Science, 373, 858-859.
DOI PMID |
[8] | Knight EC, Hannah KC, Foley GJ, Scott CD, Brigham RM, Bayne E (2017) Recommendations for acoustic recognizer performance assessment with application to five common automated signal recognition programs. Avian Conservation and Ecology, 12, 14. |
[9] | Kumar P, Singh R (2023) Artificial intelligence and machine learning for automatic wildlife identification: Recent trends and future directions. Computer Applications in Engineering Education, 31, 220-237. |
[10] |
Li G, Fang C, Li Y, Wang Z, Sun S, He S, Qi W, Bao C, Ma H, Fan Y, Feng Y, Liu X (2022) Global impacts of future urban expansion on terrestrial vertebrate diversity. Nature Communications, 13, 1628.
DOI PMID |
[11] | Lu Y, Yang Y, Sun B, Yuan J, Yu M, Stenseth NC, Bullock JM, Obersteiner M (2020) Spatial variation in biodiversity loss across China under multiple environmental stressors. Science Advances, 6, eabd0952. |
[12] | Lun KH, Zhang YY, Xia CW (2017) Bird diversity monitoring based on sound index. Bulletin of Biology, 52(11), 1-5. (in Chinese) |
[伦可环, 张雁云, 夏灿玮 (2017) 基于声音指数的鸟类多样性监测. 生物学通报, 52(11), 1-5.] | |
[13] | McDonald RI, Mansur AV, Ascensão F, Colbert M, Crossman K, Elmqvist T, Gonzalez A, Güneralp B, Haase D, Hamann M, Hillel O, Huang K, Kahnt B, Maddox D, Pacheco A, Pereira HM, Seto KC, Simkin R, Walsh B, Werner AS, Ziter C (2020) Research gaps in knowledge of the impact of urban growth on biodiversity. Nature Sustainability, 3, 16-24. |
[14] | Mendes R, Nunes VL, Marabuto E, Costa GJ, Silva SE, Paulo OS, Simões PC (2023) Testing drivers of acoustic divergence in cicadas (Cicadidae: Tettigettalna). Journal of Evolutionary Biology, 36, 461-479. |
[15] | Oestreich WK, Oliver RY, Chapman MS, Go M, McKenna MF (2024) Listening to animal behavior to understand changing ecosystems. Trends in Ecology & Evolution, 39, 961-973. |
[16] | Ortega-Álvarez R, MacGregor-Fors I (2009) Living in the big city: Effects of urban land-use on bird community structure, diversity, and composition. Landscape and Urban Planning, 90, 189-195. |
[17] | Peet RK (1975) Relative diversity indices. Ecology, 56, 496-498. |
[18] | Pellissier V, Cohen M, Boulay A, Clergeau P (2012) Birds are also sensitive to landscape composition and configuration within the city centre. Landscape and Urban Planning, 104, 181-188. |
[19] | Pielou EC (1966) The measurement of diversity in different types of biological collections. Journal of Theoretical Biology, 13, 131-144. |
[20] |
Rajan SC, Athira K, Jaishanker R, Sooraj NP, Sarojkumar V (2019) Rapid assessment of biodiversity using acoustic indices. Biodiversity and Conservation, 28, 2371-2383.
DOI |
[21] | Sharma S, Sato K, Gautam BP (2023) A methodological literature review of acoustic wildlife monitoring using artificial intelligence tools and techniques. Sustainability, 15, 7128. |
[22] | Scott JM, Csuti B, Jacobi JD, Estes JE (1987) Species richness. BioScience, 37, 782-788. |
[23] | Simkin RD, Seto KC, McDonald RI, Jetz W (2022) Biodiversity impacts and conservation implications of urban land expansion projected to 2050. Proceedings of the National Academy of Sciences, USA, 119, e2117297119. |
[24] |
Stowell D, Wood MD, Pamuła H, Stylianou Y, Glotin H (2019) Automatic acoustic detection of birds through deep learning: The first Bird Audio Detection challenge. Methods in Ecology and Evolution, 10, 368-380.
DOI |
[25] |
Sugai LSM, Silva TSF, Ribeiro JW Jr, Llusia D (2019) Terrestrial passive acoustic monitoring: Review and perspectives. BioScience, 69, 15-25.
DOI |
[26] | Tian YL, Sun XF, Lü XY, Li X (2022) Characteristics and influencing factors of urban bird diversity in China. Journal of Southwest University (Natural Science Edition), 44(12), 39-49. (in Chinese with English abstract) |
[田永莲, 孙秀锋, 吕鲜艳, 李旭 (2022) 我国城市鸟类多样性特征及其影响因素研究. 西南大学学报(自然科学版), 44(12), 39-49.] | |
[27] |
Tuia D, Kellenberger B, Beery S, Costelloe BR, Zuffi S, Risse B, Mathis A, Mathis MW, van Langevelde F, Burghardt T, Kays R, Klinck H, Wikelski M, Couzin ID, van Horn G, Crofoot MC, Stewart CV, Berger-Wolf T (2022) Perspectives in machine learning for wildlife conservation. Nature Communications, 13, 792.
DOI PMID |
[28] | Wang X, Chen X, Zhang Z (2023) A review of low-power wildlife monitoring devices and their applications in ecological research. Ecological Informatics, 78, 10163. |
[29] | Wang YP, Ding P, Chen SH, Zheng GM (2013) Nestedness of bird assemblages on urban woodlots: Implications for conservation. Landscape and Urban Planning, 111, 59-67. |
[30] | Wei C, Luo CQ (2014) Review of studies on acoustic behavior of cicadas and its systematic and ecological significances. Acta Agriculturae Boreali-Occidentalis Sinica, 23(6), 1-10. (in Chinese with English abstract) |
[魏琮, 罗昌庆 (2014) 蝉总科昆虫的发声行为及相关系统学与生态学研究进展. 西北农业学报, 23(6), 1-10.] | |
[31] |
Whelan CJ, Şekercioğlu ÇH, Wenny DG (2015) Why birds matter: From economic ornithology to ecosystem services. Journal of Ornithology, 156, 227-238.
DOI |
[32] |
Wu KY, Ruan WD, Zhou DF, Chen QC, Zhang CY, Pan XY, Yu S, Liu Y, Xiao RB (2023) Syllable clustering analysis-based passive acoustic monitoring technology and its application in bird monitoring. Biodiversity Science, 31, 22370. (in Chinese with English abstract)
DOI |
[吴科毅, 阮文达, 周棣锋, 陈庆春, 张承云, 潘新园, 余上, 刘阳, 肖荣波 (2023) 基于音节聚类分析的被动声学监测技术及其在鸟类监测中的应用. 生物多样性, 31, 22370.]
DOI |
|
[33] | Yang G, Wang Y, Xu J, Ding YZ, Wu SY, Tang HM, Li HQ, Wang XM, Ma B, Wang ZH (2015) The influence of habitat types on bird community in urban parks. Acta Ecologica Sinica, 35, 4186-4195. (in Chinese with English abstract) |
[杨刚, 王勇, 许洁, 丁由中, 吴时英, 唐海明, 李宏庆, 王小明, 马波, 王正寰 (2015) 城市公园生境类型对鸟类群落的影响. 生态学报, 35, 4186-4195.] | |
[34] | Zhang WW (2024) Community structure and diversity analysis of forest land birds on urban-rural gradients in Shanghai. Forest Inventory and Planning, 49, 164-169. (in Chinese with English abstract) |
[张文文 (2024) 上海市城乡梯度上林地鸟类群落结构及多样性研究. 林业调查规划, 49, 164-169.] | |
[35] | Zhao K, Chen G, Zhang YY (2023) Monitoring bird diversity in Xiao Longmen Forest Area of Beijing based on acoustic index. Journal of Beijing Normal University (Natural Sciences), 59, 607-613. (in Chinese with English abstract) |
[赵凯, 陈功, 张雁云 (2023) 基于声学指数监测北京小龙门林区鸟类多样性. 北京师范大学学报(自然科学版), 59, 607-613.] |
[1] | 韩佳楠, 苏杨, 李霏, 刘君妍, 赵依林, 李琳, 赵建成, 梁红柱, 李敏. 河北省苔藓植物多样性[J]. 生物多样性, 2024, 32(9): 24096-. |
[2] | 何欣怡, 潘玉梅, 祝燕, 陈佳仪, 张思榕, 张乃莉. 暖温带森林外生菌根树种优势和植物多样性对土壤氮素周转的影响[J]. 生物多样性, 2024, 32(9): 24173-. |
[3] | 谷际岐, 陈建平, 赖江山. 大语言模型在生物多样性研究中的应用[J]. 生物多样性, 2024, 32(9): 24258-. |
[4] | 韩永金, 梁咏亮, 佟一杰, 丁强, 田哲豪, 李露露, 李晓娟, 申昊, 朱亚超, 刘宁, 王新谱, 白明. 基于三种被动式采集方法采集的宁夏贺兰山甲虫标本照片数据集[J]. 生物多样性, 2024, 32(9): 24054-. |
[5] | 阎晓菲, 王涛, 王旖旎, 赵怡阳, 陈胜涛, 孙鑫, 王楠. 世界蜥蜴消化道吸虫初步名录[J]. 生物多样性, 2024, 32(9): 24059-. |
[6] | 朱芸, 王凯红, 李洪磊, 徐向龙, 段文斌, 陈浩, 邱国强, 陈卫华, 卢靖, 丁长青. 朱鹮非繁殖期行为谱及PAE编码系统[J]. 生物多样性, 2024, 32(9): 24075-. |
[7] | 李东红, 郝媛媛, 甘辉林, 张航, 刘耀猛, 他富源, 胡桂馨. 祁连山北麓中段不同类型草地蝗虫种类及分布[J]. 生物多样性, 2024, 32(9): 24119-. |
[8] | 李蓉姣, 董江海, 郑文芳, 刘入源, 赵立娟, 高瑞贺. 关帝山不同海拔杨桦混交林土壤动物多样性特征及其影响因素[J]. 生物多样性, 2024, 32(9): 24070-. |
[9] | 胡志清, 董路. 城市化对鸟类参与的种间互作的影响[J]. 生物多样性, 2024, 32(8): 24048-. |
[10] | 段菲, 刘鸣章, 卜红亮, 俞乐, 李晟. 城市化对鸟类群落组成及功能特征的影响——以京津冀地区为例[J]. 生物多样性, 2024, 32(8): 23473-. |
[11] | 孙智闲, 田晨, 王鑫, 方雨田, 李博, 赵亚辉. 热带沿海城市土著鱼类面临的威胁: 以海南省三亚市为例[J]. 生物多样性, 2024, 32(8): 24165-. |
[12] | 牛红玉, 陈璐, 赵恒月, 古丽扎尔·阿不都克力木, 张洪茂. 城市化对动物的影响: 从群落到个体[J]. 生物多样性, 2024, 32(8): 23489-. |
[13] | 王秦韵, 张玉泉, 刘浩, 李明, 刘菲, 赵宁, 陈鹏, 齐敦武, 阙品甲. 成都大熊猫繁育研究基地鸟类多样性[J]. 生物多样性, 2024, 32(8): 24066-. |
[14] | 苏荣菲, 陈睿山, 俞霖琳, 吴婧彬, 康燕. 基于红外相机调查的上海市长宁区社区生境花园生物多样性[J]. 生物多样性, 2024, 32(8): 24068-. |
[15] | 白皓天, 余上, 潘新园, 凌嘉乐, 吴娟, 谢恺琪, 刘阳, 陈学业. AI辅助识别的鸟类被动声学监测在城市湿地公园中的应用[J]. 生物多样性, 2024, 32(8): 24188-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn