生物多样性 ›› 2023, Vol. 31 ›› Issue (2): 22392. DOI: 10.17520/biods.2022392
所属专题: 土壤生物与土壤健康
杨预展1, 余建平2, 钱海源2, 陈小南2, 陈声文2, 袁志林1,*()
收稿日期:
2022-07-11
接受日期:
2022-09-27
出版日期:
2023-02-20
发布日期:
2022-11-11
通讯作者:
*袁志林, E-mail: yuanzl@caf.ac.cn
基金资助:
Yuzhan Yang1, Jianping Yu2, Haiyuan Qian2, Xiaonan Chen2, Shengwen Chen2, Zhilin Yuan1,*()
Received:
2022-07-11
Accepted:
2022-09-27
Online:
2023-02-20
Published:
2022-11-11
Contact:
*Zhilin Yuan, E-mail: yuanzl@caf.ac.cn
摘要:
建立健全国家公园体制对于保护自然生态系统的完整性与生物多样性具有重要意义。作为首批试点单位之一, 钱江源国家公园体制试点区(以下简称“钱江源”)率先开展了集体林地地役权改革, 并取得了良好效果。然而地役权改革是否以及如何影响钱江源土壤及其微生物, 目前还缺乏系统评估。本研究对钱江源4个片区中不同改革模式下的水稻田表层土壤进行取样, 每个片区内均采集4种模式的水稻田: 公园内改革、公园内弃耕地、公园内未改革以及公园外未改革。利用高通量测序研究土壤微生物群落的组成与结构, 并利用多元统计分析等剖析塑造微生物群落空间格局的驱动因素。结果发现, 与其他3类土壤相比, 弃耕地具有更低的氮磷等营养元素含量和重金属元素含量; 其他3类土壤的理化性质则较为相似。在微生物方面, 细菌群落以变形菌门(48.57%)和酸杆菌门(31.62%)为主; 真菌群落以子囊菌门(78.31%)和担子菌门(16.38%)为主。不同模式下的细菌群落差异较大, 尤其是弃耕地与其他3类均具有显著性差异, 其他3类则较为相似。真菌群落的变异相对较小, 仅公园外未改革和弃耕地间具有显著差异。细菌群落组成的空间变异与土壤环境因子显著相关, 其中具有主要影响的前5个环境因子分别是pH、铬、全氮、有效磷和有机质。真菌群落组成的空间变异与土壤环境因子间未发现显著相关性。中性群落模型分析发现, 中性过程对细菌和真菌群落组成差异的形成均有重要影响。综上, 初步认为, 存在水稻种植的情况下, 地役权改革尚未对水稻田土壤及其微生物起到显著影响; 放弃种植的弃耕地则可能已经处在再野化的初期阶段。因此, 地役权改革是否以及如何影响长期耕作土壤的恢复, 还需要结合长期的综合监测, 才能作出更为科学合理的判断。
杨预展, 余建平, 钱海源, 陈小南, 陈声文, 袁志林 (2023) 钱江源国家公园体制试点区水稻田土壤微生物群落的格局及其驱动机制. 生物多样性, 31, 22392. DOI: 10.17520/biods.2022392.
Yuzhan Yang, Jianping Yu, Haiyuan Qian, Xiaonan Chen, Shengwen Chen, Zhilin Yuan (2023) Spatial patterns of rice paddy microbial communities and the associated drivers in Qianjiangyuan National Park system pilot. Biodiversity Science, 31, 22392. DOI: 10.17520/biods.2022392.
图2 环境因子变化情况的热度图。上排条带自左向右分别表示4个片区: 红色为苏庄, 棕色为长虹, 绿色为何田, 蓝色为齐溪。下排每个片区内的4个条带自左向右分别表示四种改革模式: 红色为“改革”, 棕色为“未改革内”, 绿色为“未改革外”, 蓝色为“弃耕地”。Cr: 铬; TN: 总氮; AvP: 有效磷; OM: 有机质; Zn: 锌; Cd: 镉; TP: 总磷; Ni: 镍; Cu: 铜; As: 砷; Pb: 铅; BaP: 苯并芘; HN: 水解性氮; AvK: 有效钾; Hg: 汞; EC: 电导率。
Fig. 2 Heatmap of soil environmental factors. The upper ribbon represents four districts with red for Suzhuang, brown for Changhong, green for Hetian, and Blue for Qixi. The lower ribbon represents lands of four reform types with red for reformed land within the park, brown for unreformed land within the park, green for outside unreformed land, and blue for abandoned land within the park. TN, Total nitrogen; AvP, Available phosphorous; OM, Organic matter; TP, Total phosphorus; HN, Hydrolyzable nitrogen; AvK, Available potassium; EC, Electrical conductivity.
图3 土壤环境因子PCA聚类结果。改革: 公园内且已改革的水稻田; 未改革内: 公园内且未改革的水稻田; 弃耕地: 公园内已弃耕的水稻田; 未改革外: 公园外且未改革的水稻田。
Fig. 3 PCA plot of environmental factors. RefIn: Reformed land inside; UnrefIn: Unreformed land inside; AbdIn: Abandonded land inside; UnrefOut: Unreformed land outside.
图4 钱江源水稻田土壤细菌和真菌群落的分类学组成。(A)门/纲水平的细菌群落; (B)属水平的细菌群落; (C)门/纲水平的真菌群落; (D)属水平的真菌群落。4种改革模式的缩写含义见图3。
Fig. 4 Taxonomic composition of soil bacterial and fungal communities in Qianjiangyuan. (A) Bacterial communities at the phylum or class level. (B) Bacterial communities at the genus level. (C) Fungal communities at the phylum or class level. (D) Fungal communities at the genus level. Abbreviations of 4 management types see Fig. 3.
图5 钱江源土壤细菌和真菌群落的α多样性。(A-C)细菌多样性; (D-F)真菌多样性。图中仅标注了具有显著性差异的组别(** P < 0.01; * P < 0.05)。4种改革模式的缩写含义见图3。
Fig. 5 Alpha diversity of soil bacterial and fungal communities in Qianjiangyuan. (A-C) Soil bacterial communities. (D-F) Soil fungal communities. Group pairs that had significant difference were marked (** P < 0.01; * P < 0.05). Abbreviations of 4 management types see Fig. 3.
图6 土壤细菌和真菌群落NMDS聚类结果。(A)细菌群落; (B)真菌群落。4种改革模式的缩写含义见图3。
Fig. 6 NMDS plot of soil bacterial and fungal communities. (A) Bacterial communities. (B) Fungal communities. Abbreviations of 4 management types see Fig. 3.
因子 Factor | 独立解释度 Independent variance | 共同解释度 Shared variance | 因子总解释度 Total variance | 因子相对重要性 Dominance (%) |
---|---|---|---|---|
pH | 0.020 | 0.009 | 0.029 | 14.74 |
铬 Cr | 0.004 | 0.022 | 0.026 | 13.32 |
总氮 TN | 0.002 | 0.016 | 0.018 | 9.34 |
有效磷 AvP | 0.011 | 0.006 | 0.017 | 8.67 |
有机质 OM | -0.004 | 0.020 | 0.016 | 8.06 |
锌 Zn | -0.002 | 0.014 | 0.012 | 6.33 |
镉 Cd | -0.002 | 0.013 | 0.011 | 5.56 |
总磷 TP | 0.000 | 0.010 | 0.011 | 5.41 |
镍 Ni | 0.000 | 0.009 | 0.009 | 4.69 |
铜 Cu | 0.001 | 0.008 | 0.009 | 4.59 |
砷 As | 0.005 | 0.004 | 0.009 | 4.44 |
铅 Pb | 0.003 | 0.004 | 0.007 | 3.62 |
苯并芘 BaP | 0.005 | 0.002 | 0.007 | 3.47 |
水解性氮 HN | -0.002 | 0.006 | 0.004 | 2.24 |
有效钾 AvK | 0.001 | 0.004 | 0.004 | 2.19 |
汞 Hg | 0.001 | 0.003 | 0.004 | 1.89 |
电导率 EC | -0.003 | 0.005 | 0.003 | 1.33 |
表1 环境因子对细菌群落组成空间变异的解释度
Table 1 Explanatory power of environmental factors to spatial variation of bacterial community composition
因子 Factor | 独立解释度 Independent variance | 共同解释度 Shared variance | 因子总解释度 Total variance | 因子相对重要性 Dominance (%) |
---|---|---|---|---|
pH | 0.020 | 0.009 | 0.029 | 14.74 |
铬 Cr | 0.004 | 0.022 | 0.026 | 13.32 |
总氮 TN | 0.002 | 0.016 | 0.018 | 9.34 |
有效磷 AvP | 0.011 | 0.006 | 0.017 | 8.67 |
有机质 OM | -0.004 | 0.020 | 0.016 | 8.06 |
锌 Zn | -0.002 | 0.014 | 0.012 | 6.33 |
镉 Cd | -0.002 | 0.013 | 0.011 | 5.56 |
总磷 TP | 0.000 | 0.010 | 0.011 | 5.41 |
镍 Ni | 0.000 | 0.009 | 0.009 | 4.69 |
铜 Cu | 0.001 | 0.008 | 0.009 | 4.59 |
砷 As | 0.005 | 0.004 | 0.009 | 4.44 |
铅 Pb | 0.003 | 0.004 | 0.007 | 3.62 |
苯并芘 BaP | 0.005 | 0.002 | 0.007 | 3.47 |
水解性氮 HN | -0.002 | 0.006 | 0.004 | 2.24 |
有效钾 AvK | 0.001 | 0.004 | 0.004 | 2.19 |
汞 Hg | 0.001 | 0.003 | 0.004 | 1.89 |
电导率 EC | -0.003 | 0.005 | 0.003 | 1.33 |
图7 土壤细菌和真菌群落构建的Sloan中性群落模型分析结果。(A)细菌群落; (B)真菌群落。图中OTUs出现频率高于模型预测的为蓝色, 低于预测的为红色, 在预测范围内的为黑色。虚线表示模型预测的95%置信区间。R2代表了中性群落模型的整体拟合优度, m量化群落层面的迁移率。
Fig. 7 Fit of the Sloan’s neutral community model of (A) bacterial and (B) fungal communities. OTUs that occur more or less frequently than predicted by the model are shown in blue or red, while OTUs that occur as predicted are shown in black. The dashed blue lines represent 95% confidence intervals around the model prediction. R2 represents the goodness of fit of neutral community model and m represents the community-level migration.
[1] |
Ai C, Zhang SQ, Zhang X, Guo DD, Zhou W, Huang SM (2018) Distinct responses of soil bacterial and fungal communities to changes in fertilization regime and crop rotation. Geoderma, 319, 156-166.
DOI URL |
[2] |
Bardgett RD, van der Putten WH (2014) Belowground biodiversity and ecosystem functioning. Nature, 515, 505-511.
DOI |
[3] |
Barnard RL, Osborne CA, Firestone MK (2015) Changing precipitation pattern alters soil microbial community response to wet-up under a Mediterranean-type climate. The ISME Journal, 9, 946-957.
DOI |
[4] |
Caro TM, O’Doherty G (1999) On the use of surrogate species in conservation biology. Conservation Biology, 13, 805-814.
DOI URL |
[5] |
Edgar RC (2016) UNOISE2: Improved error-correction for Illumina 16S and ITS amplicon sequencing. bioRxiv, doi: 10.1101/081257.
DOI |
[6] | Ellis EC, Klein Goldewijk K, Siebert S, Lightman D, Ramankutty N (2010) Anthropogenic transformation of the biomes, 1700 to 2000. Global ecology and biogeography, 19, 589-606. |
[7] |
Favreau JM, Drew CA, Hess GR, Rubino MJ, Koch FH, Eschelbach KA (2006) Recommendations for assessing the effectiveness of surrogate species approaches. Biodiversity and Conservation, 15, 3949-3969.
DOI URL |
[8] |
Feng K, Zhang ZJ, Cai WW, Liu WZ, Xu MY, Yin HQ, Wang AJ, He ZL, Deng Y (2017) Biodiversity and species competition regulate the resilience of microbial biofilm community. Molecular Ecology, 26, 6170-6182.
DOI PMID |
[9] |
Folgarait PJ, Thomas F, Desjardins T, Grimaldi M, Tayasu I, Curmi P, Lavelle PM (2003) Soil properties and the macrofauna community in abandoned irrigated rice fields of northeastern Argentina. Biology and Fertility of Soils, 38, 349-357.
DOI URL |
[10] |
Ge JM, Wang S, Fan J, Gongadze K, Wu LH (2020) Soil nutrients of different land-use types and topographic positions in the water-wind erosion crisscross region of China’s Loess Plateau. CATENA, 184, 104243.
DOI URL |
[11] |
Geisen S, Wall DH, van der Putten WH (2019) Challenges and opportunities for soil biodiversity in the anthropocene. Current Biology, 29, R1036-R1044.
DOI |
[12] |
Guerra CA, Bardgett RD, Caon L, Crowther TW, Delgado- Baquerizo M, Montanarella L, Navarro LM, Orgiazzi A, Singh BK, Tedersoo L, Vargas-Rojas R, Briones MJI, Buscot F, Cameron EK, Cesarz S, Chatzinotas A, Cowan DA, Djukic I, van den Hoogen J, Lehmann A, Maestre FT, Marín C, Reitz T, Rillig MC, Smith LC, de Vries FT, Weigelt A, Wall DH, Eisenhauer N (2021) Tracking, targeting, and conserving soil biodiversity. Science, 371, 239-241.
DOI PMID |
[13] |
Ihrmark K, Bödeker ITM, Cruz-Martinez K, Friberg H, Kubartova A, Schenck J, Strid Y, Stenlid J, Brandström- Durling M, Clemmensen KE, Lindahl BD (2012) New primers to amplify the fungal ITS 2 region-evaluation by 454-sequencing of artificial and natural communities. FEMS Microbiology Ecology, 82, 666-677.
DOI URL |
[14] |
Jangid K, Williams MA, Franzluebbers AJ, Sanderlin JS, Reeves JH, Jenkins MB, Endale DM, Coleman DC, Whitman WB (2008) Relative impacts of land-use, management intensity and fertilization upon soil microbial community structure in agricultural systems. Soil Biology and Biochemistry, 40, 2843-2853.
DOI URL |
[15] |
Kong CH, Wang P, Gu Y, Xu XH, Wang ML (2008) Fate and impact on microorganisms of rice allelochemicals in paddy soil. Journal of Agricultural and Food Chemistry, 56, 5043-5049.
DOI PMID |
[16] |
Lai JS, Zou Y, Zhang JL, Peres-Neto PR (2022) Generalizing hierarchical and variation partitioning in multiple regression and canonical analyses using the rdacca.hp R package. Methods in Ecology and Evolution, 13, 782-788.
DOI URL |
[17] |
Li BY, Zhu YP, Liu WW, Li S, Fu MD, Ren YH, Cai X, Li JS (2021) Pilot areas for national park system in China: Progress, problems and recommendations. Biodiversity Science, 29, 283-289. (in Chinese with English abstract)
DOI |
[李博炎, 朱彦鹏, 刘伟玮, 李爽, 付梦娣, 任月恒, 蔡譞, 李俊生 (2021) 中国国家公园体制试点进展、问题及对策建议. 生物多样性, 29, 283-289.] | |
[18] |
Michelsen CF, Pedas P, Glaring MA, Schjoerring JK, Stougaard P (2014) Bacterial diversity in Greenlandic soils as affected by potato cropping and inorganic versus organic fertilization. Polar Biology, 37, 61-71.
DOI URL |
[19] |
Nguyen NH, Song ZW, Bates ST, Branco S, Tedersoo L, Menke J, Schilling JS, Kennedy PG (2016) FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecology, 20, 241-248.
DOI URL |
[20] |
Osburn ED, Aylward FO, Barrett JE (2021) Historical land use has long-term effects on microbial community assembly processes in forest soils. ISME Communications, 1, 48.
DOI |
[21] |
Peng YJ, Huang ZH, Lin LL, Wang RF, Cui GF (2021) Exploring evaluation methods for integrity and authenticity of terrestrial natural ecosystems in national parks: The case of Qianjiangyuan National Park system pilot. Biodiversity Science, 29, 1295-1307. (in Chinese with English abstract)
DOI |
[彭杨靖, 黄治昊, 林乐乐, 王锐锋, 崔国发 (2021) 国家公园陆地自然生态系统完整性与原真性评价方法探索: 以钱江源国家公园体制试点为例. 生物多样性, 29, 1295-1307.]
DOI |
|
[22] | Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2012) The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Research, 41, D590-D596. |
[23] | R Core Team (2017) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. |
[24] |
Rillig MC, Ryo M, Lehmann A, Aguilar-Trigueros CA, Buchert S, Wulf A, Iwasaki A, Roy J, Yang GW (2019) The role of multiple global change factors in driving soil functions and microbial biodiversity. Science, 366, 886-890.
DOI PMID |
[25] |
Shen CC, Xiong JB, Zhang HY, Feng YZ, Lin XG, Li XY, Liang WJ, Chu HY (2013) Soil pH drives the spatial distribution of bacterial communities along elevation on Changbai Mountain. Soil Biology and Biochemistry, 57, 204-211.
DOI URL |
[26] |
Shen XL, Li S, Ma KP (2021) Experiences of and suggestions for the development of the Qianjiangyuan-Baishanzu National Park pilot. Biodiversity Science, 29, 315-318. (in Chinese)
DOI URL |
[申小莉, 李晟, 马克平 (2021) 钱江源-百山祖国家公园试点经验与发展方向. 生物多样性, 29, 315-318.]
DOI |
|
[27] |
Sloan WT, Lunn M, Woodcock S, Head IM, Nee S, Curtis TP (2006) Quantifying the roles of immigration and chance in shaping prokaryote community structure. Environmental Microbiology, 8, 732-740.
PMID |
[28] |
Tang FL, Yan Y, Liu WG (2019) Construction progress of national park system in China. Biodiversity Science, 27, 123-127. (in Chinese with English abstract)
DOI |
[唐芳林, 闫颜, 刘文国 (2019) 我国国家公园体制建设进展. 生物多样性, 27, 123-127.]
DOI |
|
[29] |
Wang Y, Huang BR (2019) Institutional reform for building China’s national park system: Review and prospects. Biodiversity Science, 27, 117-122. (in Chinese with English abstract)
DOI |
[王毅, 黄宝荣 (2019) 中国国家公园体制改革: 回顾与前瞻. 生物多样性, 27, 117-122.]
DOI |
|
[30] |
Wang YF, Su HQ, Zhao XR, Su Y, Luo M (2019) Conservation easement-inspired adaptive management methods for natural protected areas: A case study on Qianjiangyuan National Park pilot. Biodiversity Science, 27, 88-96. (in Chinese with English abstract)
DOI |
[王宇飞, 苏红巧, 赵鑫蕊, 苏杨, 罗敏 (2019) 基于保护地役权的自然保护地适应性管理方法探讨: 以钱江源国家公园体制试点区为例. 生物多样性, 27, 88-96.]
DOI |
|
[31] |
Welbaum GE, Sturz AV, Dong ZM, Nowak J (2004) Managing soil microorganisms to improve productivity of agro- ecosystems. Critical Reviews in Plant Sciences, 23, 175-193.
DOI URL |
[32] |
Yang YZ, Gao YC, Huang XN, Ni P, Wu YN, Deng Y, Zhan AB (2019) Adaptive shifts of bacterioplankton communities in response to nitrogen enrichment in a highly polluted river. Environmental Pollution, 245, 290-299.
DOI PMID |
[33] |
Zang ZH, Xu WH, Ouyang ZY (2021) Exploration on the value realization of ecological products in China’s national park system pilots. Biodiversity Science, 29, 275-277. (in Chinese)
DOI |
[臧振华, 徐卫华, 欧阳志云 (2021) 国家公园体制试点区生态产品价值实现探索. 生物多样性, 29, 275-277.]
DOI |
|
[34] |
Zhao FJ, Ma YB, Zhu YG, Tang Z, McGrath SP (2015) Soil contamination in China: Current status and mitigation strategies. Environmental Science & Technology, 49, 750-759.
DOI URL |
[35] | Zhou JZ, Deng Y, Luo F, He ZL, Tu QC, Zhi XY (2010) Functional molecular ecological networks. mBio, 1, e00169-10. |
[36] |
Zhou ZH, Wang CK, Luo YQ (2020) Meta-analysis of the impacts of global change factors on soil microbial diversity and functionality. Nature Communications, 11, 3072.
DOI PMID |
[1] | 张旋, 徐颖, 杨颜慈, 赵艳玲, 门中华, 王永龙. 孑遗植物半日花叶际真菌群落的多样性与构建机制[J]. 生物多样性, 2024, 32(3): 23384-. |
[2] | 杜宇晨, 刘蓓萌, 陈俊峰, 王浩, 谢屹. 基于结构方程模型的农户保护意愿影响因素分析: 以东北虎豹国家公园珲春片区为例[J]. 生物多样性, 2024, 32(1): 23155-. |
[3] | 殷正, 张乃莉, 张春雨, 赵秀海. 长白山不同演替阶段温带森林木本植物菌根类型对林下草本植物多样性的影响[J]. 生物多样性, 2024, 32(1): 23337-. |
[4] | 耿云, 寇一祎, 范新卓, 徐姝瑶, 丛丽, 张玉钧. 基于卡诺模型的大熊猫国家公园自然教育需求研究[J]. 生物多样性, 2024, 32(1): 23101-. |
[5] | 李庆多, 栗冬梅. 全球蝙蝠巴尔通体流行状况分析[J]. 生物多样性, 2023, 31(9): 23166-. |
[6] | 段晓敏, 李佳佳, 李靖宇, 李艳楠, 袁存霞, 王英娜, 刘建利. 腾格里沙漠东南缘藓结皮植物-土壤连续体不同粒径土壤微生物群落多样性[J]. 生物多样性, 2023, 31(9): 23131-. |
[7] | 崔国发. 关于自然保护地整合优化工作中几个关键问题的讨论与建议[J]. 生物多样性, 2023, 31(9): 22447-. |
[8] | 张雅丽, 张丙昌, 赵康, 李凯凯, 刘燕晋. 毛乌素沙地不同类型生物结皮细菌群落差异及其驱动因子[J]. 生物多样性, 2023, 31(8): 23027-. |
[9] | 吴春玲, 罗竹慧, 李意德, 许涵, 陈德祥, 丁琼. 热带山地雨林木本豆科和樟科植物叶内生细菌群落: 物种与功能群多样性及驱动因子[J]. 生物多样性, 2023, 31(8): 23146-. |
[10] | 朱晓华, 高程, 王聪, 赵鹏. 尿素对土壤细菌与真菌多样性影响的研究进展[J]. 生物多样性, 2023, 31(6): 22636-. |
[11] | 毛莹儿, 周秀梅, 王楠, 李秀秀, 尤育克, 白尚斌. 毛竹扩张对杉木林土壤细菌群落的影响[J]. 生物多样性, 2023, 31(6): 22659-. |
[12] | 李世东. 中国和美国国家公园时空发展及驱动因素[J]. 生物多样性, 2023, 31(6): 23040-. |
[13] | 邓昶, 郝杰威, 高德, 任明迅, 张莉娜. 海南受威胁苔藓植物适生热点区域识别与保护[J]. 生物多样性, 2023, 31(4): 22580-. |
[14] | 沈诗韵, 潘远飞, 陈丽茹, 土艳丽, 潘晓云. 喜旱莲子草原产地和入侵地种群的植物-土壤反馈差异[J]. 生物多样性, 2023, 31(3): 22436-. |
[15] | 龚心语, 黄宝荣. 国家公园全民公益性评估指标体系: 以青藏高原国家公园群为例[J]. 生物多样性, 2023, 31(3): 22571-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn