生物多样性 ›› 2024, Vol. 32 ›› Issue (7): 24073. DOI: 10.17520/biods.2024073 cstr: 32101.14.biods.2024073
尹星元1, 安慧1,*(), 邢彬彬1, 苏诗玉1, 文志林2, 郭建超2, 刘小平2, 王波3
收稿日期:
2024-03-01
接受日期:
2024-06-05
出版日期:
2024-07-20
发布日期:
2024-07-12
通讯作者:
*E-mail: anhui08@163.com
基金资助:
Xingyuan Yin1, Hui An1,*(), Binbin Xing1, Shiyu Su1, Zhilin Wen2, Jianchao Guo2, Xiaoping Liu2, Bo Wang3
Received:
2024-03-01
Accepted:
2024-06-05
Online:
2024-07-20
Published:
2024-07-12
Contact:
*E-mail: anhui08@163.com
Supported by:
摘要:
为明确荒漠草原生态系统功能和稳定性对水分和养分资源可利用性改变的响应, 阐明荒漠草原生物量稳定性的影响机制及途径, 本研究在宁夏荒漠草原开展了为期5年的养分添加和降水变化野外控制试验(2018-2022年), 试验包括9个处理: 对照(Cont)、N添加(N)、NPK添加(NPK)、减少50%降水(Cont - 50%)、增加50%降水(Cont + 50%)、N添加 + 减少50%降水(N - 50%)、N添加 + 增加50%降水(N + 50%)、NPK添加 + 减少50%降水(NPK - 50%)和NPK添加 + 增加50%降水(NPK + 50%)。通过测定地上、地下生物量及物种多样性, 分析了物种异步性、物种多样性、生物量稳定性及生物量稳定性的影响因素。结果表明: (1)养分添加和降水变化显著影响荒漠草原植物群落生物量, NPK + 50%处理增加了地上生物量(156.28%)、地下生物量(51.95%)及总生物量(75.67%), 而Cont - 50%处理降低了地上生物量(45.59%)、地下生物量(25.09%)及总生物量(31.41%); (2)除NPK + 50%处理外, 其他处理的地上生物量、地下生物量和总生物量稳定性均显著低于对照处理。NPK + 50%处理降低了地上生物量稳定性(31.90%), 但增加了地下和总生物量稳定性(33.48%和12.38%); (3)养分添加和降水变化显著影响物种多样性(物种丰富度和Shannon-Wiener多样性指数)和物种异步性, 其交互作用对物种异步性有显著影响; (4)降水变化通过降低物种异步性进而降低地上生物量稳定性和总生物量稳定性。地上生物量稳定性对总生物量稳定性无显著的直接效应, 而地下生物量稳定性对总生物量稳定性具有显著正效应。综上所述, 养分添加和降水变化降低荒漠草原生物量稳定性, 物种异步性(互补效应)是荒漠草原生物量稳定性的主要影响机制。在荒漠草原地区地下生物量稳定性对总生物量稳定性的贡献大于地上生物量稳定性, 因此, 在探究植物群落稳定性对养分添加和降水变化的响应模式及其机制时, 不能仅局限于植物地上部分的研究, 也要充分考虑植物地下部分的变化和响应。
尹星元, 安慧, 邢彬彬, 苏诗玉, 文志林, 郭建超, 刘小平, 王波 (2024) 养分添加和降水变化对荒漠草原地上和地下生物量稳定性的影响. 生物多样性, 32, 24073. DOI: 10.17520/biods.2024073.
Xingyuan Yin, Hui An, Binbin Xing, Shiyu Su, Zhilin Wen, Jianchao Guo, Xiaoping Liu, Bo Wang (2024) Effects of nutrient addition and precipitation changes on the stability of aboveground and belowground biomass in desert grassland. Biodiversity Science, 32, 24073. DOI: 10.17520/biods.2024073.
处理 Treatment | 物种异步性 Species asynchrony | 物种丰富度 Species richness | Shannon-Wiener多样性指数Shannon-Wiener diversity index |
---|---|---|---|
养分添加 Nutrient addition (NA) | 60.347*** | 8.430*** | 3.714* |
降水变化 Precipitation changes (PC) | 82.642*** | 19.955*** | 2.744* |
NA × PC | 11.592*** | 0.669 | 0.445 |
表1 养分添加、降水变化及其交互作用对物种异步性和物种多样性影响的方差分析结果
Table 1 Effects of nutrient addition, precipitation changes, and their interaction on species asynchrony and plant diversity
处理 Treatment | 物种异步性 Species asynchrony | 物种丰富度 Species richness | Shannon-Wiener多样性指数Shannon-Wiener diversity index |
---|---|---|---|
养分添加 Nutrient addition (NA) | 60.347*** | 8.430*** | 3.714* |
降水变化 Precipitation changes (PC) | 82.642*** | 19.955*** | 2.744* |
NA × PC | 11.592*** | 0.669 | 0.445 |
图1 养分添加和降水变化对荒漠草原植物群落物种丰富度(a)、Shannon-Wiener多样性指数(b)和物种异步性(c)的影响(平均值 + 标准偏差)。+50%、W和-50%分别表示增加50%降水、自然降水(不改变降水)和减少50%降水。Cont、N和NPK分别表示对照(不添加养分), N添加(添加10 g·m-2·yr-1 N)和NPK添加(同时添加10 g·m-2·yr-1 N + 10 g·m-2·yr-1 P + 10 g·m-2·yr-1 K)。不同小写字母表示同一养分不同降水处理间差异显著, 不同大写字母表示同一降水不同养分添加处理间差异显著(P < 0.05)。
Fig. 1 Effects of nutrient addition and precipitation changes on species richness (a), Shannon-Wiener diversity index (b) and species asynchrony (c) of desert grassland (mean + SD). +50%, W, and -50% represent an increase of 50% precipitation, natural precipitation (without changing precipitation), and a decrease of 50% precipitation, respectively. Cont, N, and NPK represent control (without nutrient addition), N addition (with 10 g·m-2·yr-1 N added), and NPK addition (with 10 g·m-2·yr-1 N + 10 g·m-2·yr-1 P + 10 g·m-2·yr-1 K added simultaneously), respectively. Different lowercase letters indicate significant differences in precipitation under the same nutrient; different uppercase letters indicate significant differences in nutrient addition under the same precipitation (P < 0.05).
图2 养分添加和降水变化对荒漠草原植物群落地上生物量(a)、地下生物量(b)和总生物量(c)的影响(平均值 + 标准偏差)。+50%、W、-50%、Cont、N和NPK同图1。不同小写字母表示同一养分不同降水处理间差异显著, 不同大写字母表示同一降水不同养分添加处理间差异显著(P < 0.05)。
Fig. 2 Effects of nutrient addition and precipitation changes on aboveground biomass (a), belowground biomass (b) and total biomass (c) of desert grassland (mean + SD). +50%, W, -50%, Cont, N, and NPK are the same as in Fig. 1. Different lowercase letters indicate significant differences in precipitation under the same nutrient; different uppercase letters indicate significant differences in nutrient addition under the same precipitation (P < 0.05).
图3 养分添加和降水变化对荒漠草原植物群落地上生物量(a)、地下生物量(b)和总生物量(c)稳定性的影响(平均值 + 标准偏差)。+50%、W、-50%、Cont、N和NPK同图1。不同小写字母表示同一养分不同降水处理间差异显著, 不同大写字母表示同一降水不同养分添加处理间差异显著(P < 0.05)。
Fig. 3 Effects of nutrient addition and precipitation changes on the stability of aboveground biomass (a), belowground biomass (b) and total biomass (c) in desert grassland (mean + SD). +50%, W, -50%, Cont, N, and NPK are the same as in Fig. 1. Different lowercase letters indicate significant differences in precipitation under the same nutrient; different uppercase letters indicate significant differences in nutrient addition under the same precipitation (P < 0.05).
图4 养分添加和降水变化对荒漠草原优势种(a)和非优势种(b)生物量稳定性的影响(平均值 + 标准偏差)。+50%、W、-50%、Cont、N和NPK同图1。不同小写字母表示同一养分不同降水处理间差异显著, 不同大写字母表示同一降水不同养分添加处理间差异显著(P < 0.05)。
Fig. 4 Effects of nutrient addition and precipitation changes on biomass stability of dominant species (a) and non-dominant species (b) in desert grassland (mean + SD). +50%, W, -50%, Cont, N, and NPK are the same as in Fig. 1. Different lowercase letters indicate significant differences in precipitation under the same nutrient; different uppercase letters indicate significant differences in nutrient addition under the same precipitation (P < 0.05).
图5 养分添加和降水变化对荒漠草原生物量稳定性的影响途径。实线和虚线分别表示变量之间关系显著(P < 0.05)和不显著(P > 0.05), 黑色箭头代表正效应, 灰色箭头代表负效应。正负数表示标准化回归系数(β); * P < 0.05, ** P < 0.01, *** P < 0.001; R2表示某一变量被其他变量的方差解释量。
Fig. 5 Effects of nutrient addition and precipitation changes on biomass stability in desert grassland. The solid and dashed lines represent significant (P < 0.05) and insignificant (P > 0.05) relationships between variables, respectively. The black arrow represents a positive effect, and the gray arrow represents a negative effect. Positive and negative numbers represent standardized regression coefficient (β); * P < 0.05, ** P < 0.01, *** P < 0.001; R2 represents the explanatory power of a variable’s variance to other variables.
[1] |
Borer ET, Harpole WS, Adler PB, Lind EM, Orrock JL, Seabloom EW, Smith MD (2014) Finding generality in ecology: A model for globally distributed experiments. Methods in Ecology and Evolution, 5, 65-73.
DOI |
[2] | Carroll O, Batzer E, Bharath S, Borer ET, Campana S, Esch E, Hautier Y, Ohlert T, Seabloom EW, Adler PB, Bakker JD, Biederman L, Bugalho MN, Caldeira M, Chen QQ, Davies KF, Fay PA, Knops JMH, Komatsu K, Martina JP, McCann KS, Moore JL, Morgan JW, Muraina TO, Osborne B, Risch AC, Stevens C, Wilfahrt PA, Yahdjian L, MacDougall AS (2022) Nutrient identity modifies the destabilising effects of eutrophication in grasslands. Ecology Letters, 25, 754-765. |
[3] | Chen WQ, Zhang YJ, Mai XH, Shen Y (2016) Multiple mechanisms contributed to the reduced stability of Inner Mongolia grassland ecosystem following nitrogen enrichment. Plant and Soil, 409, 283-296. |
[4] | Chi YG, Xu ZW, Zhou L, Yang QP, Zheng SX, Li SP (2019) Differential roles of species richness versus species asynchrony in regulating community stability along a precipitation gradient. Ecology and Evolution, 9, 14244-14252. |
[5] |
De Keersmaecker W, Lhermitte S, Honnay O, Farifteh J, Somers B, Coppin P (2014) How to measure ecosystem stability? An evaluation of the reliability of stability metrics based on remote sensing time series across the major global ecosystems. Global Change Biology, 20, 2149-2161.
DOI PMID |
[6] |
Donohue I, Hillebrand H, Montoya JM, Petchey OL, Pimm SL, Fowler MS, Healy K, Jackson AL, Lurgi M, McClean D, O’Connor NE, O’Gorman EJ, Yang Q (2016) Navigating the complexity of ecological stability. Ecology Letters, 19, 1172-1185.
DOI PMID |
[7] | Du ZY, An H, Wang B, Wen ZL, Zhang YR, Wu XZ, Li QL (2020) Effects of nutrient addition and precipitation manipulation on plant species diversity and biomass of in a desert grassland. Acta Agrestia Sinica, 28, 1100-1110. (in Chinese with English abstract) |
[杜忠毓, 安慧, 王波, 文志林, 张雅柔, 吴秀芝, 李巧玲 (2020) 养分添加和降水变化对荒漠草原植物群落物种多样性和生物量的影响. 草地学报, 28, 1100-1110.]
DOI |
|
[8] | Du ZY, Zhang XW, Liu SX, An H (2024) Nitrogen and water addition alters species diversity and interspecific relationship in a desert grassland. Science of the Total Environment, 908, 168386. |
[9] |
Fay PA, Prober SM, Harpole WS, Knops JMH, Bakker JD, Borer ET, Lind EM, MacDougall AS, Seabloom EW, Wragg PD, Adler PB, Blumenthal DM, Buckley YM, Chu CJ, Cleland EE, Collins SL, Davies KF, Du GZ, Feng XH, Firn J, Gruner DS, Hagenah N, Hautier Y, Heckman RW, Jin VL, Kirkman KP, Klein J, Ladwig LM, Li Q, Mcculley RL, Melbourne BA, Mitchell CE, Moore JL, Morgan JW, Risch AC, Schütz M, Stevens CJ, Wedin DA, Yang LH (2015) Grassland productivity limited by multiple nutrients. Nature Plants, 1, 15080.
DOI PMID |
[10] | Gao YZ, Giese M, Lin S, Sattelmacher B, Zhao Y, Brueck H (2008) Belowground net primary productivity and biomass allocation of a grassland in Inner Mongolia is affected by grazing intensity. Plant and Soil, 307, 41-50. |
[11] | Gherardi LA, Sala OE (2020) Global patterns and climatic controls of belowground net carbon fixation. Proceedings of the National Academy of Sciences, USA, 117, 20038-20043. |
[12] | Guo HB, Quan Q, Niu SL, Li TT, He YC, Fu YW, Li JP, Wang JS, Zhang RY, Li ZL, Tian DS (2023) Shifting biomass allocation and light limitation co-regulate the temporal stability of an alpine meadow under eutrophication. Science of the Total Environment, 860, 160411. |
[13] | Guo XX, Zuo XA, Yue P, Li XY, Hu Y, Chen M, Yu Q (2022) Direct and indirect effects of precipitation change and nutrients addition on desert steppe productivity in Inner Mongolia, Northern China. Plant and Soil, 471, 527-540. |
[14] | Hautier Y, Seabloom EW, Borer ET, Adler PB, Harpole WS, Hillebrand H, Lind EM, MacDougall AS, Stevens CJ, Bakker JD, Buckley YM, Chu CJ, Collins SL, Daleo P, Damschen EI, Davies KF, Fay PA, Firn J, Gruner DS, Jin VL, Klein JA, Knops JMH, La Pierre KJ, Li W, McCulley RL, Melbourne BA, Moore JL, O’Halloran LR, Prober SM, Risch AC, Sankaran M, Schuetz M, Hector A (2014) Eutrophication weakens stabilizing effects of diversity in natural grasslands. Nature, 508, 521-525. |
[15] | Hossain ML, Beierkuhnlein C (2018) Enhanced aboveground biomass by increased precipitation in a central European grassland. Ecological Processes, 7, 37. |
[16] | Huang MJ, Liu X, Zhou SR (2020) Asynchrony among species and functional groups and temporal stability under perturbations: Patterns and consequences. Journal of Ecology, 108, 2038-2046. |
[17] | Jackson J, Middleton SL, Lawson CS, Jardine E, Hawes N, Maseyk K, Salguero-Gómez R, Hector A (2024) Experimental drought reduces the productivity and stability of a calcareous grassland. Journal of Ecology, 112, 917-931. |
[18] | Jia XT, Tao DX, Ke YG, Li WJ, Yang T, Yang YD, He NP, Smith MD, Yu Q (2022) Dominant species control effects of nitrogen addition on ecosystem stability. Science of the Total Environment, 838, 156060. |
[19] | Lefcheck JS (2016) piecewiseSEM: Piecewise structural equation modelling in R for ecology, evolution, and systematics. Methods in Ecology and Evolution, 7, 573-579. |
[20] | Li XY, Zuo XA, Qiao JJ, Hu Y, Wang SK, Yue P, Cheng H, Song ZB, Chen M, Hautier Y (2024) Context-dependent impact of changes in precipitation on the stability of grassland biomass. Functional Ecology, 38, 1185-1198. |
[21] | Li XY, Zuo XA, Zhao XY, Wang SK, Yue P, Xu C, Yu Q, Medina-Roldán E (2023) Extreme drought does not alter the stability of aboveground net primary productivity but decreases the stability of belowground net primary productivity in a desert steppe of northern China. Environmental Science and Pollution Research, 30, 24319-24328. |
[22] |
Liu Y, Peng YF, Men MX, Peng ZP, Yang YH (2021) Response of root dynamics to nitrogen addition and the influencing factors in a Tibetan alpine steppe, China. Chinese Journal of Applied Ecology, 32, 3119-3126. (in Chinese with English abstract)
DOI |
[刘洋, 彭云峰, 门明新, 彭正萍, 杨元合 (2021) 青藏高原高寒草原根系动态对氮添加的响应及其调控因素. 应用生态学报, 32, 3119-3126.]
DOI |
|
[23] | Liu YJ, Xu MJ, Li GE, Wang MX, Li ZQ, De Boeck HJ (2021) Changes of aboveground and belowground biomass allocation in four dominant grassland species across a precipitation gradient. Frontiers in Plant Science, 12, 650802. |
[24] | Loreau M, de Mazancourt C (2008) Species synchrony and its drivers: Neutral and nonneutral community dynamics in fluctuating environments. The American Naturalist, 172, E48-E66. |
[25] | Loreau M, de Mazancourt C (2013) Biodiversity and ecosystem stability: A synthesis of underlying mechanisms. Ecology Letters, 16, 106-115. |
[26] | Ma KP, Liu YM (1994) Measurement of biotic community diversity. Ⅰ. αdiversity (Part 2) Chinese Biodiversity, 2, 231-239. (in Chinese) |
[马克平, 刘玉明 (1994) 生物群落多样性的测度方法. Ⅰ α多样性的测度方法(下). 生物多样性, 2, 231-239.] | |
[27] | Ma QH, Liu XD, Li YB, Li L, Yu HY, Qi M, Zhou GS, Xu ZZ (2020) Nitrogen deposition magnifies the sensitivity of desert steppe plant communities to large changes in precipitation. Journal of Ecology, 108, 598-610. |
[28] |
Ma ZY, Liu HY, Mi ZR, Zhang ZH, Wang YH, Xu W, Jiang L, He JS (2017) Climate warming reduces the temporal stability of plant community biomass production. Nature Communications, 8, 15378.
DOI PMID |
[29] |
Mao W, Li YL, Sun DC, Wang SK (2016) Aboveground biomass differentiations of different functional group species after nitrogen and snow addition altered community productivity of sandy grassland. Journal of Desert Research, 36, 27-33. (in Chinese with English abstract)
DOI |
[毛伟, 李玉霖, 孙殿超, 王少昆 (2016) 养分和水分添加后沙质草地不同功能群植物地上生物量变化对群落生产力的影响. 中国沙漠, 36, 27-33.]
DOI |
|
[30] | Muraina TO, Xu C, Yu Q, Yang YD, Jing MH, Jia XT, Jaman MS, Dam Q, Knapp AK, Collins SL, Luo YQ, Luo WT, Zuo XA, Xin XP, Han XG, Smith MD, Hector A, Hector A (2021) Species asynchrony stabilises productivity under extreme drought across Northern China grasslands. Journal of Ecology, 109, 1665-1675. |
[31] | Rao LE, Allen EB (2010) Combined effects of precipitation and nitrogen deposition on native and invasive winter annual production in California deserts. Oecologia, 162, 1035-1046. |
[32] |
Sasaki T, Lauenroth WK (2011) Dominant species, rather than diversity, regulates temporal stability of plant communities. Oecologia, 166, 761-768.
DOI PMID |
[33] | Song MH, Zong N, Jiang J, Shi PL, Zhang XZ, Gao JQ, Zhou HK, Li YK, Loreau M (2019) Nutrient-induced shifts of dominant species reduce ecosystem stability via increases in species synchrony and population variability. Science of the Total Environment, 692, 441-449. |
[34] | Verma P, Sagar R (2021) Species diversity and temporal stabilization of root productivity of tropical grassland to nitrogen application. Ecological Indicators, 120, 106987. |
[35] |
Wang JF, Knops JMH, Brassil CE, Mu CS (2017) Increased productivity in wet years drives a decline in ecosystem stability with nitrogen additions in arid grasslands. Ecology, 98, 1779-1786.
DOI PMID |
[36] | Wang SP, Isbell F, Deng WL, Hong PB, Dee LE, Thompson P, Loreau M (2021) How complementarity and selection affect the relationship between ecosystem functioning and stability. Ecology, 102, e3347. |
[37] |
Wang T, Guo CL, Sang SL, Liu YT, Liu G, Qi DS, Zhu ZH (2021) Temporal stability and maintenance mechanisms of alpine meadow communities under clipping and fertilization. Ecology and Evolution, 11, 15545-15555.
DOI PMID |
[38] | Wang XY, Xu YX, Li CH, Yu HL, Huang JY (2023) Changes of plant biomass, species diversity, and their influencing factors in a desert steppe of northwestern China under long-term changing precipitation. Chinese Journal of Plant Ecology, 47, 479-490. (in Chinese with English abstract) |
[王晓悦, 许艺馨, 李春环, 余海龙, 黄菊莹 (2023) 长期降水量变化下荒漠草原植物生物量、多样性的变化及其影响因素. 植物生态学报, 47, 479-490.]
DOI |
|
[39] |
Wang YH, Wang C, Ren F, Jing X, Ma WH, He JS, Jiang L (2023) Asymmetric response of aboveground and belowground temporal stability to nitrogen and phosphorus addition in a Tibetan alpine grassland. Global Change Biology, 29, 7072-7084.
DOI PMID |
[40] | Wu Q, Ren HY, Wang ZW, Li ZG, Liu YH, Wang Z, Li YH, Zhang RY, Zhao ML, Chang SX, Han GD (2020) Additive negative effects of decadal warming and nitrogen addition on grassland community stability. Journal of Ecology, 108, 1442-1452. |
[41] | Xu FW, Li JJ, Wu LJ, Su JS, Wang Y, Chen DM, Bai YF (2022) Linking leaf traits to the temporal stability of above- and belowground productivity under global change and land use scenarios in a semi-arid grassland of Inner Mongolia. Science of the Total Environment, 818, 151858. |
[42] | Xu QN, Yang X, Song J, Ru JY, Xia JY, Wang SP, Wan SQ, Jiang L (2022) Nitrogen enrichment alters multiple dimensions of grassland functional stability via changing compositional stability. Ecology Letters, 25, 2713-2725. |
[43] | Xu ZW, Jiang L, Ren HY, Han XG (2024) Opposing responses of temporal stability of aboveground and belowground net primary productivity to water and nitrogen enrichment in a temperate grassland. Global Change Biology, 30, e17071. |
[44] | Xu ZW, Ren HY, Li MH, van Ruijven J, Han XG, Wan SQ, Li H, Yu Q, Jiang Y, Jiang L (2015) Environmental changes drive the temporal stability of semi-arid natural grasslands through altering species asynchrony. Journal of Ecology, 103, 1308-1316. |
[45] | Yan Y, Connolly J, Liang MW, Jiang L, Wang SP (2021) Mechanistic links between biodiversity effects on ecosystem functioning and stability in a multi-site grassland experiment. Journal of Ecology, 109, 3370-3378. |
[46] | Yan Y, Lu XY (2015) Is grazing exclusion effective in restoring vegetation in degraded alpine grasslands in Tibet, China? PeerJ, 3, e1020. |
[47] | Yang GJ, Hautier Y, Zhang ZJ, Lü XT, Han XG (2022) Decoupled responses of above- and below-ground stability of productivity to nitrogen addition at the local and larger spatial scale. Global Change Biology, 28, 2711-2720. |
[48] | Yang ZP, Minggagud H, Wang Q, Pan HY (2023) Interacting effects of nitrogen addition and mowing on plant diversity and biomass of a typical grassland in Inner Mongolia. Agronomy, 13, 2125. |
[49] | Zhang F, Zheng JH, Zhao ML, Chen DL, Yang Y, Qiao JR, Zhao TQ (2020) Effects of mowing intensity on temporal stability of aboveground biomass in the Stipa grandis steppe. Biodiversity Science, 28, 779-786. (in Chinese with English abstract) |
[张峰, 郑佳华, 赵萌莉, 陈大岭, 杨阳, 乔荠瑢, 赵天启 (2020) 刈割强度对大针茅草原地上生物量时间稳定性的影响. 生物多样性, 28, 779-786.]
DOI |
|
[50] | Zhang YH, He NP, Loreau M, Pan QM, Han XG (2018) Scale dependence of the diversity-stability relationship in a temperate grassland. Journal of Ecology, 106, 1277-1285. |
[51] | Zhao XF, Xu HL, Zhang P, Tu WX, Zhang QQ (2014) Effects of nutrient and water additions on plant community structure and species diversity in desert grasslands. Chinese Journal of Plant Ecology, 38, 167-177. (in Chinese with English abstract) |
[赵新风, 徐海量, 张鹏, 涂文霞, 张青青 (2014) 养分与水分添加对荒漠草地植物群落结构和物种多样性的影响. 植物生态学报, 38, 167-177.]
DOI |
[1] | 连佳丽, 陈婧, 杨雪琴, 赵莹, 罗叙, 韩翠, 赵雅欣, 李建平. 荒漠草原植物多样性和微生物多样性对降水变化的响应[J]. 生物多样性, 2024, 32(6): 24044-. |
[2] | 周欣扬, 王誉陶, 李建平. 黄土高原典型草原植物群落组成对降水变化的响应[J]. 生物多样性, 2023, 31(3): 22118-. |
[3] | 刘向, 张鹏, 刘建全. 无机肥料是青海塔拉滩光伏电站植被恢复过程中的限制性因子[J]. 生物多样性, 2022, 30(5): 22100-. |
[4] | 宋乃平, 王兴, 陈林, 薛毅, 陈娟, 随金明, 王磊, 杨新国. 荒漠草原“土岛”生境群落物种共存机制[J]. 生物多样性, 2018, 26(7): 667-677. |
[5] | 黄永梅, 张明理. 鄂尔多斯高原植物群落多样性时空变化特点[J]. 生物多样性, 2006, 14(1): 13-20. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn