生物多样性 ›› 2024, Vol. 32 ›› Issue (3): 23307. DOI: 10.17520/biods.2023307 cstr: 32101.14.biods.2023307
冯志荣1,2, 陈明波1, 杨小芳1,2, 王刚1, 董乙乂1, 彭艳琼1(), 陈华燕3(), 王波1,*()()
收稿日期:
2023-08-30
接受日期:
2023-11-21
出版日期:
2024-03-20
发布日期:
2023-11-29
通讯作者:
*E-mail: wangbo@xtbg.ac.cn
基金资助:
Zhirong Feng1,2, Mingbo Chen1, Xiaofang Yang1,2, Gang Wang1, Yiyi Dong1, Yanqiong Peng1(), Huayan Chen3(), Bo Wang1,*()()
Received:
2023-08-30
Accepted:
2023-11-21
Online:
2024-03-20
Published:
2023-11-29
Contact:
*E-mail: wangbo@xtbg.ac.cn
摘要:
物种-资源利用网络可以呈现不同物种在资源利用上的竞争、共享以及分化, 可为从资源利用角度解释群落的物种多样性提供新的视角。昆虫群落一方面由群落内种间对资源的利用方式决定, 也受寄主植物生态特征的影响。通过寄主生态特征解释物种-资源利用网络指标将深入揭示昆虫群落的组织模式和多样性决定机制。本研究采集榕属(Ficus) 18种榕树的榕小蜂群落, 构建每种榕树上的榕小蜂-榕果资源利用网络, 分析网络指标间的关系。我们重点关注了群落物种数(物种多样性)和群落稳健度指标与其他网络指标间的关系, 并比较不同寄主特征(传粉模式、生活型、繁育系统)对榕小蜂物种数以及榕小蜂-榕果资源利用网络指标的影响。结果显示, 18种榕树上共收集到隶属于5科28属173种榕小蜂。榕小蜂群落物种数与网络的连接度呈负相关, 与分化度呈显著的正相关; 网络稳健度与物种数无显著相关关系, 但与连接度、加权嵌套性、互作Shannon多样性、分布重叠度呈显著正相关关系, 而与互作专化度、分化度呈显著负相关。与雌雄异株榕树相比, 雌雄同株榕树的榕小蜂资源利用的互作专化度高, 种间分布重叠度小, 分化度高(资源利用分化高), 所以雌雄同株榕树比雌雄异株榕树上榕小蜂物种数多。本研究支持资源利用的特异性和分化促进了榕小蜂物种多样性, 支持竞争导致的资源利用分化在促进近缘种多样化过程中发挥重要作用。群落对资源丢失的稳健度与群落的物种数无关, 但是与物种的资源共享程度(由连接度、分布重叠度表示)正相关。此外, 繁育系统间榕小蜂物种数的差异可能与雌雄异株榕树繁殖功能的分化和专化以及对非传粉榕小蜂产卵的防御能力有关。
冯志荣, 陈明波, 杨小芳, 王刚, 董乙乂, 彭艳琼, 陈华燕, 王波 (2024) 榕树繁育系统及榕小蜂资源利用塑造了榕小蜂群落. 生物多样性, 32, 23307. DOI: 10.17520/biods.2023307.
Zhirong Feng, Mingbo Chen, Xiaofang Yang, Gang Wang, Yiyi Dong, Yanqiong Peng, Huayan Chen, Bo Wang (2024) The Ficus breeding system and the resource utilization of fig wasps shape the fig wasp community. Biodiversity Science, 32, 23307. DOI: 10.17520/biods.2023307.
榕树亚属 Ficus subgenus | 榕树名 Ficus species (abbreviation) | 采集时间 Sampling time | 采集地点 Sampling site | 繁育系统 Breeding system | 传粉模式 Pollination type | 生活型 Life form |
---|---|---|---|---|---|---|
榕亚属 Urostigma | 高山榕 F. altissima (alt) | 2021.5-2022.4 | 西双版纳热带植物园及其周边地区 Xishuangbanna Tropical Botanical Garden (XTBG) and its surroundings | 雌雄同株Monoecious | 主动 Active | 大乔木 Mega |
细叶榕 F. microcarpa (mic) | 2021.9-2022.4 | 西双版纳热带植物园及其周边地区和普洱市(22°48° N, 100°58° E) XTBG and its surroundings, Pu’er (22°48° N, 100°58° E) | 雌雄同株Monoecious | 主动 Active | 乔木 Macro | |
环纹榕 F. annulata (ann) | 2020.12-2022.2 | 西双版纳热带植物园内 XTBG | 雌雄同株Monoecious | 被动 Passive | 乔木 Macro | |
雅榕 F. concinna (con) | 2020.12-2023.3 | 西双版纳热带植物园及其周边地区 XTBG and its surroundings | 雌雄同株Monoecious | 主动 Active | 大乔木 Mega | |
大叶水榕 F. glaberrima (gla) | 2021.1-2022.6 | 西双版纳热带植物园及其周边地区 XTBG and its surroundings | 雌雄同株Monoecious | 主动 Active | 乔木 Macro | |
垂叶榕 F. benjamina (ben) | 2020.1-2021.8 | 西双版纳热带植物园及其周边地区 XTBG and its surroundings | 雌雄同株Monoecious | 主动 Active | 乔木 Macro | |
钝叶榕 F. curtipes (cur) | 2020.8-2021.9 | 西双版纳热带植物园及其周边地区 XTBG and its surroundings | 雌雄同株Monoecious | 被动 Passive | 乔木 Macro | |
聚果榕属 Sycomorns | 聚果榕 F. racemosa (rac) | 2020.1-2021.7 | 西双版纳热带植物园及其周边地区 XTBG and its surroundings | 雌雄同株Monoecious | 主动 Active | 大乔木 Mega |
肉托榕 F. squamosa (squ) | 2021.5-2022.5 | 西双版纳热带植物园及其周边地区和景洪市(22°04′- 22°17′ N, 100°32′-100°44′ E) XTBG and its surroundings, Jinghong (22°04′-22°17′ N, 100°32′-100°44′ E) | 雌雄异株Dioecious | 主动 Active | 灌木 Shrub | |
鸡嗉子 F. semicordata (sem) | 2020.11-2022.4 | 西双版纳热带植物园及其周边地区 XTBG and its surroundings | 雌雄异株Dioecious | 主动 Active | 小乔木 Micro | |
苹果榕 F. oligodon (oli) | 2021.3-2021.5 | 西双版纳热带植物园及其周边地区 XTBG and its surroundings | 雌雄异株Dioecious | 主动 Active | 小乔木 Micro | |
木瓜榕 F. auriculata (aur) | 2021.3-2022.3 | 西双版纳热带植物园及其周边地区 XTBG and its surroundings | 雌雄异株Dioecious | 主动 Active | 小乔木 Micro | |
异形花榕 F. heterostyla (het) | 2020.12-2022.5 | 西双版纳热带植物园内 XTBG | 雌雄异株Dioecious | 主动 Active | 小乔木 Micro | |
对叶榕 F. hispada (his) | 2020.8-2021.7 | 西双版纳热带植物园及其周边地区 XTBG and its surroundings | 雌雄异株Dioecious | 主动 Active | 小乔木 Micro | |
糙叶榕属 Sycidium | 斜叶榕 F. tinctoria (tin) | 2021.1-2022.1 | 西双版纳热带植物园内 XTBG | 雌雄异株Dioecious | 主动 Active | 大乔木 Macro |
假斜叶榕 F. subulata (sub) | 2022.5 | 西双版纳热带植物园内 XTBG | 雌雄异株Dioecious | 主动 Active | 灌木 Shrub | |
歪叶榕 F. cyrtophylla (cyr) | 2020.3-2022.3 | 西双版纳热带植物园内 XTBG | 雌雄异株Dioecious | 被动 Passive | 小乔木 Micro | |
白肉榕属 Pharmacosycea | 硬皮榕 F. callosa (cal) | 2020.10-2021.3 | 西双版纳热带植物园及其周边地区 XTBG and its surroundings | 雌雄同株Monoecious | 主动 Active | 大乔木 Mega |
表1 本研究选取的18种榕树样本
Table 1 The 18 Ficus species sample selected for this study
榕树亚属 Ficus subgenus | 榕树名 Ficus species (abbreviation) | 采集时间 Sampling time | 采集地点 Sampling site | 繁育系统 Breeding system | 传粉模式 Pollination type | 生活型 Life form |
---|---|---|---|---|---|---|
榕亚属 Urostigma | 高山榕 F. altissima (alt) | 2021.5-2022.4 | 西双版纳热带植物园及其周边地区 Xishuangbanna Tropical Botanical Garden (XTBG) and its surroundings | 雌雄同株Monoecious | 主动 Active | 大乔木 Mega |
细叶榕 F. microcarpa (mic) | 2021.9-2022.4 | 西双版纳热带植物园及其周边地区和普洱市(22°48° N, 100°58° E) XTBG and its surroundings, Pu’er (22°48° N, 100°58° E) | 雌雄同株Monoecious | 主动 Active | 乔木 Macro | |
环纹榕 F. annulata (ann) | 2020.12-2022.2 | 西双版纳热带植物园内 XTBG | 雌雄同株Monoecious | 被动 Passive | 乔木 Macro | |
雅榕 F. concinna (con) | 2020.12-2023.3 | 西双版纳热带植物园及其周边地区 XTBG and its surroundings | 雌雄同株Monoecious | 主动 Active | 大乔木 Mega | |
大叶水榕 F. glaberrima (gla) | 2021.1-2022.6 | 西双版纳热带植物园及其周边地区 XTBG and its surroundings | 雌雄同株Monoecious | 主动 Active | 乔木 Macro | |
垂叶榕 F. benjamina (ben) | 2020.1-2021.8 | 西双版纳热带植物园及其周边地区 XTBG and its surroundings | 雌雄同株Monoecious | 主动 Active | 乔木 Macro | |
钝叶榕 F. curtipes (cur) | 2020.8-2021.9 | 西双版纳热带植物园及其周边地区 XTBG and its surroundings | 雌雄同株Monoecious | 被动 Passive | 乔木 Macro | |
聚果榕属 Sycomorns | 聚果榕 F. racemosa (rac) | 2020.1-2021.7 | 西双版纳热带植物园及其周边地区 XTBG and its surroundings | 雌雄同株Monoecious | 主动 Active | 大乔木 Mega |
肉托榕 F. squamosa (squ) | 2021.5-2022.5 | 西双版纳热带植物园及其周边地区和景洪市(22°04′- 22°17′ N, 100°32′-100°44′ E) XTBG and its surroundings, Jinghong (22°04′-22°17′ N, 100°32′-100°44′ E) | 雌雄异株Dioecious | 主动 Active | 灌木 Shrub | |
鸡嗉子 F. semicordata (sem) | 2020.11-2022.4 | 西双版纳热带植物园及其周边地区 XTBG and its surroundings | 雌雄异株Dioecious | 主动 Active | 小乔木 Micro | |
苹果榕 F. oligodon (oli) | 2021.3-2021.5 | 西双版纳热带植物园及其周边地区 XTBG and its surroundings | 雌雄异株Dioecious | 主动 Active | 小乔木 Micro | |
木瓜榕 F. auriculata (aur) | 2021.3-2022.3 | 西双版纳热带植物园及其周边地区 XTBG and its surroundings | 雌雄异株Dioecious | 主动 Active | 小乔木 Micro | |
异形花榕 F. heterostyla (het) | 2020.12-2022.5 | 西双版纳热带植物园内 XTBG | 雌雄异株Dioecious | 主动 Active | 小乔木 Micro | |
对叶榕 F. hispada (his) | 2020.8-2021.7 | 西双版纳热带植物园及其周边地区 XTBG and its surroundings | 雌雄异株Dioecious | 主动 Active | 小乔木 Micro | |
糙叶榕属 Sycidium | 斜叶榕 F. tinctoria (tin) | 2021.1-2022.1 | 西双版纳热带植物园内 XTBG | 雌雄异株Dioecious | 主动 Active | 大乔木 Macro |
假斜叶榕 F. subulata (sub) | 2022.5 | 西双版纳热带植物园内 XTBG | 雌雄异株Dioecious | 主动 Active | 灌木 Shrub | |
歪叶榕 F. cyrtophylla (cyr) | 2020.3-2022.3 | 西双版纳热带植物园内 XTBG | 雌雄异株Dioecious | 被动 Passive | 小乔木 Micro | |
白肉榕属 Pharmacosycea | 硬皮榕 F. callosa (cal) | 2020.10-2021.3 | 西双版纳热带植物园及其周边地区 XTBG and its surroundings | 雌雄同株Monoecious | 主动 Active | 大乔木 Mega |
图1 18种榕树上榕小蜂群落采样完整性与物种多样性。希尔数: q = 0, 1, 2分别表示物种丰富度(即物种数); Shannon多样性(即衡量群落中典型或者常见物种数量的指标); Simpson指数(即衡量群落中优势种数量的指标)。
Fig. 1 Sampling thoroughness and species diversity of fig wasps community from 18 Ficus species. Hill number: q = 0, 1, 2 represents species richness (i.e., number of species), Shannon diversity (i.e. number of typical or common species in a community), Simpson index (i.e. number of dominant species in the community), respectively.
图2 基于18种榕树上的榕小蜂群落计算的榕小蜂-榕果资源利用网络指标随榕果重抽样数量的变化趋势。H2’: 互作专化度; WNODF: 加权嵌套性。
Fig. 2 Trends of fig wasp-fig resource network metrics in response to changes in sampling efforts across the 18 fig wasp communities. H2’, Specialization; WNODF, Weighted nestedness metric based on overlap and decreasing fill; S, Fig wasp species richness.
图3 榕小蜂-榕果资源利用网络指标两两间的相关性及其显著性水平。图中对角线下方为网络指标两两对应的散点图, 横向与纵向的数字分别代表散点图的横纵坐标值, 图中小圆圈表示每种榕树在该散点图上对应的点, 小圆圈中的曲线表示散点拟合的线性回归曲线, 对角线上的柱形图表示网络指标的频率分布, 柱形图上的线表示拟合的分布曲线; 对角线上方的方框中列出了指标间相关系数(Pearson相关性r)的值及统计显著性水平。榕小蜂-榕果资源利用网络指标缩写: C: 连接度; WNODF: 加权嵌套性; Shannon: 互作Shannon多样性; H2’: 互作专化度; R: 稳健度; CS: 分化度; S: 榕小蜂物种丰富度; DO: 分布重叠度。*** P < 0.001; ** P < 0.01; * P < 0.05; NS: P ≥ 0.05。
Fig. 3 Correlation and significance level of fig wasp-fig resource utility network metrics. In the lower left corner of the figure is the pairwise scatter plot corresponding to network metrics, the horizontal and vertical numbers respectively represent coordinate scale value in the scatter plot, the small circles represent the corresponding points of each Ficus tree on the scatter plot, the curves in the small circles represent the linear regression curve fitted by the scatter points, and the histogram on the diagonal represents the frequency distribution of network metrics. The line on the bar graph represents the fitted distribution curve; The value of the correlation coefficient between the network metrics (Pearson correlation r) and the level of statistical significance are listed in the box in the upper right corner in red. Abbreviations of network indecies: C, Connectance; WNODF, Weighted nestedness metric based on overlap and decreasing fill; Shannon, Shannon diversity for interactions; H2’, Specialization; R, Robustness; CS, C Score; S, Number of fig wasps; DO, Distribution overlap.
图4 榕树不同繁育系统榕小蜂-榕果资源利用网络指标的比较。C: 连接度; WNODF: 加权嵌套性; Shannon: 互作Shannon多样性; H2’: 互作专化度; R: 稳健度; CS: 分化度。S: 榕小蜂物种丰富度; DO: 分布重叠度。*** P < 0.001; ** P < 0.01; * P < 0.05; NS: 不显著。
Fig. 4 Comparison of fig wasp-fig resource utility network metrics in different breeding systems of Ficus tree. C, Connectance; WNODF, Weighted nestedness metric based on overlap and decreasing fill; Shannon, Shannon diversity for interactions; H2’, Specialization; R, Robustness; CS, C score; S, Number of fig wasps; DO, Distribution overlap.
[1] | Abdurahiman UC, Joseph KJ (1967) Contributions to our knowledge of fig-insects (Chalcidoidea: parasitic hymenoptera) from India: (New Series). I. Notes on some new and interesting fig-insects. Oriental Insects, 1, 1-19. |
[2] | Arora R, Sandhu S (2017) Insect-plant interrelationships. In: Breeding Insect Resistant Crops for Sustainable Agriculture (eds Arora R, Sandhu S), pp. 1-44. Springer, Singapore. |
[3] | Bai LF, Yang DR, Shi ZH, Peng YQ, Zhai SW (2006) Community structure of fig wasp in Ficus benjamina in different habitats. Biodiversity Science, 14, 340-344. (in Chinese with English abstract) |
[ 白莉芬, 杨大荣, 石章红, 彭艳琼, 翟树伟 (2006) 垂叶榕隐头果内小蜂群落结构与生境关系的初步研究. 生物多样性, 14, 340-344.]
DOI |
|
[4] |
Blomberg SP, Garland Jr T, Ives AR (2003) Testing for phylogenetic signal in comparative data: Behavioral traits are more labile. Evolution, 57, 717-745.
DOI PMID |
[5] |
Borges R, Machado JP, Gomes C, Rocha AP, Antunes A (2019) Measuring phylogenetic signal between categorical traits and phylogenies. Bioinformatics, 35, 1862-1869.
DOI PMID |
[6] | Bouček Z (1988) Australasian Chalcidoidea (Hymenoptera). In: A Biosystematic Revision of Genera of Fourteen Families, with a Reclassification of Species. CAB International, Wallingford, Oxon. |
[7] | Chao A, Gotelli NJ, Hsieh TC, Sander EL, Ma KH, Colwell RK, Ellison AM (2014) Rarefaction and extrapolation with Hill numbers: A framework for sampling and estimation in species diversity studies. Ecological Monographs, 84, 45-67. |
[8] |
Compton SG, Hawkins BA (1992) Determinants of species richness in southern African fig wasp assemblages. Oecologia, 91, 68-74.
DOI PMID |
[9] | Dormann CF, Fründ J, Blüthgen N, Gruber B (2009) Indices, graphs and null models: Analyzing bipartite ecological networks. The Open Ecology Journal, 2, 7-24. |
[10] | Dormann CF, Gruber B, Fründ J (2008) Introducing the bipartite package: Analysing ecological networks. R News, 1, 8-11. |
[11] | Farache FHA, Cruaud A, Rasplus JY, Cerezini MT, Rattis L, Kjellberg F, Pereira RAS (2018) Insights into the structure of plant-insect communities: Specialism and generalism in a regional set of non-pollinating fig wasp communities. Acta Oecologica, 90, 49-59. |
[12] |
Feng ZR, Chen YC, Peng YQ, Li L, Wang B (2023) Ecological network analysis: From metacommunity to metanetwork. Biodiversity Science, 31, 23171. (in Chinese with English abstract)
DOI |
[ 冯志荣, 陈有城, 彭艳琼, 李莉, 王波 (2023) 生态网络分析: 从集合群落到集合网络. 生物多样性, 31, 23171.]
DOI |
|
[13] |
Fritz SA, Purvis A (2010) Selectivity in mammalian extinction risk and threat types: A new measure of phylogenetic signal strength in binary traits. Conservation Biology, 24, 1042-1051.
DOI PMID |
[14] | Galil J, Eisikowitch D (1968) On the pollination ecology of Ficus sycomorus in East Africa. Ecology, 49, 259-269. |
[15] |
Gause GF (1934) Experimental analysis of vito volterra’s mathematical theory of the struggle for existence. Science, 79, 16-17.
PMID |
[16] | He HY, Wang N, Dong L (2021) A case study to investigate the foraging pattern of urban birds on edible plants in Beijing. Chinese Journal of Zoology, 56, 491-499. (in Chinese with English abstract) |
[ 何海燕, 王楠, 董路 (2021) 北京城市鸟类对食源植物利用规律. 动物学杂志, 56, 491-499.] | |
[17] | Hill MO (1973) Diversity and evenness: A unifying notation and its consequences. Ecology, 54, 427-432. |
[18] | Hsieh TC, Ma KH, Chao A (2016) iNEXT: An R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods in Ecology and Evolution, 7, 1451-1456. |
[19] | Jandér KC, Herre EA (2010) Host sanctions and pollinator cheating in the fig tree-fig wasp mutualism. Proceedings of the Royal Society B: Biological Sciences, 277, 1481-1488. |
[20] | Jordano P (1987) Patterns of mutualistic interactions in pollination and seed dispersal: Connectance, dependence asymmetries, and coevolution. The American Naturalist, 129, 657-677. |
[21] | Kerdelhué C, Rasplus JY (1996) The evolution of dioecy among Ficus (Moraceae): An alternative hypothesis involving non-pollinating fig wasp pressure on the fig-pollinator mutualism. Oikos, 77, 163-166. |
[22] | Kerdelhué C, Rossi JP, Rasplus JY (2000) Comparative community ecology studies on old world figs and fig wasps. Ecology, 81, 2832-2849. |
[23] | Kjellberg F, Jousselin E, Bronstein JL, Patel A, Yokoyama J, Rasplus JY (2001) Pollination mode in fig wasps:The predictive power of correlated traits. Proceedings of the Royal Society Series B: Biological Sciences, 268, 1113-1121. |
[24] | Krebs CJ (1999) Ecological Methodology, 2nd edn. Benjamin Cummings, California. |
[25] | Krebs JR, Sherry DF, Healy SD, Perry VH, Vaccarino AL (1989) Hippocampal specialization of food-storing birds. . Proceedings of the National Academy of Sciences, USA, 86, 1388-1392. |
[26] | Lemos-Costa P, Pires MM, Araújo MS, Guimarães JPR (2016) Network analyses support the role of prey preferences in shaping resource use patterns within five animal populations. Oikos, 125, 492-501. |
[27] | Letten AD, Ke PJ, Fukami T (2017) Linking modern coexistence theory and contemporary niche theory. Ecological Monographs, 87, 161-177. |
[28] | Li XZ, Wang BC, Yang JC, Se YJ, Guo YM (2022) Habitat selection of subadults of black-necked crane in summer in Yanchiwan, Gansu Province, China. Chinese Journal of Zoology, 57, 185-195. (in Chinese with English abstract) |
[ 李雪竹, 王博驰, 杨巨才, 色拥军, 郭玉民 (2022) 甘肃盐池湾黑颈鹤亚成体夏季生境选择. 动物学杂志, 57, 185-195.] | |
[29] | Liu MX, Yang P, Yang DR, Peng YQ (2017) Pollination mode of four Ficus species and pollen characteristics. Journal of Yunnan Agricultural University (Natural Science), 32, 294-302. (in Chinese with English abstract) |
[ 刘明新, 杨培, 杨大荣, 彭艳琼 (2017) 4种榕树的授粉方式及其花粉特征. 云南农业大学学报(自然科学), 32, 294-302.] | |
[30] | MacArthur RH, Wilson EO (1963) An equilibrium theory of insular zoogeography. Evolution, 17, 373-387. |
[31] | Manhães MA, de Lima WO, Palácio FB (2022) Variation in bird taxonomic distinctness, but not body mass or niche overlap, explains the robustness of Neotropical seed dispersal networks. Animal Biology, 72, 335-352. |
[32] | Marini L, Bartomeus I, Rader R, Lami F (2019) Species-habitat networks: A tool to improve landscape management for conservation. Journal of Applied Ecology, 56, 923-928. |
[33] | Memmott J, Waser NM, Price MV (2004) Tolerance of pollination networks to species extinctions. Proceedings of the Royal Society Series B: Biological Sciences, 271, 2605-2611. |
[34] | Miao RZ, Liu G, Bi JJ, Zhang HJ, Chen XS, Zhu HQ (2023) Niche differentiation among of three species of Mustelidae in Qingsong Forest Area of Shulan City, Jilin Province. Chinese Journal of Zoology, 58, 30-42. (in Chinese with English abstract) |
[ 苗润泽, 刘庚, 毕靖吉, 张宏静, 陈旭升, 朱洪强 (2023) 吉林省舒兰市青松林区三种鼬科动物生态位的差异. 动物学杂志, 58, 30-42.] | |
[35] | Münkemüller T, Lavergne S, Bzeznik B, Dray S, Jombart T, Schiffers K, Thuiller W (2012) How to measure and test phylogenetic signal. Methods in Ecology and Evolution, 3, 743-756. |
[36] | Orme D, Freckleton R, Thomas G, Petzoldt T, Fritz S, Isaac N, Pearse W (2013) The caper package: Comparative analysis of phylogenetics and evolution in R. Methods in Ecology and Evolution, 3, 145-151. |
[37] |
Paradis E, Schliep K (2019) ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics, 35, 526-528.
DOI PMID |
[38] | Peterson BG, Carl P, Boudt K, Bennett R, Ulrich J, Zivot E, Cornilly D, Hung E, Lestel M, Balkissoon K (2018) Package ‘performanceanalytics’. R Team Cooperation, 3, 13-14. |
[39] | Pianka ER (1974) Niche overlap and diffuse competition. Proceedings of the National Academy of Sciences, USA, 71, 2141-2145. |
[40] | R Core Team (2022) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. |
[41] | Rejmánek M, Starý P (1979) Connectance in real biotic communities and critical values for stability of model ecosystems. Nature, 280, 311-313. |
[42] | Richards LA, Dyer LA, Forister ML, Smilanich AM, Dodson CD, Leonard MD, Jeffrey CS (2015) Phytochemical diversity drives plant-insect community diversity. Proceedings of the National Academy of Sciences, USA, 112, 10973-10978. |
[43] |
Stone L, Roberts A (1990) The checkerboard score and species distributions. Oecologia, 85, 74-79.
DOI PMID |
[44] |
Stone L, Roberts A (1992) Competitive exclusion, or species aggregation? An aid in deciding. Oecologia, 91, 419-424.
DOI PMID |
[45] | Symonds MRE, Blomberg SP (2014) A primer on phylogenetic generalised least squares. In: Modern Phylogenetic Comparative Methods and Their Application in Evolutionary Biology (ed. Garamszegi LZ), pp. 105-130. Springer, Heidelberg. |
[46] |
Tinker TM, Guimarães JPR, Novak M, Marquitti FMD, Bodkin JL, Staedler M, Bentall G, Estes JA (2012) Structure and mechanism of diet specialisation: Testing models of individual variation in resource use with sea otters. Ecology Letters, 15, 475-483.
DOI PMID |
[47] |
Van Veen FJF, Morris RJ, Godfray HCJ (2006) Apparent competition, quantitative food webs, and the structure of phytophagous insect communities. Annual Review of Entomology, 51, 187-208.
PMID |
[48] |
Walter GH (1991) What is resource partitioning? Journal of Theoretical Biology, 150, 137-143.
PMID |
[49] |
Wang B, Geng XZ, Ma LB, Cook JM, Wang RW (2014) A trophic cascade induced by predatory ants in a fig-fig wasp mutualism. Journal of Animal Ecology, 83, 1149-1157.
DOI PMID |
[50] | Wang L, Ding ZF, Hu JM, Yin WY, Hu HJ (2016) Bird preference to food source trees in urban green space, Guangzhou, China. Sichuan Journal of Zoology, 35, 838-844. (in Chinese with English abstract) |
[ 王玲, 丁志锋, 胡君梅, 尹五元, 胡慧建 (2016) 广州城市绿地中鸟类对食源树种的偏好. 四川动物, 35, 838-844.] | |
[51] | Weiblen G, Flick B, Spencer H (1995) Seed set and wasp predation in dioecious Ficus variegata from an Australian wet tropical forest. Biotropica, 27, 391-394. |
[52] |
Weiblen GD (2002) How to be a fig wasp. Annual Review of Entomology, 47, 299-330.
PMID |
[53] | West SA, Herre EA (1994) The ecology of the New World fig-parasitizing wasps Idarnes and implications for the evolution of the fig-pollinator mutualism. Proceedings of the Royal Society Series B: Biological Sciences, 258, 67-72. |
[54] | Wu WS, Chen YL, Cai MM, Liu L (2012) Structure and biodiversity of fig wasp community inside syconia of Ficus virens Ait. var. sublanceolata (Miq.) Corner in Fuzhou. Acta Ecologica Sinica, 32, 1436-1441. (in Chinese with English abstract) |
[ 吴文珊, 陈友铃, 蔡美满, 刘亮 (2012) 福州大叶榕隐头果内的小蜂群落结构与多样性. 生态学报, 32, 1436-1441.] | |
[55] | Xu L, Yang DR, Peng YQ, Wang QY, Zhang GM (2003) The community structure and the interspecific relationship of the fig wasps in syconia of Ficus racemosa L. in Xishuangbanna, China. Acta Ecologica Sinica, 23, 1554-1560. (in Chinese with English abstract) |
[ 徐磊, 杨大荣, 彭艳琼, 王秋艳, 张光明 (2003) 西双版纳聚果榕隐头果内小蜂群落结构及种间关系. 生态学报, 23, 1554-1560.] | |
[56] | Yin LQ, Wang C, Han WJ (2023) Food source characteristics and diversity of birds based on feeding behavior in residential areas of Beijing. Biodiversity Science, 31, 22473. (in Chinese with English abstract) |
[ 殷鲁秦, 王成, 韩文静 (2023) 基于取食行为探究北京居民区鸟类的食源特征及多样性. 生物多样性, 31, 22473.] | |
[57] | Zhang FP, Peng YQ, Yang DR (2008) Coevolution between two internal ovipositing fig wasps and host Ficus curtipes. Chinese Journal of Plant Ecology, 32, 768-775. (in Chinese with English abstract) |
[ 张凤萍, 彭艳琼, 杨大荣 (2008) 钝叶榕果实内繁殖的两种榕小蜂与寄主榕树间的协同进化. 植物生态学报, 32, 768-775.]
DOI |
|
[58] | Zhang FP, Peng YQ, Yang DR (2009) The comparison of three fig wasp pollinators and their pollination efficiency on Ficus curtipes. Acta Ecologica Sinica, 29, 5252-5257. (in Chinese with English abstract) |
[ 张凤萍, 彭艳琼, 杨大荣 (2009) 比较钝叶榕的三种传粉者及其传粉效率. 生态学报, 29, 5252-5257.] | |
[59] | Zhang FP, Yang DR (2009) Oviposition timing and community structure of Ficus curtipes fig wasps. Chinese Journal of Applied Ecology, 20, 2005-2011. (in Chinese with English abstract) |
[ 张凤萍, 杨大荣 (2009) 钝叶榕榕果内榕小蜂的产卵顺序及其群落结构. 应用生态学报, 20, 2005-2011.] | |
[60] | Zhang KY (1963) The climatic characteristics of southern Yunnan region and its formation mechanism. Acta Meteorologica Sinica, 33, 218-230. (in Chinese) |
[ 张克映 (1963) 滇南气候的特征及其形成因子的初步分析. 气象学报, 33, 218-230.] | |
[61] | Zhang T, Jandér KC, Huang JF, Wang B, Zhao JB, Miao BG, Peng YQ, Herre EA (2021) The evolution of parasitism from mutualism in wasps pollinating the fig, Ficus microcarpa, in Yunnan Province, China. Proceedings of the National Academy of Sciences, USA, 118, e2021148118. |
[62] |
Zhang T, Miao BG, Wang B, Peng YQ, Darwell CT (2019) Nonpollinating cheater wasps benefit from seasonally poor performance of the mutualistic pollinating wasps at the northern limit of the range of Ficus microcarpa. Ecological Entomology, 44, 844-848.
DOI |
[63] |
Zhang XT, Wang G, Zhang SC, Chen S, Wang YB, Wen P, Ma XK, Shi Y, Qi R, Yang Y, Liao ZY, Lin J, Lin JS, Xu XM, Chen XQ, Xu XD, Deng F, Zhao LH, Lee YL, Wang R, Chen XY, Lin YR, Zhang JS, Tang HB, Chen J, Ming R (2020) Genomes of the banyan tree and pollinator wasp provide insights into fig-wasp coevolution. Cell, 183, 875-889.
DOI PMID |
[64] | Zhu H (2005) Reclassification of monsoon tropical forests in southern Yunnan, SW China. Chinese Journal of Plant Ecology, 29, 170-174. (in Chinese with English abstract) |
[ 朱华 (2005) 滇南热带季雨林的一些问题讨论. 植物生态学报, 29, 170-174.]
DOI |
[1] | 冯志荣, 陈有城, 彭艳琼, 李莉, 王波. 生态网络分析: 从集合群落到集合网络[J]. 生物多样性, 2023, 31(8): 23171-. |
[2] | 唐楚飞, 葛成, 曹烨, 曹弘毅, 宋晓晓, 廖怀建. 城市森林不同林分类型的昆虫多样性: 以南京紫金山南麓为例[J]. 生物多样性, 2023, 31(2): 22357-. |
[3] | 王明强, 罗阿蓉, 周青松, 陈婧婷, 谢婷婷, 李逸, Douglas Chesters, 石晓宇, 肖晖, 刘桓吉, 丁强, 周璇, 罗一平, 路园园, 佟一杰, 赵政宇, 白明, 郭鹏飞, 陈思翀, 中村彰宏, 彭艳琼, 赵延会, 魏淑花, 林晓龙, 陈华燕, 罗世孝, 陆宴辉, 鲁亮, 余建平, 周欣, 邹怡, 路浩, 朱朝东. 昆虫多样性三十年研究进展[J]. 生物多样性, 2022, 30(10): 22454-. |
[4] | 刘帅, 李保平, 孟玲, 张旭辉, 潘根兴. 大气CO2浓度和气温升高对麦田节肢动物群落的影响[J]. 生物多样性, 2014, 22(4): 502-507. |
[5] | 叶水送, 方燕, 李恺. 城市化对昆虫多样性的影响[J]. 生物多样性, 2013, 21(3): 260-268. |
[6] | 赵紫华, 王颖, 贺达汉, 张蓉, 朱猛蒙, 董风林. 苜蓿草地生境丧失与破碎化对昆虫物种丧失与群落重建的影响[J]. 生物多样性, 2011, 19(4): 453-462. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn