生物多样性 ›› 2024, Vol. 32 ›› Issue (10): 24265. DOI: 10.17520/biods.2024265 cstr: 32101.14.biods.2024265
张梓欣1, 张承云1(), 郝泽周2,*(
)(
), 何凯莹1(
), 黄泳桥1, 肖治术3(
)
收稿日期:
2024-06-28
接受日期:
2024-10-16
出版日期:
2024-10-20
发布日期:
2024-12-03
通讯作者:
*E-mail: zezhouhao@caf.ac.cn
基金资助:
Zixin Zhang1, Chengyun Zhang1(), Zezhou Hao2,*(
)(
), Kaiying He1(
), Yongqiao Huang1, Zhishu Xiao3(
)
Received:
2024-06-28
Accepted:
2024-10-16
Online:
2024-10-20
Published:
2024-12-03
Contact:
*E-mail: zezhouhao@caf.ac.cn
Supported by:
摘要:
生物多样性是人类赖以生存和发展的重要基础, 生物多样性监测对生物多样性保护至关重要。被动声学监测是近年来迅速发展的一种生物多样性监测技术, 通过分析声音特征来获取物种的分布、行为和相互作用等信息。声学数据采集设备是被动声学监测中一个被广泛关注的关键部分。其中, 陆地生物声学数据采集设备是用于在陆地环境中记录生物声音信号的工具, 它为陆地生物多样性监测和保护提供数据支持。然而, 声学数据采集设备种类繁多, 性能参数各异, 给被动声学监测技术的实际应用带来困扰。本文通过对文献及相关资料的整理, 对国内外陆地声学数据采集设备作了系统性总结, 对比了国内外设备的发展现状, 论述了设备选型需要考虑的关键因素, 列举了几个常见的被动声学监测实验方案, 并根据不同的设备性能要求提供了几个设备选择方案, 提出了设备的应用指引建议。本文旨在为研究人员选择或研发陆地生物声学数据采集设备提供参考, 促进陆地生物声学数据采集设备在生物多样性研究和保护中的应用。
张梓欣, 张承云, 郝泽周, 何凯莹, 黄泳桥, 肖治术 (2024) 陆地生物声学数据采集设备的进展及展望. 生物多样性, 32, 24265. DOI: 10.17520/biods.2024265.
Zixin Zhang, Chengyun Zhang, Zezhou Hao, Kaiying He, Yongqiao Huang, Zhishu Xiao (2024) The progress and prospects of terrestrial bioacoustics data acquisition equipment. Biodiversity Science, 32, 24265. DOI: 10.17520/biods.2024265.
特点 Features | 自制设备 Homemade equipment | 商用设备 Commercial equipment |
---|---|---|
灵活性 Flexibility | 可根据需求进行定制设计 Consumer can customize the design according to requirements | 固定功能 Fixed function |
技术支持 Technical support | 需自行维护 Requiring self-maintenance | 完善的售后服务 Comprehensive after-sales service |
使用场景 Usage scenarios | 适用于科研探索和特定的 需求 Suitable for scientific exploration and specific needs | 适用于大规模部署 Suitable for large- scale deployment |
表1 商用设备与自制设备特点比较
Table 1 Comparison of the characteristics of commercial equipment and self-made equipment
特点 Features | 自制设备 Homemade equipment | 商用设备 Commercial equipment |
---|---|---|
灵活性 Flexibility | 可根据需求进行定制设计 Consumer can customize the design according to requirements | 固定功能 Fixed function |
技术支持 Technical support | 需自行维护 Requiring self-maintenance | 完善的售后服务 Comprehensive after-sales service |
使用场景 Usage scenarios | 适用于科研探索和特定的 需求 Suitable for scientific exploration and specific needs | 适用于大规模部署 Suitable for large- scale deployment |
[1] | Beason RD, Riesch R, Koricheva J (2019) AURITA: An affordable, autonomous recording device for acoustic monitoring of audible and ultrasonic frequencies. Bioacoustics, 28, 381-396. |
[2] | Blumstein DT, Mennill DJ, Clemins P, Girod L, Yao K, Patricelli G, Deppe JL, Krakauer AH, Clark C, Cortopassi KA, Hanser SF, McCowan B, Ali AM, Kirschel ANG (2011) Acoustic monitoring in terrestrial environments using microphone arrays: Applications, technological considerations and prospectus. Journal of Applied Ecology, 48, 758-767. |
[3] | Britzke ER, Gillam EH, Murray KL (2013) Current state of understanding of ultrasonic detectors for the study of bat ecology. Acta Theriologica, 58, 109-117. |
[4] | Cagnacci F, Boitani L, Powell RA, Boyce MS (2010) Animal ecology meets GPS-based radiotelemetry: A perfect storm of opportunities and challenges. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 365, 2157-2162. |
[5] |
Chesmore ED, Ohya E (2004) Automated identification of field-recorded songs of four British grasshoppers using bioacoustic signal recognition. Bulletin of Entomological Research, 94, 319-330.
PMID |
[6] |
Darras K, Kolbrek B, Knorr A, Meyer V, Zippert M, Wenzel A (2018) Assembling cheap, high-performance microphones for recording terrestrial wildlife: The Sonitor system. F1000Research, 7, 1984.
DOI PMID |
[7] | Ding CT, Cao JN, Yang L, Wang SG (2019) Edge computing: Applications, state-of-the-art and challenges. ZTE Technology Journal, 25(3), 1-7. (in Chinese with English abstract) |
[丁春涛, 曹建农, 杨磊, 王尚广 (2019) 边缘计算综述: 应用、现状及挑战. 中兴通讯技术, 25(3), 1-7.] | |
[8] | Gibb R, Browning E, Glover-Kapfer P, Jones KE (2019) Emerging opportunities and challenges for passive acoustics in ecological assessment and monitoring. Methods in Ecology and Evolution, 10, 169-185. |
[9] |
Gottwald J, Lampe P, Höchst J, Friess N, Maier J, Leister L, Neumann B, Richter T, Freisleben B, Nauss T (2021) BatRack: An open-source multi-sensor device for wildlife research. Methods in Ecology and Evolution, 12, 1867-1874.
DOI |
[10] | Graviola GR, Ribeiro MC, Pena JC (2024) Human perception of birds in two Brazilian cities. Birds, 5, 202-216. |
[11] | Gregory RD, Gibbons DW, Donald PF (2004) Bird census and survey techniques. In: Bird Ecology and Conservation (ed. Sutherland WJ), pp.17-56. Oxford University Press, New York. |
[12] |
Guo QH, Hu TY, Jiang YX, Jin SC, Wang R, Guan HC, Yang QL, Li YM, Wu FF, Zhai QP, Liu J, Su YJ (2018) Advances in remote sensing application for biodiversity research. Biodiversity Science, 26, 789-806. (in Chinese with English abstract)
DOI |
[郭庆华, 胡天宇, 姜媛茜, 金时超, 王瑞, 关宏灿, 杨秋丽, 李玉美, 吴芳芳, 翟秋萍, 刘瑾, 苏艳军 (2018) 遥感在生物多样性研究中的应用进展. 生物多样性, 26, 789-806.]
DOI |
|
[13] | Heath BE, Suzuki R, Le Penru NP, Skinner J, Orme CDL, Ewers RM, Sethi SS, Picinali L (2024) Spatial ecosystem monitoring with a multichannel acoustic autonomous recording unit (MAARU). Methods in Ecology and Evolution, 15, 1568-1579. |
[14] | Hill AP, Prince P, Piña Covarrubias E, Doncaster CP, Snaddon JL, Rogers A (2018) AudioMoth: Evaluation of a smart open acoustic device for monitoring biodiversity and the environment. Methods in Ecology and Evolution, 9, 1199-1211. |
[15] | Hill AP, Prince P, Snaddon JL, Doncaster CP, Rogers A (2019) AudioMoth: A low-cost acoustic device for monitoring biodiversity and the environment. HardwareX, 6, e00073. |
[16] | Huang CJ, Yang YJ, Yang DX, Chen YJ (2009) Frog classification using machine learning techniques. Expert Systems with Applications, 36, 3737-3743. |
[17] |
Kadish D, Stoy K (2022) BioAcoustic index tool: Long-term biodiversity monitoring using on-sensor acoustic index calculations. Bioacoustics, 31, 348-378.
DOI |
[18] | Karlsson ECM, Tay H, Imbun P, Hughes AC (2021) The Kinabalu Recorder, a new passive acoustic and environmental monitoring recorder. Methods in Ecology and Evolution, 12, 2109-2116. |
[19] | Kershenbaum A, Owens JL, Waller S (2019) Tracking cryptic animals using acoustic multilateration: A system for long-range wolf detection. The Journal of the Acoustical Society of America, 145, 1619. |
[20] | Kiarie G, Maina CW (2021) Raspberry Pi based recording system for acoustic monitoring of bird species. In: 2021 IST-Africa Conference (IST-Africa), pp. 1-8. May 10-14, 2021, South Africa, South Africa. |
[21] | Kojima R, Sugiyama O, Hoshiba K, Suzuki R, Nakadai K (2018) HARK-bird-box:A Portable Real-time Bird Song Scene Analysis System. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2497-2502. October 1-5, 2018, Madrid, Spain. |
[22] | Küc̣üktopcu O, Masazade E, Ünsalan C, Varshney PK (2019) A real-time bird sound recognition system using a low-cost microcontroller. Applied Acoustics, 148, 194-201. |
[23] | Metcalf O, Abrahams C, Ashingto B, Baker E, Bradfer- Lawrence T, Browning E, Carruthers-Jones J, Darby J, Dick J, Eldridge A, Elliott D, Heath B, Howden-Leach P, Johnston A, Lees AC, Meyer C, Ruiz Arana U, Smyth S (2023) Good Practice Guidelines for Long-term Ecoacoustic Monitoring in the UK: With a Particular Focus on Terrestrial Biodiversity at the Human-audible Frequency Range. Institute of Acoustics (IOA), UK. |
[24] | Mosikidi T, Le Maitre N, Steenhuisen SL, Clark VR, Lloyd KS, Le Roux A (2023) Passive acoustic monitoring detects new records of globally threatened birds in a high-elevation wetland (Free State, South Africa). Bird Conservation International, 33, e80. |
[25] | Piña-Covarrubias E, Hill AP, Prince P, Snaddon JL, Rogers A, Doncaster CP (2019) Optimization of sensor deployment for acoustic detection and localization in terrestrial environments. Remote Sensing in Ecology and Conservation, 5, 180-192. |
[26] |
Podolskiy EA, Ogawa M, Thiebot JB, Johansen KL, Mosbech A (2024) Acoustic monitoring reveals a diel rhythm of an Arctic seabird colony (little auk, Alle alle). Communications Biology, 7, 307.
DOI PMID |
[27] | Qin YY, Zhao LH, Wang JC (2023) Roles and development trends of passive acoustic monitoring techniques for biodiversity conservation in national parks. National Park, 1, 264-271. (in Chinese with English abstract) |
[覃远玉, 赵龙辉, 汪继超 (2023) 被动声学监测技术在国家公园生物多样性保护中的作用及发展趋势. 国家公园(中英文), 1, 264-271.] | |
[28] |
Rhinehart TA, Chronister LM, Devlin T, Kitzes J (2020) Acoustic localization of terrestrial wildlife: Current practices and future opportunities. Ecology and Evolution, 10, 6794-6818.
DOI PMID |
[29] | Rossi M, Feese S, Amft O, Braune N, Martis S, Tröster G (2013) AmbientSense: A real-time ambient sound recognition system for smartphones. In: 2013 IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops), pp. 230-235. March 18-22, 2013, San Diego, CA, USA. |
[30] | Sethi SS, Ewers RM, Jones NS, Orme CDL, Picinali L (2018) Robust, real-time and autonomous monitoring of ecosystems with an open, low-cost, networked device. Methods in Ecology and Evolution, 9, 2383-2387. |
[31] | Sethi SS, Ewers RM, Jones NS, Signorelli A, Picinali L, Orme CDL (2020) SAFE Acoustics: An open-source, real-time eco-acoustic monitoring network in the tropical rainforests of Borneo. Methods in Ecology and Evolution, 11, 1182-1185. |
[32] | Sugai LSM, Llusia D (2019) Bioacoustic time capsules: Using acoustic monitoring to document biodiversity. Ecological Indicators, 99, 149-152. |
[33] |
Suzuki R, Matsubayashi S, Saito F, Murate T, Masuda T, Yamamoto K, Kojima R, Nakadai K, Okuno HG (2018) A spatiotemporal analysis of acoustic interactions between great reed warblers (Acrocephalus arundinaceus) using microphone arrays and robot audition software HARK. Ecology and Evolution, 8, 812-825.
DOI PMID |
[34] | Turgeon PJ, Van Wilgenburg SL, Drake KL (2017) Microphone variability and degradation: Implications for monitoring programs employing autonomous recording units. Avian Conservation and Ecology, 12, art9. |
[35] |
Verreycken E, Simon R, Quirk-Royal B, Daems W, Barber J, Steckel J (2021) Bio-acoustic tracking and localization using heterogeneous, scalable microphone arrays. Communications Biology, 4, 1275.
DOI PMID |
[36] | Whytock RC, Christie J (2017) Solo: An open source, customizable and inexpensive audio recorder for bioacoustic research. Methods in Ecology and Evolution, 8, 308-312. |
[37] | Wijers M, Loveridge A, MacDonald DW, Markham A (2021) CARACAL: A versatile passive acoustic monitoring tool for wildlife research and conservation. Bioacoustics, 30, 41-57. |
[38] |
Wu H, Xu XH, Feng XJ, Mi XC, Su YJ, Xiao ZS, Zhu CD, Cao L, Gao X, Song CY, Guo LD, Wu DH, Jiang JP, Shen H, Ma KP (2022) Progress and prospect of China biodiversity monitoring from a global perspective. Biodiversity Science, 30, 22434. (in Chinese with English abstract)
DOI |
[吴慧, 徐学红, 冯晓娟, 米湘成, 苏艳军, 肖治术, 朱朝东, 曹垒, 高欣, 宋创业, 郭良栋, 吴东辉, 江建平, 沈浩, 马克平 (2022) 全球视角下的中国生物多样性监测进展与展望. 生物多样性, 30, 22434.]
DOI |
|
[39] | Yen B, Prins J, Schmid G, Hioka Y, Ellis S, Marsland S (2022) Design of a low-cost passive acoustic monitoring system for animal localisation from calls. In: 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 9247-9252. October 23-27, 2022, Kyoto, Japan. |
[40] | Zhao K, Chen G, Zhang YY (2023) Bird diversity monitoring at Beijing Xiaolongmen Forest with acoustic indices. Journal of Beijing Normal University (Natural Science), 59, 607-613. (in Chinese with English abstract) |
[赵凯, 陈功, 张雁云 (2023) 基于声学指数监测北京小龙门林区鸟类多样性. 北京师范大学学报(自然科学版), 59, 607-613.] |
[1] | 苏荣菲, 陈睿山, 俞霖琳, 吴婧彬, 康燕. 基于红外相机调查的上海市长宁区社区生境花园生物多样性[J]. 生物多样性, 2024, 32(8): 24068-. |
[2] | 蔡颖莉, 朱洪革, 李家欣. 中国生物多样性保护政策演进、主要措施与发展趋势[J]. 生物多样性, 2024, 32(5): 23386-. |
[3] | 鄢德奎. 中国生物多样性保护政策的共同要素、不足和优化建议[J]. 生物多样性, 2024, 32(5): 23293-. |
[4] | 刘荆州, 钱易鑫, 张燕雪丹, 崔凤. 基于潜在迪利克雷分布(LDA)模型的旗舰物种范式研究进展与启示[J]. 生物多样性, 2024, 32(4): 23439-. |
[5] | 陈越, 毛子昆, 王绪高. 基于生态独特性的β多样性研究进展与未来展望[J]. 生物多样性, 2024, 32(12): 24199-. |
[6] | 刘莹莹, 龚立新, 曾皓, 冯江, 董永军, 王磊, 江廷磊. 被动声学监测在蝙蝠研究中的应用[J]. 生物多样性, 2024, 32(10): 24233-. |
[7] | 韩丽霞, 王永健, 刘宣. 外来物种入侵与本土物种分布区扩张的异同[J]. 生物多样性, 2024, 32(1): 23396-. |
[8] | 杜红. “物种”与“个体”: 究竟谁是生物多样性保护的恰当对象?[J]. 生物多样性, 2023, 31(8): 23140-. |
[9] | 陈声文, 任海保, 童光蓉, 王宁宁, 蓝文超, 薛建华, 米湘成. 钱江源国家公园木本植物物种多样性空间分布格局[J]. 生物多样性, 2023, 31(7): 22587-. |
[10] | 苏荣菲, 陈睿山, 郭晓娜. 城市社区更新中生物多样性的保护策略: 以上海市长宁区生境花园为例[J]. 生物多样性, 2023, 31(7): 23118-. |
[11] | 耿宜佳, 李子圆, 田瑜. 《生物多样性公约》下海洋生物多样性保护的进展、挑战和展望[J]. 生物多样性, 2023, 31(4): 22645-. |
[12] | 马海港, 范鹏来. 被动声学监测技术在陆生哺乳动物研究中的应用、进展和展望[J]. 生物多样性, 2023, 31(1): 22374-. |
[13] | 李爽, 朱彦鹏, 曹萌, 李俊生. 我国生物多样性保护标准体系现状、问题与建议[J]. 生物多样性, 2022, 30(11): 22117-. |
[14] | 张健, 孔宏智, 黄晓磊, 傅声雷, 郭良栋, 郭庆华, 雷富民, 吕植, 周玉荣, 马克平. 中国生物多样性研究的30个核心问题[J]. 生物多样性, 2022, 30(10): 22609-. |
[15] | 戴尊, 陈星, 张建行, 朱毛洁, 宋坤, 邢诗晨, 涂淑雯, 邹璐, 雷祖培, 李宏庆, 王健. 浙江乌岩岭国家级自然保护区叶附生苔类及附主植物多样性[J]. 生物多样性, 2022, 30(1): 21229-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn