生物多样性 ›› 2020, Vol. 28 ›› Issue (10): 1229-1237. DOI: 10.17520/biods.2020264
侯祥1, 封托1, 韩宁1, 王京1, 陈晓宁1, 安晓雷1, 许磊2,*(), 刘起勇2,*(
), 常罡1,*(
)
收稿日期:
2020-07-03
接受日期:
2020-10-08
出版日期:
2020-10-20
发布日期:
2020-10-20
通讯作者:
许磊,刘起勇,常罡
作者简介:
E-mail: xulei@icdc.cn基金资助:
Xiang Hou1, Tuo Feng1, Ning Han1, Jing Wang1, Xiaoning Chen1, Xiaolei An1, Lei Xu2,*(), Qiyong Liu2,*(
), Gang Chang1,*(
)
Received:
2020-07-03
Accepted:
2020-10-08
Online:
2020-10-20
Published:
2020-10-20
Contact:
Lei Xu,Qiyong Liu,Gang Chang
摘要:
肾综合征出血热(hemorrhagic fever with renal syndrome, HFRS)是一种啮齿动物传播的自然疫源性疾病, 危害严重, 已成为全球重要的公共卫生问题。本研究采用数理统计模型及小波分析方法, 对陕西省西安市鄠邑区1984-2016年HFRS的发生与鼠类、气候和经济因素的关系进行分析, 探讨气候和经济因素对HFRS发生的影响。小波分析结果表明, 该地区的HFRS暴发史可能分为两个时期, 推测每个时期具有不同的主要宿主, 在2002年褐家鼠(Rattus norvegicus)可能取代黑线姬鼠(Apodemus agrarius)成为HFRS疫源地的主要宿主。广义可加模型模拟结果表明, HFRS的发生与1984-2001年黑线姬鼠密度间存在极显著非线性效应(F2.06,9.02 = 102.415, P < 0.01), 两者间显现为正相关; 与2002-2016年的褐家鼠密度间呈正相关(F1.67,9.02 = 73.929, P < 0.01); HFRS主要宿主的这种变化可能与当地气候变化和经济发展有关: HFRS的发生与年平均温度存在极显著的非线性效应(F2.93,9.02 = 12.164, P < 0.01), 两者间呈负相关; 同样, HFRS的发生与上一年的国内生产总值(GDP)也存在显著非线性效应(F1.70,9.02 = 2.917, P < 0.05), 两者间也呈负相关。结构方程模型通过直接和间接的影响途径证明了这种转移机制, 发现温度对HFRS发生有显著的直接负向影响以及通过褐家鼠的间接正向影响; GDP对HFRS发生有直接的负向影响。本研究表明HFRS的发生与气候变化和经济发展相关, 两者均能影响HFRS的暴发, 该结论有助于今后更好地对HFRS疾病进行预防和控制。
侯祥, 封托, 韩宁, 王京, 陈晓宁, 安晓雷, 许磊, 刘起勇, 常罡 (2020) 气候变化和经济发展对肾综合征出血热发生的影响. 生物多样性, 28, 1229-1237. DOI: 10.17520/biods.2020264.
Xiang Hou, Tuo Feng, Ning Han, Jing Wang, Xiaoning Chen, Xiaolei An, Lei Xu, Qiyong Liu, Gang Chang (2020) Effect of climate change and economic development on hemorrhagic fever with renal syndrome. Biodiversity Science, 28, 1229-1237. DOI: 10.17520/biods.2020264.
图1 1984-2016年陕西省西安市鄠邑区肾综合征出血热(HFRS)病例数、温度、国内生产总值(GDP)及鼠密度时间序列图
Fig. 1 Yearly time series of cases of hemorrhagic fever with renal syndrome (HFRS), temperature, gross domestic product (GDP) and rodent density in the Huyi District of Xi’an City, Shaanxi Province from 1984 to 2016
图2 黑线姬鼠密度、褐家鼠密度和肾综合征出血热(HFRS)之间的小波相关性。箭头方向代表两者间周期同步性关系, 箭头指向右代表两者处于同一周期; 箭头指向左代表两者处于不同周期; 箭头指向上代表后者领先于前者1/2周期; 箭头指向下代表后者落后于前者1/2周期; 箭头存在区域代表P < 0.05显著性水平, 颜色代表相关性系数。
Fig. 2 Wavelet coherence between the density of Apodemus agrarius and Rattus norvegicus and hemorrhagic fever with renal syndrome (HFRS) cases. Arrows’ direction indicates periodic synchronicity between the former and the latter, arrows pointing to the right mean that the former and the latter are in phase; arrows pointing to the left mean that the former and the latter are in anti-phase; arrows pointing up mean that the latter leads the former by π/2; arrows pointing down mean that the former leads the latter by π/2; π/2 indicates half of the period; arrows’ region indicates significance levels P < 0.05, color indicates the coefficient of coherence.
图3 利用广义可加模型分析鼠密度、气候及经济因素对肾综合征出血热(HFRS)发生的影响效应(灰色区域为95%置信区间)。(A) 1984-2001年黑线姬鼠密度对HFRS发生的影响效应; (B) 2002-2016年褐家鼠密度对HFRS发生的影响效应; (C)当年平均温度对HFRS发生的影响效应; (D)上一年当地国内生产总值(GDP)对HFRS发生的影响效应。
Fig. 3 The effects of rodent density, climate and economic factors on the cases of hemorrhagic fever with renal syndrome (HFRS) by generalized additive models (Shaded areas are 95% confidence bands). (A) The effects of Apodemus agrarius density on the cases of HFRS from 1984-2001; (B) The effects of Rattus norvegicus density on the cases of HFRS from 2002-2016; (C)The effects of annual average temperature on the cases of HFRS; (D) The effects of local gross domestic product (GDP) in previous year on the cases of HFRS.
图4 利用结构方程模型分析气候和经济因素对肾综合征出血热(HFRS)发生的直接和间接影响路径。数字代表生态效应和相关性系数, 黑色实线代表P < 0.05的通路, 黑色虚线代表P > 0.05的通路。
Fig. 4 Structural equation model analysis revealed direct and indirect climatic and economic effects on hemorrhagic fever with renal syndrome (HFRS) cases. Numbers indicate ecological effects and standardized coefficients, black solid line indicates statistically significant levels P < 0.05 pathways, and black dash line indicates statistically no significant levels P > 0.05 pathways.
[1] | Adda J ( 2016) Economic activity and the spread of viral diseases: Evidence from high frequency data. The Quarterly Journal of Economics, 131, 891-941. |
[2] |
Al-Shorbaji F, Roche B, Gozlan R, Britton R, Andreou D ( 2016) The consequences of reservoir host eradication on disease epidemiology in animal communities. Emerging Microbes and Infections, 5, e46.
DOI URL PMID |
[3] |
Bai YT, Xu ZG, Lu B, Sun QH, Tang WG, Liu XB, Yang WZ, Xu XY, Liu QY ( 2015) Effects of climate and rodent factors on hemorrhagic fever with renal syndrome in Chongqing, China, 1997-2008. PLoS ONE, 10, e0133218.
DOI URL PMID |
[4] |
Bayram H, Bauer AK, Abdalati W, Carlsten C, Pinkerton KE, Thurston GD, Balmes JR, Takaro TK ( 2017) Environment, global climate change, and cardiopulmonary health. American Journal of Respiratory and Critical Care Medicine, 195, 718-724.
DOI URL PMID |
[5] |
Bi P, Tong S, Donald K, Parton K, Ni J ( 2002) Climatic, reservoir and occupational variables and the transmission of haemorrhagic fever with renal syndrome in China. International Journal of Epidemiology, 31, 189-193.
DOI URL PMID |
[6] |
Clement J, Vercauteren J, Verstraeten WW, Ducoffre G, Barrios JM, Vandamme AM, Maes P, Ranst MV ( 2009) Relating increasing Hantavirus incidences to the changing climate: The mast connection. International Journal of Health Geographics, 8, 1-11.
DOI URL PMID |
[7] |
Engelthaler DM, Mosley DG, Cheek JE, Levy CE, Komatsu KK, Ettestad P, Davis T, Tanda DT, Miller L, Frampton JW, Porter R, Bryan RT ( 1999) Climatic and environmental patterns associated with Hantavirus pulmonary syndrome, Four Corners region, United States. Emerging Infectious Diseases, 5, 87-94.
URL PMID |
[8] | Ge L, Zhao YL, Zhou K, Mu XM, Yu HB, Wang YF, Ning W, Hong F, Guo LQ, Huo XX ( 2016) Spatio-temporal pattern and influencing factors of hemorrhagic fever with renal syndrome (HFRS) in Hubei Province (China) between 2005 and 2014. PLoS ONE, 11, e0167836. |
[9] | Guan P, Huang DS, He M, Shen TF, Guo JQ, Zhou BS ( 2009) Investigating the effects of climatic variables and reservoir on the incidence of hemorrhagic fever with renal syndrome in Huludao City, China: A 17-year data analysis based on structure equation model. BMC Infectious Diseases, 9, 109. |
[10] | Habtemariam LT, Kassa GA, Gandorfer M ( 2017) Impact of climate change on farms in smallholder farming systems: Yield impacts, economic implications and distributional effects. Agricultural Systems, 152, 58-66. |
[11] | Hou X, Liu KK, Liu XB, Chang G, Xu L, Liu QY ( 2019) Nonlinear effects of climate factors on dengue epidemic in Guangdong Province, China. Chinese Journal of Vector Biology and Control, 30, 25-30. (in Chinese with English abstract) |
[ 侯祥, 刘可可, 刘小波, 常罡, 许磊, 刘起勇 ( 2019) 气候因素对广东省登革热流行影响的非线性效应. 中国媒介生物学及控制杂志, 30, 25-30.] | |
[12] |
Kallio ER, Begon M, Henttonen H, Koskela E, Mappes T, Vaheri A, Vapalahti O ( 2009) Cyclic Hantavirus epidemics in humans-predicted by rodent host dynamics. Epidemics, 1, 101-107.
URL PMID |
[13] | Kariwa H, Yoshimatsu K, Arikawa J ( 2007) Hantavirus infection in East Asia. Comparative Immunology Microbiology and Infectious Diseases, 30, 341-356. |
[14] |
Li Q, Zhao WN, Wei YM, Han X, Han ZY, Zhang YB, Qi SX, Xu YG ( 2014) Analysis of incidence and related factors of hemorrhagic fever with renal syndrome in Hebei Province, China. PLoS ONE, 9, e101348.
DOI URL PMID |
[15] | Liang WF, Gu X, Li X, Zhang KJ, Wu KJ, Pang MM, Dong JH, Merrill HR, Hu T, Liu K ( 2018) Mapping the epidemic changes and risks of hemorrhagic fever with renal syndrome in Shaanxi Province, China, 2005-2016. Scientific Reports, 8, 749. |
[16] |
Lin HL, Zhang ZT, Lu L, Liu QY ( 2014) Meteorological factors are associated with hemorrhagic fever with renal syndrome in Jiaonan County, China, 2006-2011. International Journal of Biometeorology, 58, 1031-1037.
URL PMID |
[17] |
Liu XD, Jiang BF, Gu WD, Liu QY ( 2011) Temporal trend and climate factors of hemorrhagic fever with renal syndrome epidemic in Shenyang City, China. BMC Infectious Diseases, 11, 331.
DOI URL PMID |
[18] | McMichael AJ, Woodruff RE, Hales S ( 2006) Climate change and human health: Present and future risks. Lancet, 367, 859-869. |
[19] | Nichol ST, Spiropoulou C, Morzunov S, Rollin PE, Ksiazek TG, Feldmann H, Sanchez A, Childs J, Zaki S, Peters C ( 1993) Genetic identification of a Hantavirus associated with an outbreak of acute respiratory illness. Science, 262, 914-917. |
[20] | Pinkerton KE, Rom WN ( 2014) Global Climate Change and Public Health. Springer, London. |
[21] | Rosseel Y ( 2012) lavaan: An R package for structural equation modeling. Journal of Statistical Software, 48, 1-36. |
[22] |
Sargianou M, Watson DC, Chra P, Papa A, Panos G ( 2012) Hantavirus infections for the clinician: From case presentation to diagnosis and treatment. Critical Reviews in Microbiology, 38, 317-329.
DOI URL PMID |
[23] | Steiger JH ( 1990) Structural model evaluation and modification: An interval estimation approach. Multivariate Behavioral Research, 25, 173-180. |
[24] | Stige LC, Ottersen G, Brander K, Chan KS, Stenseth NC ( 2006) Cod and climate: Effect of the North Atlantic Oscillation on recruitment in the North Atlantic. Marine Ecology Progress Series, 325, 227-241. |
[25] | Sun J, Wang JN, Wei YQ, Li YR, Liu M ( 2016) The haze nightmare following the economic boom in China: Dilemma and tradeoffs. International Journal of Environmental Research and Public Health, 13, 1-12. |
[26] | Tian HY, Hu SX, Cazelles B, Chowell G, Gao LD, Laine M, Li YP, Yang HS, Li YD, Yang QQ, Tong X, Huang R, Bjornstad ON, Xiao H, Stenseth NC ( 2018) Urbanization prolongs Hantavirus epidemics in cities. Proceedings of the National Academy of Sciences, USA, 115, 4707-4712. |
[27] |
Tian HY, Yu PB, Bjørnstad ON, Cazelles B, Yang J, Tan H, Huang SQ, Cui YJ, Dong L, Ma CF, Ma CA, Zhou S, Laine M, Wu XX, Zhang YY, Wang JJ, Yang RF, Stenseth NC, Xu B ( 2017a) Anthropogenically driven environmental changes shift the ecological dynamics of hemorrhagic fever with renal syndrome. PLoS Pathogens, 13, e1006198.
URL PMID |
[28] | Tian HY, Yu PB, Cazelles B, Xu L, Tan H, Yang J, Huang SQ, Xu B, Cai J, Ma CF, Wei J, Li S, Qu JH, Laine M, Wang JJ, Tong SL, Stenseth NC, Xu B ( 2017b) Interannual cycles of Hantaan virus outbreaks at the human-animal interface in Central China are controlled by temperature and rainfall. Proceedings of the National Academy of Sciences, USA, 114, 8041-8046. |
[29] | Tian HY, Yu PB, Luis AD, Bi P, Cazelles B, Laine M, Huang SQ, Ma CF, Zhou S, Wei J, Li S, Lu XL, Qu JH, Dong JH, Tong SL, Wang JJ, Grenfell B, Xu B ( 2015) Changes in rodent abundance and weather conditions potentially drive hemorrhagic fever with renal syndrome outbreaks in Xi’an, China, 2005-2012. PLOS Neglected Tropical Diseases, 9, e0003530. |
[30] | Wang T, Zhou YP, Wang L, Huang ZS, Cui F, Zhai SY ( 2015) Using autoregressive integrated moving average model to predict the incidence of hemorrhagic fever with renal syndrome in Zibo, China, 2004-2014. Japanese Journal of Infectious Diseases, 69, 279-284. |
[31] | Watson DC, Sargianou M, Papa A, Chra P, Starakis I, Panos G ( 2014) Epidemiology of Hantavirus infections in humans: A comprehensive, global overview. Critical Reviews in Microbiology, 40, 261-272. |
[32] | Wood SN ( 2006) Generalized Additive Models: An Introduction with R. Chapman & Hall/CRC, Boca Raton. |
[33] |
Xiao D, Wu KJ, Tan X, Le J, Li HT, Yan YP, Xu ZK ( 2015) Modeling and predicting hemorrhagic fever with renal syndrome trends based on meteorological factors in Hu County, China. PLoS ONE, 10, e0123166.
URL PMID |
[34] |
Xiao D, Wu KJ, Tan X, Yan TC, Li HT, Yan YP ( 2014 a) The impact of the vaccination program for hemorrhagic fever with renal syndrome in Hu County, China. Vaccine, 32, 740-745.
DOI URL PMID |
[35] |
Xiao H, Tian HY, Gao LD, Liu HN, Duan LS, Basta N, Cazelles B, Li XJ, Lin XL, Wu HW, Chen BY, Yang HS, Xu B, Grenfell B ( 2014 b) Animal reservoir, natural and socioeconomic variations and the transmission of hemorrhagic fever with renal syndrome in Chenzhou, China, 2006-2010. PLoS Neglected Tropical Diseases, 8, e2615.
URL PMID |
[36] |
Xiao H, Gao LD, Li XJ, Lin XL, Dai XY, Zhu PJ, Chen BY, Zhang XX, Zhao J, Tian HY ( 2013 a) Environmental variability and the transmission of haemorrhagic fever with renal syndrome in Changsha, People’s Republic of China. Epidemiology and Infection, 141, 1867-1875.
DOI URL PMID |
[37] |
Xiao H, Tian HY, Cazelles B, Li XJ, Tong SL, Gao LD, Qin JX, Lin XL, Liu HN, Zhang XX ( 2013 b) Atmospheric moisture variability and transmission of hemorrhagic fever with renal syndrome in Changsha City, Mainland China, 1991-2010. PLoS Neglected Tropical Diseases, 7, e2260.
URL PMID |
[38] | Xu L, Liu QY, Stige LC, Ari TB, Fang XY, Chan KS, Wang SC, Stenseth NC, Zhang ZB ( 2011) Nonlinear effect of climate on plague during the third pandemic in China. Proceedings of the National Academy of Sciences, USA, 108, 10214-10219. |
[39] |
Yan X, Yang YY ( 2018) RMSEA, CFI, and TLI in structural equation modeling with ordered categorical data: The story they tell depends on the estimation methods. Behavior Research Methods, 51, 409-428.
DOI URL PMID |
[40] | Zhang MW, Wang Y, Li B, Chen AG ( 2003) The rodent pest control of the social-economical-natural complex ecosystem. Acta Theriologica Sinica, 23, 250-258. (in Chinese with English abstract) |
[ 张美文, 王勇, 李波, 陈安国 ( 2003) “社会-经济-自然复合生态系统”中的鼠害治理. 兽类学报, 23, 250-258.] | |
[41] |
Zhang YZ, Zou Y, Fu ZF, Plyusnin A ( 2010) Hantavirus infections in humans and animals, China. Emerging Infectious Diseases, 16, 1195-1203.
DOI URL PMID |
[42] | Zhang ZB, Cazelles B, Tian HD, Stige LC, Bräuning A, Stenseth NC ( 2009) Periodic temperature-associated drought/flood drives locust plagues in China. Proceedings of the Royal Society B: Biological Ences, 276, 823-831. |
[1] | 吴琪, 张晓青, 杨雨婷, 周艺博, 马毅, 许大明, 斯幸峰, 王健. 浙江钱江源-百山祖国家公园庆元片区叶附生苔多样性及其时空变化[J]. 生物多样性, 2024, 32(4): 24010-. |
[2] | 曹可欣, 王敬雯, 郑国, 武鹏峰, 李英滨, 崔淑艳. 降水格局改变及氮沉降对北方典型草原土壤线虫多样性的影响[J]. 生物多样性, 2024, 32(3): 23491-. |
[3] | 杜宇晨, 刘蓓萌, 陈俊峰, 王浩, 谢屹. 基于结构方程模型的农户保护意愿影响因素分析: 以东北虎豹国家公园珲春片区为例[J]. 生物多样性, 2024, 32(1): 23155-. |
[4] | 冯莉. 国际法视野下生物多样性和气候变化的协同治理[J]. 生物多样性, 2023, 31(7): 23110-. |
[5] | 姚雪, 陈星, 戴尊, 宋坤, 邢诗晨, 曹宏彧, 邹璐, 王健. 采集策略对叶附生苔类植物发现概率及物种多样性的重要性[J]. 生物多样性, 2023, 31(4): 22685-. |
[6] | 邵雯雯, 范国祯, 何知舟, 宋志平. 多地同质园实验揭示普通野生稻的表型可塑性与本地适应性[J]. 生物多样性, 2023, 31(3): 22311-. |
[7] | 桑佳文, 宋创业, 贾宁霞, 贾元, 刘长成, 乔鲜果, 张琳, 袁伟影, 吴冬秀, 李凌浩, 郭柯. 青藏高原植被调查与制图评估[J]. 生物多样性, 2023, 31(3): 22430-. |
[8] | 王金洲, 徐靖. “基于自然的解决方案”应对生物多样性丧失和气候变化: 进展、挑战和建议[J]. 生物多样性, 2023, 31(2): 22496-. |
[9] | 蔡畅, 张雪, 朱晨, 赵郁豪, 乔格侠, 丁平. 千岛湖片段化生境中蚜虫群落嵌套格局的形成: 岛屿面积和寄主植物多样性的作用[J]. 生物多样性, 2023, 31(12): 23183-. |
[10] | 朱瑞良, 马晓英, 曹畅, 曹子寅. 中国苔藓植物多样性研究进展[J]. 生物多样性, 2022, 30(7): 22378-. |
[11] | 李季蔓, 靳楠, 胥毛刚, 霍举颂, 陈小云, 胡锋, 刘满强. 不同干旱水平下蚯蚓对番茄抗旱能力的影响[J]. 生物多样性, 2022, 30(7): 21488-. |
[12] | 祖奎玲, 王志恒. 山地物种海拔分布对气候变化响应的研究进展[J]. 生物多样性, 2022, 30(5): 21451-. |
[13] | 潘雯, 刘云慧, 武泽浩, 刘增力, 韩文轩, 宇振荣. 不同发展情景下青海省土地利用布局及生物多样性变化模拟[J]. 生物多样性, 2022, 30(4): 21425-. |
[14] | 井新, 蒋胜竞, 刘慧颖, 李昱, 贺金生. 气候变化与生物多样性之间的复杂关系和反馈机制[J]. 生物多样性, 2022, 30(10): 22462-. |
[15] | 乔慧捷, 胡军华. 利用数值模拟重构物种多样性格局的形成过程[J]. 生物多样性, 2022, 30(10): 22456-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn