生物多样性 ›› 2019, Vol. 27 ›› Issue (4): 457-467. DOI: 10.17520/biods.2018318
所属专题: 传粉生物学; 昆虫多样性与生态功能; 生物入侵
收稿日期:
2018-11-27
接受日期:
2019-01-31
出版日期:
2019-04-20
发布日期:
2019-06-05
通讯作者:
彭艳琼
基金资助:
Jianfeng Huang1, Rui Xu2, Yanqiong Peng1,*()
Received:
2018-11-27
Accepted:
2019-01-31
Online:
2019-04-20
Published:
2019-06-05
Contact:
Yanqiong Peng
摘要:
杂交是生物进化的重要方式和新物种的重要来源, 在植物界普遍存在, 但在不同植物类群中的发生率差异很大。高度专性传粉体系中, 宿主植物和传粉者经历长期协同进化, 形成远高于其他物种的互利共生机制和合子前生殖壁垒, 被认为不太可能发生种间杂交。榕树和传粉榕小蜂是动植物间专性传粉关系的典范, 甚至发展出一对一高度专性关系。但随着研究的深入, 发现了一定程度的宿主转移现象, 引发学者对榕树种间杂交的研究和探讨。本文从人工杂交、外来种和本地种杂交、岛屿种自然杂交、同域分布近缘种自然杂交, 以及利用系统发育不一致推测杂交等5个方面, 综述了榕树种间杂交的研究进展, 并对未来研究进行展望。同一亚属内人工榕树种间杂交F1代一般可育, 不同亚属榕树的种间杂交亲和性强度在不同性系统上表现有所不同。种间存在单向或不对称的双向基因流, 依赖专性传粉榕小蜂传粉可能使得渐渗杂交成为榕树种间杂交的主要方式。一系列的合子前隔离机制, 包括化学隔离、形态隔离、地理隔离、生态隔离、季节隔离等有效维持了榕树物种在遗传和形态上的完整性; 而合子后隔离作用较弱, 传粉榕小蜂在非专性宿主上的繁殖适合度一般表现为显著降低。未来有待在评估杂交对榕树生物多样性和榕-传粉榕小蜂共生体系稳定性的影响, 分析榕树天然杂交带的杂交模式, 以及探讨影响宿主转移和榕树杂交的因素等方面开展深入研究。
黄建峰, 徐睿, 彭艳琼 (2019) 榕树种间杂交研究进展. 生物多样性, 27, 457-467. DOI: 10.17520/biods.2018318.
Jianfeng Huang, Rui Xu, Yanqiong Peng (2019) Research progress of interspecific hybridization in genus Ficus. Biodiversity Science, 27, 457-467. DOI: 10.17520/biods.2018318.
[1] |
Abbott R, Albach D, Ansell S, Arntzen JW, Baird SJE, Bierne N, Boughman J, Brelsford A, Buerkle CA, Buggs R, Butlin RK, Dieckmann U, Eroukhmanoff F, Grill A, Cahan SH, Hermansen JS, Hewitt G, Hudson AG, Jiggins C, Jones J, Keller B, Marczewski T, Mallet J, Martinez-Rodriguez P, Möst M, Mullen S, Nichols R, Nolte AW, Parisod C, Pfennig K, Rice AM, Ritchie MG, Seifert B, Smadja CM, Stelkens R, Szymura JM, Väinölä R, Wolf JBW, Zinner D (2013) Hybridization and speciation. Journal of Evolutionary Biology, 26, 229-246.
DOI URL |
[2] |
Abbott RJ (2017) Plant speciation across environmental gradients and the occurrence and nature of hybrid zones. Journal of Systematics and Evolution, 55, 238-258.
DOI URL |
[3] |
Ahmed S, Compton SG, Butlin RK, Gilmartin PM (2009) Wind-borne insects mediate directional pollen transfer between desert fig trees 160 kilometers apart. Proceedings of the National Academy of Sciences,USA, 106, 20342-20347.
DOI URL |
[4] |
Anderson E, Stebbins GL (1954) Hybridization as an evolutionary stimulus. Evolution, 8, 378-388.
DOI URL |
[5] | Arnold ML (1997) Natural Hybridization and Evolution. Oxford University Press, Oxford. |
[6] | Backer CA (1929) The Problem of Krakatoa as Seen by a Botanist. Published by the author, Sourabaya. |
[7] | Berg CC (2007) Precursory taxonomic studies on Ficus (Moraceae) for the Flora of Thailand. Thai Forest Bulletin, 35, 4-28. |
[8] |
Bruun-Lund S, Clement WL, Kjellberg F, Rønsted N (2017) First plastid phylogenomic study reveals potential cyto-nuclear discordance in the evolutionary history of Ficus L. (Moraceae). Molecular Phylogenetics and Evolution, 109, 93-104.
DOI URL |
[9] |
Burri R, Nater A, Kawakami T, Mugal CF, Olason PI, Smeds L, Suh A, Dutoit L, Bureš S, Garamszegi LZ, Hogner S, Moreno J, Qvarnström A, Ruić M, Sæther SA, Sætre GP, Török J, Ellegren H (2015) Linked selection and recombination rate variation drive the evolution of the genomic landscape of differentiation across the speciation continuum of Ficedula flycatchers. Genome Research, 25, 1656-1665.
DOI URL |
[10] |
Charleston MA, Robertson DL (2002) Preferential host switching by primate lentiviruses can account for phylogenetic similarity with the primate phylogeny. Systematic Biology, 51, 528-535.
DOI URL |
[11] |
Chen C, Song Q, Proffit M, Bessière JM, Li Z, Hossaert-McKey M (2009) Private channel: A single unusual compound assures specific pollinator attraction in Ficus semicordata. Functional Ecology, 23, 941-950.
DOI URL |
[12] |
Chen Y, Compton SG, Liu M, Chen XY (2012) Fig trees at the northern limit of their range: The distributions of cryptic pollinators indicate multiple glacial refugia. Molecular Ecology, 21, 1687-1701.
DOI URL |
[13] | Chen Y, Li HQ, Liu M, Chen XY (2010) Species-specificity and coevolution of figs and their pollinating wasps. Biodiversity Science, 18, 1-10. (in Chinese with English abstract) |
[ 陈艳, 李宏庆, 刘敏, 陈小勇 (2010) 榕-传粉榕小蜂间的专一性与协同进化. 生物多样性, 18, 1-10.] | |
[14] |
Compton SG, Holton KC, Rashbrook VK, van Noort S, Vincent SL (1991) Studies of Ceratosolen galili, a non-pollinating agaonid fig wasp. Biotropica, 23, 188-194.
DOI URL |
[15] | Condit IJ (1947) The Fig. Chronica Botanica Co., Waltham. |
[16] |
Condit IJ (1950) An interspecific hybrid in Ficus. Journal of Heredity, 41, 165-168.
DOI URL |
[17] |
Cook JM, Segar ST (2010) Speciation in fig wasps. Ecological Entomology, 35, 54-66.
DOI URL |
[18] |
Corner EJH (1978) Ficus dammaropsis and the multibracteate species of Ficus sect. Sycocarpus. Philosophical Transactions of the Royal Society B: Biological Sciences, 281, 373-406.
DOI URL |
[19] | Cornille A, Underhill JG, Cruaud A, Hossaert-McKey M, Johnson SD, Tolley KA, Kjellberg F, van Noort S (2011) Floral volatiles, pollinator sharing and diversification in the fig-wasp mutualism: Insights from Ficus natalensis, and its two wasp pollinators (South Africa). Proceedings of the Royal Society of London B: Biological Sciences, 279, 1731-1739. |
[20] | Cruaud A, Cook J, Yang DR, Genson G, Jabbour-Zahab R, Kjellberg F, Pereira RAS, Rønsted N, Santos O, Savolainen V, Ubaidillah R, van Noort S, Peng YQ, Rasplus JY (2011) Fig-fig wasp mutualism: The fall of the strict cospeciation paradigm? In: Evolution of Plant-Pollinator Relationships (ed. Patiny S), pp. 68-102. Cambridge University Press, Cambridge. |
[21] |
Cruaud A, Rønsted N, Chantarasuwan B, Chou LS, Clement WL, Couloux A, Cousins B, Genson G, Harrison RD, Hanson PE, Hossaert-Mckey M, Jabbour-Zahab R, Jousselin E, Kerdelhué C, Kjellberg F, Lopez-Vaamonde C, Peebles J, Peng YQ, Pereira RAS, Schramm T, Ubaidillah R, van Noort S, Weiblen GD, Yang DR, Yodpinyanee A, Libeskind-Hadas R, Cook JM, Rasplus JY, Savolainen V (2012) An extreme case of plant-insect co-diversification: Figs and fig-pollinating wasps. Systematic Biology, 61, 1029-1047.
DOI URL |
[22] |
Ellstrand NC, Whitkus R, Rieseberg LH (1996) Distribution of spontaneous plant hybrids. Proceedings of the National Academy of Sciences,USA, 93, 5090-5093.
DOI URL |
[23] |
Erasmus JC, van Noort S, Jousselin E, Greeff JM (2007) Molecular phylogeny of fig wasp pollinators (Agaonidae, Hymenoptera) of Ficus section Galoglychia. Zoologica Scripta, 36, 61-78.
DOI URL |
[24] | Ernst A (1934) Das biologische Krakatauproblem. Vierteljahrsschrift der Naturforschenden Gesellschaft in Zuerich, 4, 240-244. |
[25] |
Feliner GN, Álvarez I, Fuertes-Aguilar J, Heuertz M, Marques I, Moharrek F, Piñeiro R, Riina R, Rosselló JA, Soltis PS, Villa-Machío I (2017) Is homoploid hybrid speciation that rare? An empiricist’s view. Heredity, 118, 513-516.
DOI |
[26] |
Ghana S, Suleman N, Compton SG (2015a) A comparison of pollinator fig wasp development in figs of Ficus montana and its hybrids with Ficus asperifolia. Entomologia Experimentalis et Applicata, 156, 225-237.
DOI URL |
[27] |
Ghana S, Suleman N, Compton SG (2015b) Ability to gall: The ultimate basis of host specificity in fig wasps? Ecological Entomology, 40, 280-291.
DOI URL |
[28] |
Gibernau M, Hossaert-McKey M, Frey J, Kjellberg F (1998) Are olfactory signals sufficient to attract fig pollinators? Ecoscience, 5, 306-311.
DOI URL |
[29] | Grant V (1981) Plant speciation. Science, 317, 910-914. |
[30] |
Grison-Pigé L, Bessière JM, Hossaert-McKey M (2002a) Specific attraction of fig-pollinating wasps: Role of volatile compounds released by tropical figs. Journal of Chemical Ecology, 28, 283-295.
DOI URL |
[31] |
Grison-Pigé L, Hossaert-McKey M, Greeff JM, Bessière JM (2002b) Fig volatile compounds—A first comparative study. Phytochemistry, 61, 61-71.
DOI URL |
[32] |
Gross BL (2012) Genetic and phenotypic divergence of homoploid hybrid species from parental species. Heredity, 108, 157-158.
DOI |
[33] |
Hemmer-Hansen J, Therkildsen NO, Pujolar JM (2014) Population genomics of marine fishes: Next-generation prospects and challenges. The Biological Bulletin, 227, 117-132.
DOI URL |
[34] |
Herre EA, Jandér KC, Machado CA (2008) Evolutionary ecology of figs and their associates: Recent progress and outstanding puzzles. Annual Review of Ecology, Evolution,and Systematics, 39, 439-458.
DOI URL |
[35] |
Herre EA, Machado CA, Bermingham E, Nason JD, Windsor DM, McCafferty S, Van Houten W, Bachmann K (1996) Molecular phylogenies of figs and their pollinator wasps. Journal of Biogeography, 23, 521-530.
DOI URL |
[36] |
Hossaert-McKey M, Soler C, Schatz B, Proffit M (2010) Floral scents: Their roles in nursery pollination mutualisms. Chemoecology, 20, 75-88.
DOI URL |
[37] | Huang JF, Xu R, Peng YQ (2018) Progress on the breakdown of one-to-one rule in symbiosis of figs and their pollinating wasps. Biodiversity Science, 26, 295-303. (in Chinese with English abstract) |
[ 黄建峰, 徐睿, 彭艳琼 (2018) 榕-传粉榕小蜂非一对一共生关系的研究进展. 生物多样性, 26, 295-303.] | |
[38] | Hunt BW (1911) Fig breeding. Bulletin of the University of Georgia, 11, 146-148. |
[39] |
Jandér KC, Herre EA (2010) Host sanctions and pollinator cheating in the fig tree-fig wasp mutualism. Proceedings of the Royal Society of London B: Biological Sciences, 277, 1481-1488.
DOI URL |
[40] |
Jandér KC, Herre EA, Simms EL (2012) Precision of host sanctions in the fig tree-fig wasp mutualism: Consequences for uncooperative symbionts. Ecology Letters, 15, 1362-1369.
DOI URL |
[41] |
Janzen DH (1979) How to be a fig. Annual Review of Ecology and Systematics, 10, 13-51.
DOI URL |
[42] |
Janzen DH (1980) When is it coevolution. Evolution, 34, 611-612.
DOI URL |
[43] |
Jiggins CD, Mallet J (2000) Bimodal hybrid zones and speciation. Trends in Ecology and Evolution, 15, 250-255.
DOI URL |
[44] |
Jousselin E, Rasplus JY, Kjellberg F (2003) Convergence and coevolution in a mutualism: Evidence from a molecular phylogeny of Ficus. Evolution, 57, 1255-1269.
DOI URL |
[45] |
Kennedy M, Holland BR, Gray RD, Spencer HG (2005) Untangling long branches: Identifying conflicting phylogenetic signals using spectral analysis, neighbor-net, and consensus networks. Systematic Biology, 54, 620-633.
DOI URL |
[46] |
Kuaraksa C, Elliott S, Hossaert-Mckey M (2012) The phenology of dioecious Ficus spp. tree species and its importance for forest restoration projects. Forest Ecology and Management, 265, 82-93.
DOI URL |
[47] |
Kusumi J, Azuma H, Tzeng HY, Chou LS, Peng YQ, Nakamura K, Su ZH (2012) Phylogenetic analyses suggest a hybrid origin of the figs (Moraceae: Ficus) that are endemic to the Ogasawara (Bonin) Islands, Japan. Molecular Phylogenetics and Evolution, 63, 168-179.
DOI URL |
[48] |
Liu GX, Yang DR, Peng YQ, Compton SG (2015) Complementary fruiting phenologies facilitate sharing of one pollinator fig wasp by two fig trees. Journal of Plant Ecology, 8, 197-206.
DOI URL |
[49] |
Liu KJ, Steinberg E, Yozzo A, Song Y, Kohn MH, Nakhleh L (2015) Interspecific introgressive origin of genomic diversity in the house mouse. Proceedings of the National Academy of Sciences,USA, 112, 196-201.
DOI URL |
[50] |
Machado CA, Robbins N, Gilbert MTP, Herre EA (2005) Critical review of host specificity and its coevolutionary implications in the fig/fig-wasp mutualism. Proceedings of the National Academy of Sciences,USA, 102, 6558-6565.
DOI URL |
[51] |
Mallet J (2005) Hybridization as an invasion of the genome. Trends in Ecology and Evolution, 20, 229-237.
DOI URL |
[52] | Mallet J (2007) Hybrid speciation. Nature Reviews, 446, 279-283. |
[53] | Mao JF, Ma YP, Zhou RC (2017) Approaches used to detect and test hybridization: Combining phylogenetic and population genetic analyses. Biodiversity Science, 25, 577-599. (in Chinese with English abstract) |
[ 毛建丰, 马永鹏, 周仁超 (2017) 结合系统发育与群体遗传学分析检验杂交是否存在的技术策略. 生物多样性, 25, 577-599.] | |
[54] |
Martinson EO, Jandér KC, Peng YQ, Chen HH, Machado CA, Arnold AE, Herre EA (2014) Relative investment in egg load and poison sac in fig wasps: Implications for physiological mechanisms underlying seed and wasp production in figs. Acta Oecologica, 57, 58-66.
DOI URL |
[55] |
Menken SB (1996) Pattern and process in the evolution of insect-plant associations: Yponomeuta as an example. Entomologia Experimentalis et Applicata, 80, 297-305.
DOI URL |
[56] |
Moe AM, Rossi DR, Weiblen GD (2011) Pollinator sharing in dioecious figs (Ficus: Moraceae). Biological Journal of the Linnean Society, 103, 546-558.
DOI URL |
[57] |
Moe AM, Weiblen GD (2012) Pollinator-mediated reproductive isolation among diocious fig species (Ficus, Moraceae). Evolution, 66, 3710-3721.
DOI URL |
[58] |
Molbo D, Machado CA, Sevenster JG, Keller L, Herre EA (2003) Cryptic species of fig-pollinating wasps: Implications for the evolution of the fig-wasp mutualism, sex allocation, and precision of adaptation. Proceedings of the National Academy of Sciences,USA, 100, 5867-5872.
DOI URL |
[59] | Müller F (1886) Feigenwespen. Kosmos, 18, 55-62. |
[60] |
Nadeau NJ, Ruiz M, Salazar P, Counterman B, Medina JA, Ortiz-Zuazaga H, Morrison A, McMillan WO, Jiggins CD, Papa R (2014) Population genomics of parallel hybrid zones in the mimetic butterflies, H. melpomene and H. erato. Genome Research, 24, 1316-1333.
DOI URL |
[61] |
Nason JD, Herre EA, Hamrick JL (1998) The breeding structure of a tropical keystone plant resource. Nature, 391, 685-687.
DOI URL |
[62] | Ono M (1990) Chromosome number of some endemic plant species of the Bonin Islands III. Ogasawara Research, 16, 1-27. |
[63] | Ono M (1991) The flora of the Bonin (Ogasawara) Islands. Aliso: A Journal of Systematic and Evolutionary Botany, 13, 95-105. |
[64] |
Parrish TL, Koelewijn HP, van Dijk PJ, Kruijt M (2003) Genetic evidence for natural hybridization between species of dioecious Ficus on island populations. Biotropica, 35, 333-343.
DOI URL |
[65] | Peng YQ, Duan ZB, Yang DR, Rasplus JY (2008) Co-occurrence of two Eupristina species on Ficus altissima in Xishuangbanna, SW China. Symbiosis, 45, 9-14. |
[66] |
Pellmyr O (2003) Yuccas, yucca moths, and coevolution: A review. Annals of Missouri Botanical Garden, 90, 35-55.
DOI URL |
[67] |
Proffit M, Chen C, Soler C, Bessiere JM, Schatz B, Hossaert-McKey M (2009) Can chemical signals, responsible for mutualistic partner encounter, promote the specific exploitation of nursery pollination mutualisms? The case of figs and fig wasps. Entomologia Experimentalis et Applicata, 131, 46-57.
DOI URL |
[68] |
Ramírez BW (1970) Taxonomic and biological studies of neotropical fig wasps (Hymenoptera: Agaonidae). The University of Kansas Science Bulletin, 49, 1-44.
DOI URL |
[69] | Ramírez BW (1986) Artificial hybridization and self-fertilization in Ficus (Moraceae). Brenesia, 25, 265-272. |
[70] | Ramírez BW (1994) Hybridization of Ficus religiosa with F. septica and F. aurea (Moraceae). Revista de Biología Tropical, 42, 339-342. |
[71] | Ramírez BW, Montero SJ (1988) Ficus microcarpa L., F. benjamina L. and other species introduced in the New World, their pollinators (Agaonidae) and other fig wasps. Revista de Biología Tropical, 36, 441-446. |
[72] |
Ramsey J, Schemske DW (2002) Neopolyploidy in flowering plants. Annual Review of Ecology and Systematic, 33, 589-639.
DOI URL |
[73] | Rasplus JY, Rodriguez LJ, Tollon-Cordet C, Cruaud A (2018) Revisiting the phylogeny of Ficus (Moraceae): When next generation sequencing corroborates past generation botanists. BioRxiv, 340463. |
[74] |
Reed DL, Light JE, Allen JM, Kirchman JJ (2007) Pair of lice lost or parasites regained: The evolutionary history of anthropoid primate lice. BMC Biology, 5, 7-17.
DOI |
[75] |
Renaut S, Grassa CJ, Yeaman S, Moyers BT, Lai Z, Kane NC, Bowers JE, Burke JM, Rieseberg LH (2013) Genomic islands of divergence are not affected by geography of speciation in sunflowers. Nature Communications, 4, 1827.
DOI |
[76] |
Renoult JP, Kjellberg F, Grout C, Santoni S, Khadari B (2009) Cyto-nuclear discordance in the phylogeny of Ficus section Galoglychia and host shifts in plant-pollinator associations. BMC Evolutionary Biology, 9, 248-265.
DOI URL |
[77] |
Rieseberg LH (1997) Hybrid origins of plant species. Annual Review of Ecology and Systematics, 28, 359-389.
DOI URL |
[78] |
Rieseberg LH, Willis JH (2007) Plant speciation. Science, 317, 910-914.
DOI URL |
[79] |
Rønsted N, Salvo G, Savolainen V (2007) Biogeographical and phylogenetic origins of African fig species (Ficus section Galoglychia). Molecular Phylogenetics and Evolution, 43, 190-201.
DOI URL |
[80] |
Rønsted N, Weiblen GD, Cook JM, Salamin N, Machado CA, Savolainen P (2005) 60 million years of co-divergence in the fig-wasp symbiosis. Proceedings of the Royal Society of London B: Biological Sciences, 272, 2593-2599.
DOI URL |
[81] |
Rutledge LY, Devillard S, Boone JQ, Hohenlohe PA, White BN (2015) RAD sequencing and genomic simulations resolve hybrid origins within North American Canis. Biology Letters, 11, 20150303.
DOI URL |
[82] |
Schumer M, Rosenthal GG, Andolfatto P (2014) How common is homoploid hybrid speciation? Evolution, 68, 1553-1560.
DOI URL |
[83] | Shanahan M, So S, Compton SG, Corlett R (2001) Fig-eating by vertebrate frugivores: A global review. Biological Reviews, 76, 529-572. |
[84] |
Soler C, Hossaert-McKey M, Buatois B, Bessière JM, Schatz B, Proffit M (2011) Geographic variation of floral scent in a highly specialized pollination mutualism. Phytochemistry, 72, 74-81.
DOI URL |
[85] |
Souto-Vilarós D, Proffit M, Buatois B, Rindos M, Sisol M, Kuyaiva T, Isua B, Michalek J, Darwell CT, Hossaert- McKey M, Weiblen GD, Novotny V, Segar ST (2018) Pollination along an elevational gradient mediated both by floral scent and pollinator compatibility in the fig and fig-wasp mutualism. Journal of Ecology, 106, 2256-2273.
DOI URL |
[86] |
Tsai L, Hayakawa H, Fukuda T, Yokoyama J (2015) A breakdown of obligate mutualism on a small island: An interspecific hybridization between closely related fig species (Ficus pumila and Ficus thunbergii) in Western Japan. American Journal of Plant Sciences, 6, 126-131.
DOI URL |
[87] |
Vallejo-Marín M, Hiscock SJ (2016) Hybridization and hybrid speciation under global change. New Phytologist, 211, 1170-1187.
DOI URL |
[88] |
van Noort S, Compton SG (1996) Convergent evolution of agaonine and sycoecine (Agaonidae, Chalcidoidea) head shape in response to the constraints of host fig morphology. Journal of Biogeography, 23, 415-424.
DOI URL |
[89] |
Verkerke W (1989) Structure and function of the fig. Experientia, 45, 612-622.
DOI URL |
[90] |
Vilà M, Webe, E, Antonio CM (2000) Conservation implications of invasion by plant hybridization. Biological Invasions, 2, 207-217.
DOI URL |
[91] |
Wang G, Cannon CH, Chen J (2016) Pollinator sharing and gene flow among closely related sympatric dioecious fig taxa. Proceedings of the Royal Society B: Biological Sciences, 283, 20152963.
DOI URL |
[92] |
Wang G, Compton SG, Chen J (2013) The mechanism of pollinator specificity between two sympatric fig varieties: A combination of olfactory signals and contact cues. Annals of Botany, 111, 173-181.
DOI URL |
[93] |
Wang R, Ai B, Gao BQ, Yu S, Li YY, Chen XY (2009) Spatial genetic structure and restricted gene flow in a functionally dioecious fig, Ficus pumila L. var. pumila (Moraceae). Population Ecology, 51, 307-315.
DOI URL |
[94] | Wang YG (2017) Natural hybridization and speciation. Biodiversity Science, 25, 565-576. (in Chinese with English abstract) |
[ 王玉国 (2017) 自然杂交与物种形成. 生物多样性, 25, 565-576.] | |
[95] |
Ware AB, Compton SG (1992) Breakdown of pollinator specificity in an African fig tree. Biotropica, 24, 544-549.
DOI URL |
[96] | Wei ZD (2010) On Going Co-divergence of Auriculata Complex and Its Pollinating Wasps (Ceratosolen emarginatus). PhD dissertation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan. (in Chinese with English abstract) |
[ 魏作东 (2010) 木瓜榕物种复合体(Auriculata complex)和它们的传粉小蜂(Ceratosolen emarginatus)间的共同分化. 博士学位论文, 中国科学院西双版纳热带植物园, 云南勐腊.] | |
[97] |
Wei ZD, Kobmoo N, Cruaud A, Kjellberg F (2014) Genetic structure and hybridization in the species group of Ficus auriculata: Can closely related sympatric Ficus species retain their genetic identity while sharing pollinators? Molecular Ecology, 23, 3538-3550.
DOI URL |
[98] |
Weiblen GD (2004) Correlated evolution in fig pollination. Systematic Biology, 53, 128-139.
DOI URL |
[99] | Wendel JF, Doyle JJ (1998) Phylogenetic incongruence: Window into genome history and molecular evolution. In: Molecular Systematics of Plants II. DNA Sequencing(eds Soltis DE, Soltis PS, Doyle JJ), pp. 265-296. Kluwer Academic Publishers, Boston/Dordrecht/London. |
[100] | Wiebes JT (1963) Taxonomy and host preferences of Indo-Australian fig wasps of the genus Ceratosolen (Agaonidae). Tijdeschrift Voor Entomologie, 106, 1-112. |
[101] | Xu ZF (1994) Ficus—A keystone plant group in the tropical rain forests ecosystem of south Yunnan. Chinese Biodiversity, 2, 21-23. (in Chinese) |
[ 许再富 (1994) 榕树——滇南热带雨林生态系统中的一类关键植物. 生物多样性, 2, 21-23.] | |
[102] |
Yakushiji H, Morita T, Jikumaru S, Ikegami H, Azuma A, Koshita Y (2012) Interspecific hybridization of fig (Ficus carica L.) and Ficus erecta Thunb., a source of Ceratocystis canker resistance. Euphytica, 183, 39-47.
DOI URL |
[103] |
Yang LY, Machado CA, Dang XD, Peng YQ, Yang DR, Zhang DY, Liao WJ (2015) The incidence and pattern of copollinator diversification in dioecious and monoecious figs. Evolution, 69, 294-304.
DOI URL |
[104] | Yang P (2010) Research on Mutualism of Three Ficus Species in Subsection Neomorphe and Their Pollinators. PhD dissertation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan. (in Chinese with English abstract) |
[ 杨培 (2010) 大果榕亚组三种榕树榕—蜂互惠共生关系的研究. 博士学位论文, 中国科学院西双版纳热带植物园, 云南勐腊.] | |
[105] |
Yang P, Li ZB, Peng YQ, Yang DR (2012) Exchange of hosts: Can agaonid fig wasps reproduce successfully in the figs of non-host Ficus? Naturwissenschaften, 99, 199-205.
DOI URL |
[106] | Yokoyama J, Iwatsuki K (1998) A faunal survey of fig-wasps (Chalcidoidea: Hymenoptera) distributed in Japan and their associations with figs (Ficus: Moraceae). Entomological Science, 1, 37-46. |
[107] |
Zhang LF, Zhang Z, Wang XM, Gao HY, Tian HZ, Li HQ (2018) Molecular phylogeny of the Ficus auriculata complex (Moraceae). Phytotaxa, 362, 39-54.
DOI URL |
[108] | Zhao JB (2013) Cheating Evolution of Eupristina sp. in Ficus altissima. PhD dissertation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan. (in Chinese with English abstract) |
[ 赵江波 (2013) 高山榕传粉小蜂由互惠向欺骗演化的机制. 博士学位论文, 中国科学院西双版纳热带植物园, 云南勐腊.] |
[1] | 谢华, 杨培, 李宗波. 鸡嗉子榕传粉榕小蜂表皮碳氢化合物的性二型及季节变化[J]. 生物多样性, 2024, 32(6): 24001-. |
[2] | 董廷玮, 黄美玲, 韦旭, 马硕, 岳衢, 刘文丽, 郑佳鑫, 王刚, 马蕊, 丁由中, 薄顺奇, 王正寰. 上海地区金线侧褶蛙种群的潜在空间分布格局及其景观连通性[J]. 生物多样性, 2023, 31(8): 22692-. |
[3] | 金恒镳. 从天择到人择: 在华莱士的肩膀上看地球的未来[J]. 生物多样性, 2023, 31(12): 23267-. |
[4] | 刘璐, 迟瑶, 吴朝宁, 钱天陆, 王结臣. 陆栖哺乳动物的地理隔离研究进展[J]. 生物多样性, 2021, 29(8): 1134-1145. |
[5] | 郑进凤, 唐蓉, 贺霜, 陈月红, 伍素, 张凯, 徐雨, 邹晓. 贵州花溪大学城破碎化林地鸟类多样性与嵌套分布格局[J]. 生物多样性, 2021, 29(5): 661-667. |
[6] | 董乙乂,彭艳琼,王波. 垂叶榕榕小蜂群落及种间互作网络季节动态[J]. 生物多样性, 2020, 28(4): 496-503. |
[7] | 娄明华, 白超, 惠刚盈, 汤孟平. 7个林木大小多样性指数表达能力比较[J]. 生物多样性, 2019, 27(4): 449-456. |
[8] | 黄建峰, 徐睿, 彭艳琼. 榕-传粉榕小蜂非一对一共生关系的研究进展[J]. 生物多样性, 2018, 26(3): 295-303. |
[9] | 魏宇昆, 黄艳波, 李桂彬. 同域分布共享传粉者的鼠尾草属植物的生殖隔离[J]. 生物多样性, 2017, 25(6): 608-614. |
[10] | 张小龙, 杨丽华, 康明. 牛耳朵和马坝报春苣苔同域种群授粉后的生殖隔离[J]. 生物多样性, 2017, 25(6): 615-620. |
[11] | 谢平. 浅析物种概念的演变历史[J]. 生物多样性, 2016, 24(9): 1014-1019. |
[12] | 张德兴. 为什么在物种概念上难以达成共识?[J]. 生物多样性, 2016, 24(9): 1009-1013. |
[13] | 韩杰, 沈泽昊, 石松林, 彭培好. 雅砻江和大渡河干旱河谷植被物种多样性比较:气候、地形与空间的影响[J]. 生物多样性, 2016, 24(4): 421-430. |
[14] | 钱贞娜, 孟千万, 任明迅. 风筝果镜像花的雌雄异位变化及传粉生态型的形成[J]. 生物多样性, 2016, 24(12): 1364-1372. |
[15] | 吕昊敏, 周仁超, 施苏华. 生态物种形成及其研究进展[J]. 生物多样性, 2015, 23(3): 398-407. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn