生物多样性 ›› 2018, Vol. 26 ›› Issue (7): 667-677. DOI: 10.17520/biods.2018045
宋乃平*(), 王兴, 陈林, 薛毅, 陈娟, 随金明, 王磊, 杨新国
收稿日期:
2018-02-08
接受日期:
2018-05-15
出版日期:
2018-07-20
发布日期:
2018-09-11
通讯作者:
宋乃平
基金资助:
Song Naiping*(), Wang Xing, Chen Lin, Xue Yi, Chen Juan, Sui Jinming, Wang Lei, Yang Xinguo
Received:
2018-02-08
Accepted:
2018-05-15
Online:
2018-07-20
Published:
2018-09-11
Contact:
Song Naiping
摘要:
经过长期破碎化, 荒漠草原原生硬质灰钙土斑块散布在广大沙化土地中, 形成类似“土岛”的土被结构。为揭示土岛生境的群落物种共存机制, 2016年在宁夏盐池县皖记沟村选取大(200-300 m2)、中(约100 m2)、小(约50 m2)土岛各3个开展调查, 采用Jaccard相异系数、物种生态位宽度和生态位重叠度、零模型、Meta分析, 综合计算和分析土岛内部与外部植物群落相似性、物种生态位宽度和生态位重叠、物种共存格局及其影响因子。研究发现, (1)随着破碎化加剧, 土岛内部植物多样性整体呈现下降趋势, 群落优势种从短花针茅(Stipa breviflora)转变为猪毛蒿(Artemisia scoparia)和短花针茅共优种, 土岛内外群落相似性增加。(2)土岛内外绝大多数物种生态位重叠较小, 生态位重叠在土岛内呈集中分布, 而土岛外则呈均匀发散分布。(3)环境过滤为主的生态过程决定了土岛生境群落物种的共存格局, 随着土岛面积减小, 环境因子对群落物种共存的调控强度降低, 关键性环境因子由土壤细砂粒和黏粒转变为粗砂粒, 显著性竞争物种共存格局在小岛出现。综上所述, 土岛生境对于维持草原物种具有重要作用, 环境过滤主导了荒漠草原物种共存格局。随着生境破碎化加剧或土岛面积减小, 物种共存格局及其调控因子发生转变。保护面积在200 m2以上的大土岛对于恢复荒漠草原区草原成分种和其物种多样性机制都十分必要。
宋乃平, 王兴, 陈林, 薛毅, 陈娟, 随金明, 王磊, 杨新国 (2018) 荒漠草原“土岛”生境群落物种共存机制. 生物多样性, 26, 667-677. DOI: 10.17520/biods.2018045.
Song Naiping, Wang Xing, Chen Lin, Xue Yi, Chen Juan, Sui Jinming, Wang Lei, Yang Xinguo (2018) Co-existence mechanisms of plant species within “soil islands” habitat of desert steppe. Biodiversity Science, 26, 667-677. DOI: 10.17520/biods.2018045.
图1 不同面积土岛内外群落Jaccard相异矩阵热图。Jaccard指数值位于0-1之间。红紫色表示相异系数接近0 (最大相似性), 青绿色表示相异系数接近1 (最小相似性)。图中数字分别表示土岛内部(1, 2, 3)、边缘(4, 5, 6)和外部(7, 8, 9)。
Fig. 1 Jaccard dissimilarity matrix heat map for different area soil islands. The purple indicate the 0 value reflecting the maximum similarity, the turquoise indicate the 1 value reflecting the minimum similarity. The numbers 1-3, 4-6 and 7-8 represent inside, marginal and outside areas of the soil islands, respectively.
土岛内部 Inside the soil island | 土岛外部 Outside the soil island | |||||
---|---|---|---|---|---|---|
大土岛 Large island | 中土岛 Medium island | 小土岛 Small island | 中土岛 Medium island | 小土岛 small island | ||
短花针茅 S. breviflora | 22.28 ± 11.17ab | 29.75 ± 10.43a | 28.17 ± 14.24a | 13.19 ± 6.38bc | 7.03 ± 5.25bc | |
猪毛蒿 A. scoparia | 4.68 ± 3.65c | 29.33 ± 20.56bc | 38.42 ± 3.47bc | 69.63 ± 13.99ab | 73.83 ± 30.46ab |
表1 土岛内外优势种短花针茅和猪毛蒿密度(平均值±标准差)
Table 1 Density of Stipa breviflora and Artemisia scoparia inside and outside the soil islands (mean ± SD)
土岛内部 Inside the soil island | 土岛外部 Outside the soil island | |||||
---|---|---|---|---|---|---|
大土岛 Large island | 中土岛 Medium island | 小土岛 Small island | 中土岛 Medium island | 小土岛 small island | ||
短花针茅 S. breviflora | 22.28 ± 11.17ab | 29.75 ± 10.43a | 28.17 ± 14.24a | 13.19 ± 6.38bc | 7.03 ± 5.25bc | |
猪毛蒿 A. scoparia | 4.68 ± 3.65c | 29.33 ± 20.56bc | 38.42 ± 3.47bc | 69.63 ± 13.99ab | 73.83 ± 30.46ab |
物种数 Species richness | Simpson指数 Simpson index | Shannon-Wiener指数 Shannon-Wiener index | 均匀度指数 Evenness index | β多样性 β diversity | 生物量 Biomass | ||
---|---|---|---|---|---|---|---|
内部 Inside | 大土岛 Large island | 10.1 ± 2.26a | 0.89 ± 0.2a | 2.48 ± 0.39a | 0.98 ± 0.19a | 2.93 ± 0.67a | 44.34 ± 5.45bc |
中土岛 Medium island | 9.64 ± 2.98a | 0.85 ± 0.19a | 2.27 ± 0.28a | 0.93 ± 0.14a | 2.49 ± 0.57ab | 55.29 ± 2.13abc | |
小土岛 Small island | 9.66 ± 1.23a | 0.87 ± 0.17a | 2.25 ± 0.20a | 0.91 ± 0.12a | 2.24 ± 0.6ab | 34.66 ± 6.41c | |
外部 Outside | 大土岛 Large island | 11.15 ± 3.36a | 0.83 ± 0.16a | 2.11 ± 0.39ab | 0.82 ± 0.05a | 1.89 ± 0.4b | 86.46 ± 41.13a |
中土岛 Medium island | 8.89 ± 1.86a | 0.73 ± 0.15a | 1.83 ± 0.46ab | 0.78 ± 0.20a | 2.59 ± 0.3ab | 89.48 ± 32.24a | |
小土岛 Small island | 7.5 ± 0.94a | 0.61 ± 0.02a | 1.48 ± 0.15b | 0.74 ± 0.13a | 2.6 ± 0.52ab | 81.54 ± 7.64ab |
表2 不同土岛植物群落多样性及生物量(平均值±标准差)
Table 2 Plant diversity and biomass among different soil islands (mean ± SD)
物种数 Species richness | Simpson指数 Simpson index | Shannon-Wiener指数 Shannon-Wiener index | 均匀度指数 Evenness index | β多样性 β diversity | 生物量 Biomass | ||
---|---|---|---|---|---|---|---|
内部 Inside | 大土岛 Large island | 10.1 ± 2.26a | 0.89 ± 0.2a | 2.48 ± 0.39a | 0.98 ± 0.19a | 2.93 ± 0.67a | 44.34 ± 5.45bc |
中土岛 Medium island | 9.64 ± 2.98a | 0.85 ± 0.19a | 2.27 ± 0.28a | 0.93 ± 0.14a | 2.49 ± 0.57ab | 55.29 ± 2.13abc | |
小土岛 Small island | 9.66 ± 1.23a | 0.87 ± 0.17a | 2.25 ± 0.20a | 0.91 ± 0.12a | 2.24 ± 0.6ab | 34.66 ± 6.41c | |
外部 Outside | 大土岛 Large island | 11.15 ± 3.36a | 0.83 ± 0.16a | 2.11 ± 0.39ab | 0.82 ± 0.05a | 1.89 ± 0.4b | 86.46 ± 41.13a |
中土岛 Medium island | 8.89 ± 1.86a | 0.73 ± 0.15a | 1.83 ± 0.46ab | 0.78 ± 0.20a | 2.59 ± 0.3ab | 89.48 ± 32.24a | |
小土岛 Small island | 7.5 ± 0.94a | 0.61 ± 0.02a | 1.48 ± 0.15b | 0.74 ± 0.13a | 2.6 ± 0.52ab | 81.54 ± 7.64ab |
土岛 Soil island | 实际值C-score Observed C-score | 模拟值C-score Simulated C-score | 实际值小于模拟值的P值 P-observed < P-simulated | 实际值大于模拟值的P值 P-observed > P-simulated | 标准效应量 Standardized effect size | |
---|---|---|---|---|---|---|
内部 Inside | 大土岛 Large island | 25.11 | 25.05 | 0.64 | 0.36 | 0.29 |
中土岛 Medium island | 10.25 | 10.23 | 0.6 | 0.41 | 0.16 | |
小土岛 Small island | 7.8 | 7.63 | 0.95 | 0.05 | 1.85 | |
外部 Outside | 大土岛 Large island | 9.32 | 9.27 | 0.72 | 0.29 | 0.5 |
中土岛 Medium island | 9.44 | 9.15 | 0.02 | 0.02 | 2.22 | |
小土岛 Small island | 11.99 | 11.8 | 0.94 | 0.06 | 1.62 |
表3 基于零模型土岛不同生境植物群落共存格局分析
Table 3 Species co-occurrence analysis for plant community among different soil islands (null model analysis)
土岛 Soil island | 实际值C-score Observed C-score | 模拟值C-score Simulated C-score | 实际值小于模拟值的P值 P-observed < P-simulated | 实际值大于模拟值的P值 P-observed > P-simulated | 标准效应量 Standardized effect size | |
---|---|---|---|---|---|---|
内部 Inside | 大土岛 Large island | 25.11 | 25.05 | 0.64 | 0.36 | 0.29 |
中土岛 Medium island | 10.25 | 10.23 | 0.6 | 0.41 | 0.16 | |
小土岛 Small island | 7.8 | 7.63 | 0.95 | 0.05 | 1.85 | |
外部 Outside | 大土岛 Large island | 9.32 | 9.27 | 0.72 | 0.29 | 0.5 |
中土岛 Medium island | 9.44 | 9.15 | 0.02 | 0.02 | 2.22 | |
小土岛 Small island | 11.99 | 11.8 | 0.94 | 0.06 | 1.62 |
图2 基于零模型共存物种对标准效应量的频率分布。A: 大土岛内; B: 中土岛内; C: 小土岛内; D: 大土岛外; E: 中土岛外; F: 小土岛外。竖线表示95%置信区间。
Fig. 2 Frequency distribution of standardized effect size (SES) among the pairs of coexisting species. A, B and C indicate inside the large, medium and small islands, respectively. D, E and F indicate outside the large, medium and small islands, respectively. The lines represent the 95% confidence interval.
图3 不同土岛生境群落显著物种对meta分析。A: 大土岛内; B: 中土岛内; C: 小土岛内; D: 大土岛外; E: 中土岛外; F: 小土岛外。
Fig. 3 Meta analysis of species pairs with significant interactions. A, B and C indicate inside the large, medium and small soil islands, respectively. D, E and F indicate outside the large, medium and small soil islands, respectively.
图4 群落中显著物种对之间正负相互作用强度meta分析。A: 大土岛内; B: 中土岛内; C: 小土岛内; D: 大土岛外; E: 中土岛外; F: 小土岛外。
Fig. 4 Meta analysis of the strength interaction for significant species pairs in soil islands community. A, B and C indicate inside the large, medium and small islands, respectively. D, E and F indicate outside the large, medium and small islands, respectively.
参数 Parameter | 总异质性 Total heterogeneity | 混合效应模型 Mixed-Effects Model | ||||
---|---|---|---|---|---|---|
PC1 | PC2 | PC3 | Area | |||
土岛内部 Inside the soil islands | 模型方差 tau2 Estimated amount of total heterogeneity | 0.97 | 0.1565 | 0.1897 | 2.1863 | 1.7245 |
标准差 SD | 1.16 | 0.4067 | 0.4516 | 3.3815 | 2.8083 | |
R2 (amount of heterogeneity accounted for) | 85.36% | 80.44% | 0% | 0% | ||
异质性检验结果 Test for heterogeneity | ||||||
自由度 Q (df = 2) | 12.68 | 2.1946 | 5.1145 | 0.0039 | 0.2431 | |
P-val P值 | < 0.01 | 0.017 | 0.0237 | 0.9504 | 0.622 | |
土岛内外 Outside and inside the soil islands | 模型方差 tau2 Estimated amount of total heterogeneity | 0.29 | - | - | - | - |
自由度 Q (df = 5) | 14.45 | 1.06 | 0.3759 | 0.745 | - | |
P-val P值 | 0.01 | 0.7867 | 0.5398 | 0.3881 | - |
表4 土岛内部显著物种对相互作用强度meta分析异质性来源检验
Table 4 Test for meta heterogeneity of the strength interaction among significant species pairs inside the soil island
参数 Parameter | 总异质性 Total heterogeneity | 混合效应模型 Mixed-Effects Model | ||||
---|---|---|---|---|---|---|
PC1 | PC2 | PC3 | Area | |||
土岛内部 Inside the soil islands | 模型方差 tau2 Estimated amount of total heterogeneity | 0.97 | 0.1565 | 0.1897 | 2.1863 | 1.7245 |
标准差 SD | 1.16 | 0.4067 | 0.4516 | 3.3815 | 2.8083 | |
R2 (amount of heterogeneity accounted for) | 85.36% | 80.44% | 0% | 0% | ||
异质性检验结果 Test for heterogeneity | ||||||
自由度 Q (df = 2) | 12.68 | 2.1946 | 5.1145 | 0.0039 | 0.2431 | |
P-val P值 | < 0.01 | 0.017 | 0.0237 | 0.9504 | 0.622 | |
土岛内外 Outside and inside the soil islands | 模型方差 tau2 Estimated amount of total heterogeneity | 0.29 | - | - | - | - |
自由度 Q (df = 5) | 14.45 | 1.06 | 0.3759 | 0.745 | - | |
P-val P值 | 0.01 | 0.7867 | 0.5398 | 0.3881 | - |
环境变量 Environment variables | 实测值 Observed value | 模拟值 Mean of simulated value | 标准效应量 SES | 实测值大于模拟值的P值 P-observed > P-simulated | 实测值小于模拟值的P值 P-observed < P-simulated | |
---|---|---|---|---|---|---|
大土岛 Large island | PC1 | 0.61 | 0.60 | 1.01 | 0.86 | 0.14 |
PC2 | 0.61 | 0.54 | 6.62 | 0.00 | 1.00 | |
中土岛 Medium island | PC1 | 0.54 | 0.54 | 0.53 | 0.24 | 0.76 |
PC2 | 0.55 | 0.47 | 5.61 | 0.00 | 1.00 | |
小土岛 Small island | PC1 | 0.49 | 0.44 | 2.39 | 0.03 | 0.97 |
表5 不同土岛内部群落环境因子生态位重叠度指标(Olk)
Table 5 Community niche analysis for selected environmental principal components
环境变量 Environment variables | 实测值 Observed value | 模拟值 Mean of simulated value | 标准效应量 SES | 实测值大于模拟值的P值 P-observed > P-simulated | 实测值小于模拟值的P值 P-observed < P-simulated | |
---|---|---|---|---|---|---|
大土岛 Large island | PC1 | 0.61 | 0.60 | 1.01 | 0.86 | 0.14 |
PC2 | 0.61 | 0.54 | 6.62 | 0.00 | 1.00 | |
中土岛 Medium island | PC1 | 0.54 | 0.54 | 0.53 | 0.24 | 0.76 |
PC2 | 0.55 | 0.47 | 5.61 | 0.00 | 1.00 | |
小土岛 Small island | PC1 | 0.49 | 0.44 | 2.39 | 0.03 | 0.97 |
[1] | Albrecht M, Gotelli NJ (2001) Spatial and temporal niche partitioning in grassland ants. Oecologia, 126, 134-141. |
[2] | Bao SD (2000) Soil Agro-chemistrical Analysis. China Agriculture Press, Beijing. (in Chinese) |
[鲍士旦 (2000) 土壤农化分析. 中国农业出版社, 北京.] | |
[3] | Bergholz K, May F, Giladi I, Ristow M, Ziv Y, Jeltsch F (2017) Environmental heterogeneity drives fine-scale species assembly and functional diversity of annual plants in a semi-arid environment. Perspectives in Plant Ecology, Evolution and Systematics, 24, 138-146. |
[4] | Boeye J, Kubisch A, Bonte D (2014) Habitat structure mediates spatial segregation and therefore coexistence. Landscape Ecology, 29, 593-604. |
[5] | Borcard D, Gillet F, Legendre P (translated by Lai JS) (2014) Numerical Ecology with R, pp. 332-334. Higher Education Press, Beijing. (in Chinese) |
[赖江山 (译) (2014) 数量生态学——R语言的应用, 332-334页. 高等教育出版社, 北京.] | |
[6] | Briers R (2006) Ecology: From individuals to ecosystems. Freshwater Biology, 51, 1787-1788. |
[7] | Brown CD, Boutin C (2009) Linking past land use, recent disturbance, and dispersal mechanism to forest composition. Biological Conservation, 142, 1647-1656. |
[8] | Chai YF, Yue M (2017) Research advances in plant community assembly mechanisms. Acta Ecologica Sinica, 36, 4557-4572. (in Chinese with English abstract) |
[柴永福, 岳明 (2017) 植物群落构建机制研究进展. 生态学报, 36, 4557-4572.] | |
[9] | Chen L, Mi XC, Ma KP (2014) Niche differentiation and its consequence on biodiversity maintenance in forest communities. Chinese Bulletin of Life Sciences, 26, 112-117. (in Chinese) |
[陈磊, 米湘成, 马克平 (2014) 生态位分化与森林群落物种多样性维持研究展望. 生命科学, 26, 112-117.] | |
[10] | Chu CJ, Wang YS, Liu Y, Jiang L, He FL (2017) Advances in species coexistence theory. Biodiversity Science, 25, 345-354. (in Chinese with English abstract) |
[储诚进, 王酉石, 刘宇, 蒋林, 何芳良 (2017) 物种共存理论研究进展. 生物多样性, 25, 345-354.] | |
[11] | Collins CD, Banks-Leite C, Brudvig LA, Foster BL, Cook WM, Damschen EI, Andrade A, Austin M, Camargo JL, Driscoll DA (2017) Fragmentation affects plant community composition over time. Ecography, 40, 119-130. |
[12] | Duan HL, Zhao A, Yao Z (2017) Analysis of wetland plant-soil relationships and population niches in Chayegang marshland near Henghu farm in the Poyang Lake region during the dry season. Acta Ecologica Sinica, 37, 3744-3754. (in Chinese with English abstract) |
[段后浪, 赵安, 姚忠 (2017) 恒湖农场茶叶港草洲枯水期湿地植物与土壤关系及种群生态位分析. 生态学报, 37, 3744-3754.] | |
[13] | Gao M, He P, Zhang X (2014) Relative roles of spatial factors, environmental filtering and biotic interactions in fine-scale structuring of a soil mite community. Soil Biology & Biochemistry, 79, 68-77. |
[14] | Gonzalez M, Ladet S, Deconchat M, Cabanettes A, Alard D, Balent G (2010) Relative contribution of edge and interior zones to patch size effect on species richness: An example for woody plants. Forest Ecology and Management, 259, 266-274. |
[15] | Gotelli NJ, McCabe DJ (2002) Species co-occurrence: A meta-analysis of JM Diamond’s assembly rules model. Ecology, 83, 2091-2096. |
[16] | Gotelli NJ, Ulrich W (2010) The empirical Bayes approach as a tool to identify non-random species associations. Oecologia, 162, 463-477. |
[17] | Haddad NM, Brudvig LA, Clobert J, Davies KF, Gonzalez A, Holt RD, Lovejoy TE, Sexton JO, Austin MP, Collins CD (2015) Habitat fragmentation and its lasting impact on Earth’s ecosystems. Science Advances, 1, e1500052. |
[18] | Han DY, Yang YF (2014) Species abundance-distribution relationship and its interpretation in plant communities on the Songnen grasslands, China. Biodiversity Science, 22, 348-357. (in Chinese with English abstract) |
[韩大勇, 杨允菲 (2014) 松嫩草地植物群落物种多度-分布关系及其解释. 生物多样性, 22, 348-357.] | |
[19] | Hu G, Feeley KJ, Yu M (2016) Habitat fragmentation drives plant community assembly processes across life stages. PLoS ONE, 11, e0159572. |
[20] | Hu GL, Zhao WZ, Wang G (2011) Reviews on spatial pattern and sand-binding effect of patch vegetation in arid desert area. Acta Ecologica Sinica, 31, 7609-7616. (in Chinese with English abstract) |
[胡广录, 赵文智, 王岗 (2011) 干旱荒漠区斑块状植被空间格局及其防沙效应研究进展. 生态学报, 31, 7609-7616. ] | |
[21] | Jiménez JJ, Decaëns T, Rossi JP (2012) Soil environmental heterogeneity allows spatial co-occurrence of competitor earthworm species in a gallery forest of the Colombian “Llanos”. Oikos, 121, 915-926. |
[22] | Krasnov BR, Shenbrot GI, Khokhlova IS (2011) Aggregativestructure is the rule in communities of fleas: Null model analysis. Ecography, 34, 751-761. |
[23] | Li XR, Zhao Y, Hui R, Su JQ, Gao YH (2014) Progress and trend of development of restoration ecology research in the arid regions of China. Progress in Geography, 33, 1435-1443. (in Chinese with English abstract) |
[李新荣, 赵洋, 回嵘, 苏洁琼, 高艳红 (2014) 中国干旱区恢复生态学研究进展及趋势评述. 地理科学进展, 33, 1435-1443.] | |
[24] | Ma KM, Zhang JY, Guo XD, Fu BJ (2002) Plant diversity distribution of mountains in rural landscapes: The combined influences of topography and land use. Acta Phytoecologica Sinica, 26, 575-588. (in Chinese with English abstract) |
[马克明, 张洁瑜, 郭旭东, 傅伯杰 (2002) 农业景观中山体的植物多样性分布: 地形和土地利用的综合影响. 植物生态学报, 26, 575-588.] | |
[25] | May R, Mclean A (1976) Theoretical Ecology: Principles and Applications, pp. 1147-1152. Oxford University Press, New York. |
[26] | Miguel JM, Martín-Forés I, Acosta-Gallo B, del Pozo A, Ovalle C, Sánchez-Jardón L, Castro I, Casado MA (2016) Non-random co-occurrence of native and exotic plant species in Mediterranean grasslands. Acta Oecologica, 77, 18-26. |
[27] | Patiño J, Whittaker RJ, Borges PAV, Fernández-Palacios JM, Ah-Peng C, Araújo MB, Ávila SP, Cardoso P, Cornuault J, de Boer EJ, de Nascimento L, Gil A, Gon?alez-Castro A, Gruner DS, Heleno R, Horta J, Illera GJ, Kaiser-Bunbury CN, Matthews TJ, Papadopoulou A, Pettorelli N, Price JP, Santos AMC, Steinbauer MJ,Triantis KA, Valente L, Vargas P, Weigelt P, Emerson BC (2017) A roadmap for island biology: 50 fundamental questions after 50 years of The Theory of Island Biogeography. Journal of Biogeography, 44, 963-983. |
[28] | Shang KK, Da LJ (2013) Microtopographic spatial differentiation pattern and coexistence mechanism of relict deciduous broadleaved trees: A review. Chinese Journal of Ecology, 32, 1912-1919. (in Chinese with English abstract) |
[商侃侃, 达良俊 (2013) 孑遗落叶阔叶树种微地形空间分异格局及共存机制研究概述. 生态学杂志, 32, 1912-1919.] | |
[29] | Walter H (1985) Vegetation of the Earth and Ecological Systems of the Geo-biosphere. Springer-Verlag, New York. |
[30] | Wu J, Yu XC, Liu ZM, Hou XZ, Qian JQ, Xing BZ (2017) Effects of “habitat island” area on plant species diversity and its distribution pattern in Horqin Sand Land. Chinese Journal of Ecology, 36, 43-53. (in Chinese with English abstract) |
[武晶, 余新春, 刘志民, 侯宪章, 钱建强, 邢宝振 (2017) 科尔沁沙地“生境岛屿”面积对植物物种多样性及其分布格局的影响. 生态学杂志, 36, 43-53.] | |
[31] | Zhang JT (2004) Numerical Ecology. Science Press, Beijing. (in Chinese) |
[张金屯 (2004) 数量生态学. 科学出版社, 北京.] | |
[32] | Zhang Q (2011) Biodiversity Patterns and Environmental Interpretation of Stipa breviflora Grassland in Inner Mongolia. PhD dissertation, Inner Mongolia University, Hohhot. (in Chinese with English abstract) |
[张庆 (2011) 内蒙古短花针茅草原生物多样性格局及环境解释. 博士学位论文, 内蒙古大学, 呼和浩特.] | |
[33] | Zhou SR, Zhang DY (2006) Neutral theory in community ecology. Journal of Plant Ecology (Chinese Version), 30, 868-877. (in Chinese with English abstract) |
[周淑荣, 张大勇 (2006) 群落生态学的中性理论. 植物生态学报, 30, 868-877.] | |
[34] | Zou XH (2015) Ecological Effects and Dynamic Mechanisms of Vegetattion Patches in Alkali-Saline Grassland Landscape on the Songnen Plains. PhD dissertation, Northeast Normal University, Changchun. (in Chinese with English abstract) |
[邹雪辉 (2015) 松嫩盐碱化草地景观植被斑块的生态效应与动态机制. 博士学位论文, 东北师范大学, 长春.] |
[1] | 连佳丽, 陈婧, 杨雪琴, 赵莹, 罗叙, 韩翠, 赵雅欣, 李建平. 荒漠草原植物多样性和微生物多样性对降水变化的响应[J]. 生物多样性, 2024, 32(6): 24044-. |
[2] | 曲锐, 左振君, 王有鑫, 张良键, 吴志刚, 乔秀娟, 王忠. 基于元素组的生物地球化学生态位及其在不同生态系统中的应用[J]. 生物多样性, 2024, 32(4): 23378-. |
[3] | 吕晓波, 李东海, 杨小波, 张孟文. 红树林群落通过淹水时间及海水盐度的生态位分化实现物种共存[J]. 生物多样性, 2024, 32(3): 23302-. |
[4] | 公欣桐, 陈飞, 高欢欢, 习新强. 两种果蝇成虫与幼虫期的竞争及其对二者共存的影响[J]. 生物多样性, 2023, 31(8): 22603-. |
[5] | 赵坤明, 陈圣宾, 杨锡福. 基于红外相机技术调查四川都江堰破碎化森林鸟兽多样性及优势种活动节律[J]. 生物多样性, 2023, 31(6): 22529-. |
[6] | 刘向, 刘木, 肖瑶. 叶片病原真菌对植物物种共存的影响: 进展与挑战[J]. 生物多样性, 2023, 31(2): 22525-. |
[7] | 陈敏豪, 张超, 王嘉栋, 湛振杰, 陈君帜, 栾晓峰. 北美水貂和欧亚水獭在东北地区的分布与生态位重叠[J]. 生物多样性, 2023, 31(1): 22289-. |
[8] | 王双贵, 郭志宏, 顾伯健, 李天醍, 苏玉兵, 马伯丞, 管宏信, 黄巧雯, 王放, 张卓锦. 六盘山华北豹的栖息地利用及保护建议[J]. 生物多样性, 2022, 30(9): 22342-. |
[9] | 罗恬, 俞方圆, 练琚愉, 王俊杰, 申健, 吴志峰, 叶万辉. 冠层垂直高度对植物叶片功能性状的影响: 以鼎湖山南亚热带常绿阔叶林为例[J]. 生物多样性, 2022, 30(5): 21414-. |
[10] | 刘向, 张鹏, 刘建全. 无机肥料是青海塔拉滩光伏电站植被恢复过程中的限制性因子[J]. 生物多样性, 2022, 30(5): 22100-. |
[11] | 郭朝丹, 赵彩云, 李飞飞, 李俊生. 天然林和人工林外来入侵和本地植物对比研究: 以弄岗国家级自然保护区为例[J]. 生物多样性, 2022, 30(4): 21356-. |
[12] | 王少鹏, 罗明宇, 冯彦皓, 储诚进, 张大勇. 生物多样性理论最新进展[J]. 生物多样性, 2022, 30(10): 22410-. |
[13] | 李治霖, 多立安, 李晟, 王天明. 陆生食肉动物竞争与共存研究概述[J]. 生物多样性, 2021, 29(1): 81-97. |
[14] | 王剑, 董乙乂, 马丽滨, 潘勃, 马方舟, 丁晖, 胡亚萍, 彭艳琼, 吴孝兵, 王波. 西双版纳国家级自然保护区蚂蚁-树互作网络空间变异[J]. 生物多样性, 2020, 28(6): 695-706. |
[15] | 宋础良. 结构稳定性: 概念、方法和应用[J]. 生物多样性, 2020, 28(11): 1345-1361. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn