生物多样性 ›› 2020, Vol. 28 ›› Issue (10): 1222-1228.  DOI: 10.17520/biods.2019383

所属专题: 传粉生物学 昆虫多样性与生态功能

• 研究报告: 动物多样性 • 上一篇    下一篇

榕小蜂温度耐受性及其对种间共存关系的影响

陈欢欢1,2, 李竹梅1, 唐利洲1,*()   

  1. 1 曲靖师范学院云南高原生物资源保护与利用研究中心/生物资源与食品工程学院/云南省高校云贵高原动植物多样性及生态适应性进化重点实验室, 云南曲靖 655011
    2 中国科学院西双版纳热带植物园综合保护中心, 云南勐腊 666303
  • 收稿日期:2019-12-04 接受日期:2020-02-22 出版日期:2020-10-20 发布日期:2020-10-20
  • 通讯作者: 唐利洲
  • 作者简介:E-mail: biologytang@163.com
  • 基金资助:
    国家自然科学基金(31860620);国家自然科学基金(31260145);云南省科技厅项目(2017FG001-051);云南省高校滇西昆虫资源保护与利用重点实验室建设项目(云教发[2019]57号)

Effects of fig wasp temperature tolerance on interspecific coexistence

Huanhuan Chen1,2, Zhumei Li1, Lizhou Tang1,*()   

  1. 1 Center for Yunnan Plateau Biological Resources Protection and Utilization/College of Biological Resource and Food Engineering/Key Laboratory of Yunnan Province University of the Diversity and Ecological Adaptive Evolution for Animals and Plants on Yungui Plateau, Qujing Normal University, Qujing, Yunnan 655011
    2 Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303
  • Received:2019-12-04 Accepted:2020-02-22 Online:2020-10-20 Published:2020-10-20
  • Contact: Lizhou Tang

摘要:

全球已知有约800种榕属(Ficus)植物, 主要分布在热带, 部分种类延伸至亚热带地区。温度是限制榕‒蜂共生系统分布北界的主要因素, 也显著影响榕树及其榕小蜂的繁殖成功, 其中榕小蜂对温度的响应更加敏感。榕小蜂只有在一定的温度范围内才能保持正常的生理机能, 其对温度耐受能力直接影响榕果内小蜂种群数量和群落内种间关系。然而目前对榕小蜂温度耐受性的研究尚少, 榕小蜂的温度耐受能力如何影响榕果内小蜂的共存关系还未见报道。本文研究了分布于西双版纳的2种雌雄同株和1种雌雄异株榕树果内传粉榕小蜂和非传粉小蜂的温度耐受能力。结果表明: 3种传粉榕小蜂对高温的耐受性极差, 相对于雌雄同株的高榕(F. altissima)和聚果榕(F. racemosa)传粉榕小蜂, 雌雄异株的鸡嗉子榕(F. semicordata)传粉榕小蜂对低温有增强的耐受趋势。聚果榕小蜂群落结构显示: 在适宜其生长的西双版纳地区, 传粉榕小蜂的数量占绝对优势, 在温度较低的季节其数量显著减少; 而非传粉榕小蜂呈相反模式, 较强的温度耐受能力使其在低温的雾凉季维持了较高的种群数量。鸡嗉子榕果内非传粉小蜂Sycoscapter trifemmensis相对于Philotrypesis dunia有更强的温度耐受能力, 在种群数量和种间关系上有更多的竞争优势及数量。榕小蜂的温度耐受性差异在物种分布、种间关系的维持和共存上起了重要作用, 本研究结果为阐明榕小蜂种间共存的维持机制提供了科学依据。

关键词: 榕小蜂, 生理特性, 温度耐受性, 群落动态

Abstract

There are about 800 species of fig trees in the world, which are mainly distributed in tropics, some species extend to subtropics. Fig trees rely on agaonid fig wasps to pollinate and are also exploited by some non-pollinating fig wasps. Fig wasps depend heavily on temperature who can only maintain normal physiological functions within a certain temperature range that is more sensitive than fig trees. Temperature directly affects the fig wasp’s abundance and interspecific relationships. However, lack of research leaves a knowledge gap in our understanding of how fig wasp temperature tolerance affects the coexistence of wasps in fig. We conducted the experiment of temperature tolerance on six species of fig wasps from monecious Ficus altissima and F. racemosa, and dioecious F. semicordata in Xishuangbanna. Our results show that high temperature tolerance of all pollinating fig wasps was low, while the tolerance of Ceratosolen gravelyi on F. semicordata to low temperature was enhanced. When looking at fig wasp community composition on F. racemosa, the pollinating fig wasp are dominant species, but the population was decreased significantly in low temperature seasons in Xishuangbanna. While non-pollinating fig wasps showed the opposite pattern, which maintained high abundances during the cool-foggy season with low temperature due to greater temperature tolerances. On F. semicordata, non-pollinating fig wasps Sycoscapter trifemmensis had stronger temperature tolerance than Philotrypesis dunia so that the former had competitive advantage and large population. Differences in temperature tolerance of fig wasps plays an important role in species distribution, maintaining interspecific relationships and coexistence. Our results provide scientific evidence for understanding fig wasp coexistence.

Key words: fig wasp, physiology, temperature tolerance, community dynamic