生物多样性 ›› 2020, Vol. 28 ›› Issue (6): 695-706. DOI: 10.17520/biods.2020019
所属专题: 昆虫多样性与生态功能
王剑1,2,董乙乂2,马丽滨3,潘勃2,马方舟4,丁晖4,胡亚萍4,彭艳琼2,吴孝兵1,王波2,*()
收稿日期:
2020-01-15
接受日期:
2020-04-17
出版日期:
2020-06-20
发布日期:
2020-05-18
通讯作者:
王波
基金资助:
Jian Wang1,2,Yiyi Dong2,Libin Ma3,Bo Pan2,Fangzhou Ma4,Hui Ding4,Yaping Hu4,Yanqiong Peng2,Xiaobing Wu1,Bo Wang2,*()
Received:
2020-01-15
Accepted:
2020-04-17
Online:
2020-06-20
Published:
2020-05-18
Contact:
Bo Wang
摘要:
网络分析(network analysis)可以同时分析群落中的物种多样性和种间关系, 为了解生态群落的稳定性机制提供了新的分析思路和方法。本研究从西双版纳国家级自然保护区的纳板河、勐仑和勐腊(补蚌)三个地点采集了树栖性蚂蚁及树木的种类和数量数据, 对蚂蚁-树组成的二分网络进行了分析, 探讨了3个采样点物种的多样性、网络指标以及群落指标之间的关系。我们采用零模型的方法比较了3个样点的标准化网络参数差异。结果表明: 蚂蚁和树木的物种数以及树的异质性指数(Shannon-Wiener多样性指数、Simpson多样性指数)都呈现出勐仑 > 纳板河 > 补蚌的趋势。树木-蚂蚁的灭绝曲线系数大小关系同样为勐仑 > 纳板河 > 补蚌, 灭绝曲线与树的物种数及异质性指数大小趋势一致, 而与蚂蚁的异质性指数并不吻合。根据Z值的绝对值来看, 网络参数(加权嵌套性、平均连接数、特化水平、模块性、连接度)与群落参数(灭绝曲线系数、生态位重叠)的大小趋势相同, 表现出勐仑 > 纳板河 > 补蚌的趋势。综上所述, 蚂蚁-树互作网络的稳定性(灭绝曲线系数)主要由树的数量和异质性指数决定。网络的加权嵌套性和网络中节点的平均连接数也能促进群落的稳定性。而在一个特化的(数值越大表示专性互作越多)和模块化(具有较多密切互作的节点单元)的网络中, 当低营养级物种灭绝时高营养级物种数量将迅速减少。
王剑, 董乙乂, 马丽滨, 潘勃, 马方舟, 丁晖, 胡亚萍, 彭艳琼, 吴孝兵, 王波 (2020) 西双版纳国家级自然保护区蚂蚁-树互作网络空间变异. 生物多样性, 28, 695-706. DOI: 10.17520/biods.2020019.
Jian Wang, Yiyi Dong, Libin Ma, Bo Pan, Fangzhou Ma, Hui Ding, Yaping Hu, Yanqiong Peng, Xiaobing Wu, Bo Wang (2020) Spatial variation in ant-tree network organization in the Xishuangbanna National Nature Reserve. Biodiversity Science, 28, 695-706. DOI: 10.17520/biods.2020019.
样点 Sample sites | 物种数 Species richness (S) | Shannon-Wiener 异质性 Shannon- Wiener heterogeneity (H′) | Simpson异质性 Simpson heterogeneity (D) | Simpson均匀度 Simpson evenness (E) | Pielou均匀度 Pielou evenness (J) | |
---|---|---|---|---|---|---|
蚂蚁 Ant | 纳板河 Nabanhe | 24 | 1.77 | 0.69 | 0.061 | 0.56 |
勐仑 Menglun | 58 | 1.94 | 0.72 | 0.024 | 0.48 | |
补蚌 Bubeng | 20 | 2.26 | 0.85 | 0.059 | 0.76 | |
树 Tree | 纳板河 Nabanhe | 33 | 3.32 | 0.96 | 0.032 | 0.95 |
勐仑 Menglun | 53 | 3.97 | 0.98 | 0.019 | 0.94 | |
补蚌 Bubeng | 24 | 2.94 | 0.92 | 0.043 | 0.91 |
表1 纳板河、勐仑和补蚌蚂蚁群落多样性指数
Table 1 Species diversity indices of Nabanhe, Menglun, and Bubeng
样点 Sample sites | 物种数 Species richness (S) | Shannon-Wiener 异质性 Shannon- Wiener heterogeneity (H′) | Simpson异质性 Simpson heterogeneity (D) | Simpson均匀度 Simpson evenness (E) | Pielou均匀度 Pielou evenness (J) | |
---|---|---|---|---|---|---|
蚂蚁 Ant | 纳板河 Nabanhe | 24 | 1.77 | 0.69 | 0.061 | 0.56 |
勐仑 Menglun | 58 | 1.94 | 0.72 | 0.024 | 0.48 | |
补蚌 Bubeng | 20 | 2.26 | 0.85 | 0.059 | 0.76 | |
树 Tree | 纳板河 Nabanhe | 33 | 3.32 | 0.96 | 0.032 | 0.95 |
勐仑 Menglun | 53 | 3.97 | 0.98 | 0.019 | 0.94 | |
补蚌 Bubeng | 24 | 2.94 | 0.92 | 0.043 | 0.91 |
图2 纳板河、勐仑和补蚌3个采样点蚂蚁种类的NMDS分析。1个数据点代表在1棵树上的1个采样。点线和空心三角代表纳板河; 实线和实心圆点代表勐仑; 虚线和空心正方形代表补蚌。
Fig. 2 The NMDS analysis of ant species composition in Nabanhe, Menglun, and Bubeng. Each symbol represents a sample tree. Dotted line and triangles represent Nabanhe; solid line and solid circles represent Menglun; dashed line and squares represent Bubeng.
图3 西双版纳3个采样点的蚂蚁-植物互作关系的二分网络呈现。每个网络上方为蚂蚁物种, 下方为植物物种。长方形宽度与寄主植物相互作用次数成正比, 线的宽度表示蚂蚁与寄主植物相互作用的频率。蚂蚁和树的名称以及对应的编号见附录1。
Fig. 3 Ant-plant bipartite networks in Xishuangbanna. For each network, upper bars represent ant species, and lower bars represent host plant species. Rectangle width is proportional to the number of interactions of each ant species and host plants; the line width represents the frequency of interactions between each interacting species pair. Appendix 1 shows ant and tree name list and code in the bipartite networks.
图4 西双版纳3个采样点纳板河、勐仑和补蚌的物种灭绝曲线。图中的正方形(勐仑)、圆形(纳板河)、三角形(补蚌)表示按照每种植物上蚂蚁物种丰富度的大小, 从丰富度最小的开始, 计算每去掉1种植物后(累积删除数除以植物总数, 取值从植物总数的倒数到1, 即为灭绝曲线的自变量x)蚂蚁物种数量的相对剩余数(剩余的蚂蚁物种数除以蚂蚁总数, 即为灭绝曲线拟合的因变量y)。灭绝曲线拟合一个y = 1-xa类型的函数, 不同的线代表3个样点的拟合曲线。
Fig. 4 Species extinction slopes of Nabanhe, Menglun, and Bubeng in Xishuangbanna. In this figure, the sequence of the extinction is from the least abundant ant to the most abundant ant in the trees. The extinction function calculate the relative alive ant species number (the ratio of alive ant species number relative to total ant species number is response variable) when remove tree species one by one (the ratio of removed tree species number relative to total tree species number is explanatory variable). The extinction slopes fitted a function of type y = 1-xa. Lines in the figure represent the smooth lines of the three sites.
图5 3个采样点(勐仑、纳板河、补蚌)蚂蚁-树二分网络测量指标及标准化指标的比较。A: 3个采样点网络参数观测值; B: 根据零模型1 (r2dtable法)计算得到的参数进行了Z值转换后的标准化值; C: 根据零模型2 (vaznull)计算得到的参数进行Z值转换后的标准化值。NA表示该指标无意义(因为vaznull方法下随机生成的网络连接度被限定为相同, 因此计算Z值时分母为0)。10×指对参数进行了10倍放大, 以较好地表现标准化参数的大小关系。两个零模型均基于蚂蚁-植物互作矩阵生成999个随机矩阵, 计算每个矩阵的参数而得到一个分布, 根据此分布推断分布中的值大于或小于观测值的概率。无上标的条图其P值都 < 0.001; * P < 0.05; NS表示该参数与零模型相比不显著(P > 0.05)。
Fig. 5 The observed metrics and standard metrics of ant-tree bipartite networks of Menglun, Nabanhe, and Bubeng. A, Observed network metrics; B, Standard Z-score of metrics based on the distribution of values generated by the null model 1 (r2dtable method); C, Standard Z-score of metrics based on the distribution of values generated by null model 2 (vaznull method). NA indicate that the value is not available. 10× means ten times amplification of the value to better reveal their relationships. We use two null models, each has 999 resamples, to calculate the network metrics, and then get a metrics distribution. We calculate the frequencies of the values that is bigger or smaller than the observed network metrics in the distribution. The frequency is approximation of the probability (P value). Bars without labels are all P < 0.001; * represent P < 0.05; NS represent not significant.
[1] | Anjos DV, Luna P, Borges CCR, Dáttilo W, Del-Claro K (2019) Structural changes over time in individual-based networks involving a harvester ant, seeds, and invertebrates. Ecological Entomology, 44, 753-761. |
[2] | Barônio GJ, Del-Claro K (2018) Increase in ant density promotes dual effects on bee behaviour and plant reproductive performance. Arthropod-Plant Interactions, 12, 201-213. |
[3] | Bascompte J (2007) Networks in ecology. Basic and Applied Ecology, 8, 485-490. |
[4] |
Bascompte J (2010) Structure and dynamics of ecological networks. Science, 329, 765-766.
DOI URL PMID |
[5] |
Blüthgen N, Menzel F, Blüthgen N (2006) Measuring specialization in species interaction networks. BMC Ecology, 6, 9.
URL PMID |
[6] |
Blüthgen N, Verhaagh M, Goitía W, Jaffé K, Morawetz W, Barthlott W (2000) How plants shape the ant community in the Amazonian rainforest canopy: The key role of extrafloral nectaries and homopteran honeydew. Oecologia, 125, 229-240.
DOI URL PMID |
[7] |
Câmara T, Leal IR, Blüthgen N, Oliveira FMP, Queiroz R, Arnan X (2018) Effects of chronic anthropogenic disturbance and rainfall on the specialization of ant-plant mutualistic networks in the Caatinga, a Brazilian dry forest. Journal of Animal Ecology, 87, 1022-1033.
DOI URL PMID |
[8] | Cao M, Zou X, Warren M, Zhu H (2006) Tropical forests of Xishuangbanna, China. Biotropica, 38, 306-309. |
[9] | Dáttilo W, Guimarães PR Jr, Izzo TJ (2013) Spatial structure of ant-plant mutualistic networks. Oikos, 122, 1643-1648. |
[10] |
Dáttilo W, Marquitti FMD, Guimarães PR Jr, Izzo TJ (2014) The structure of ant-plant ecological networks: Is abundance enough? Ecology, 95, 475-485.
URL PMID |
[11] | Delmas E, Besson M, Brice MH, Burkle LA, Dalla Riva GV, Fortin MJ, Gravel D, Guimarães PR Jr, Hembry DH, Newman EA, Olesen JM, Pires MM, Yeakel JD, Poisot T (2019) Analysing ecological networks of species interactions. Biological Reviews, 94, 16-36. |
[12] |
Díaz-Castelazo C, Sánchez-Galván IR, Guimarães PR, Raimundo RLG, Rico-Gray V (2013) Long-term temporal variation in the organization of an ant-plant network. Annals of Botany, 111, 1285-1293.
URL PMID |
[13] | Dormann CF, Fründ J, Blüthgen N, Gruber B (2009) Indices, graphs and null models: Analyzing bipartite ecological networks. The Open Ecology Journal, 2, 7-24. |
[14] | Dunne JA, Williams RJ, Martinez ND (2002) Food-web structure and network theory: The role of connectance and size. Proceedings of the National Academy of Sciences, USA, 99, 12917-12922. |
[15] |
Fath BD, Scharler UM, Ulanowicz RE, Hannon B (2007) Ecological network analysis: Network construction. Ecological Modelling, 208, 49-55.
DOI URL |
[16] |
Gonzálvez FG, Santamaría L, Corlett RT, Rodríguez-Gironés MA (2013) Flowers attract weaver ants that deter less effective pollinators. Journal of Ecology, 101, 78-85.
DOI URL |
[17] | Hagen M, Kissling WD, Rasmussen C, De Aguiar MAM, Brown LE, Carstensen DW, Alves-Dos-Santos I, Dupont YL, Edwards FK, Genini J, Guimarães PR, Jenkins GB, Jordano P, Kaiser-Bunbury CN, Ledger ME, Maia KP, Marquitti FMD, McLaughlin Ó, Morellato LPC, O’Gorman EJ, Trøjelsgaard K, Tylianakis JM, Vidal MM, Woodward G, Olesen JM , (2012) Biodiversity, species interactions and ecological networks in a fragmented world. In: Advances in Ecological Research (eds Jacob U, Woodward G), pp. 89-210. Academic Press, London. |
[18] |
Heil M, McKey D (2003) Protective ant-plant interactions as model systems in ecological and evolutionary research. Annual Review of Ecology, Evolution, and Systematics, 34, 425-453.
DOI URL |
[19] |
Hölldobler B, Lumsden CJ (1980) Territorial strategies in ants. Science, 210, 732-739.
URL PMID |
[20] | Huang Z, Xu ZH, Liu X, Li LM, Wang YL, Shi SH, Shi Y, Chen ZF (2019) Ant species diversity of northeastern Yunnan. Chinese Journal of Ecology, 38, 3697-3705. (in Chinese with English abstract) |
[ 黄钊, 徐正会, 刘霞, 李丽梅, 王亚丽, 史生慧, 石云, 陈志峰 (2019) 滇东北地区的蚂蚁物种多样性. 生态学杂志, 38, 3697-3705.] | |
[21] |
Jørgensen SE (2007) Ecological network theory. Ecological Modelling, 208, 1-2.
DOI URL |
[22] | Krebs CJ (1999) Ecological Methodology, 2nd edn. Addison-Welsey Educational Publishers, Inc., Menlo Park, CA. |
[23] | Li WQ, Xu ZH, Zhou XY, Li AN (2016) Ant species diversity of Mount Everest section of the Himalaya Mountains. Journal of Southwest Forestry University, 36, 114-120. (in Chinese with English abstract) |
[ 李文琼, 徐正会, 周雪英, 李安娜 (2016) 喜马拉雅山珠峰段的蚂蚁物种多样性. 西南林业大学学报, 36, 114-120.] | |
[24] | Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Henry M, Stevens H, Wagner H (2019) vegan: Community Ecology Package. R package version 2.5-5, https://CRAN.R-project.org/package=vegan. (accessed on 2020-03-09) |
[25] | Olesen JM, Jordano P (2002) Geographic patterns in plant- pollinator mutualistic networks. Ecology, 83, 2416-2424. |
[26] | Patefield WM (1981) Algorithm AS 159: An efficient method of generating random R × C tables with given row and column totals. Journal of the Royal Statistical Society, Series C (Applied Statistics), 30, 91-97. |
[27] |
Pellissier L, Albouy C, Bascompte J, Farwig N, Graham C, Loreau M, Maglianesi MA, Melián CJ, Pitteloud C, Roslin T, Rohr R, Saavedra S, Thuiller W, Woodward G, Zimmermann NE, Gravel D (2018) Comparing species interaction networks along environmental gradients. Biological Reviews, 93, 785-800.
URL PMID |
[28] | Podani J, Jordán F, Schmera D (2014) A new approach to exploring architecture of bipartite (interaction) ecological networks. Journal of Complex Networks, 2, 168-186. |
[29] |
Proulx SR, Promislow DEL, Phillips PC (2005) Network thinking in ecology and evolution. Trends in Ecology & Evolution, 20, 345-353.
DOI URL PMID |
[30] | R Development Core Team (2020) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. (accessed on 2020-03-09) |
[31] |
Rafferty NE, Ives AR (2013) Phylogenetic trait-based analyses of ecological networks. Ecology, 94, 2321-2333.
DOI URL PMID |
[32] | Ramos-Jiliberto R, Domínguez D, Espinoza C, López G, Valdovinos FS, Bustamante RO, Medel R (2010) Topological change of Andean plant-pollinator networks along an altitudinal gradient. Ecological Complexity, 7, 86-90. |
[33] |
Rezende EL, Lavabre JE, Guimarães PR, Jordano P, Bascompte J (2007) Non-random coextinctions in phylogenetically structured mutualistic networks. Nature, 448, 925-928.
DOI URL PMID |
[34] | Ribas CR, Schoereder JH, Pic M, Soares SM (2003) Tree heterogeneity, resource availability, and larger scale processes regulating arboreal ant species richness. Austral Ecology, 28, 305-314. |
[35] | Santos GMM, Dáttilo W, Presley SJ (2014) The seasonal dynamic of ant-flower networks in a semi-arid tropical environment. Ecological Entomology, 39, 674-683. |
[36] | Sebastián-González E, Dalsgaard B, Sandel B, Guimarães PR Jr (2015) Macroecological trends in nestedness and modularity of seed-dispersal networks: Human impact matters. Global Ecology and Biogeography, 24, 293-303. |
[37] | Tylianakis JM, Morris RJ (2017) Ecological networks across environmental gradients. Annual Review of Ecology, Evolution, and Systematics, 48, 25-48. |
[38] |
Wang B, Geng XZ, Ma LB, Cook JM, Wang RW (2014) A trophic cascade induced by predatory ants in a fig-fig wasp mutualism. Journal of Animal Ecology, 83, 1149-1157.
DOI URL PMID |
[39] |
Wang B, Lu M, Cook JM, Yang DR, Dunn DW, Wang RW (2018) Chemical camouflage: A key process in shaping an ant-treehopper and fig-fig wasp mutualistic network. Scientific Reports, 8, 1833.
URL PMID |
[40] | Wang B, Segar ST, Deng GZ, Luo TX, Lin H, Peng YQ (2019) Variation in trophic cascade strength is triggered by top-down process in an ant-wasp-fig system. Oikos, 128, 185-195. |
[41] | Wetterer JK (2005) Worldwide distribution and potential spread of the long-legged ant, Anoplolepis gracilipes (Hymenoptera: Formicidae). Sociobiology, 45, 77-97. |
[42] | Whitehouse MEA, Jaffe K (1996) Ant wars: Combat strategies, territory and nest defence in the leaf-cutting ant Atta laevigata. Animal Behaviour, 51, 1207-1217. |
[43] | Wickham H (2016) ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag, New York. |
[44] | Wu J, Wang CL (1995) The Ants of China. China Forestry Publishing House, Beijing. (in Chinese) |
[ 吴坚, 王常禄 (1995) 中国蚂蚁. 中国林业出版社, 中国林业出版社.] | |
[45] | Xu ZH (1999) An analysis on the ant fauna of the tropical rain forest in Xishuangbanna of China. Zoological Research, 20, 379-384. (in Chinese with English abstract) |
[ 徐正会 (1999) 西双版纳热带雨林蚁科昆虫区系分析. 动物学研究, 20, 379-384.] | |
[46] | Xu ZH, Yang BL, Hu G (1999) Formicidae ant communities in fragments of montane rain forest in Xishuangbanna, China. Zoological Research, 20, 288-293. (in Chinese with English abstract) |
[ 徐正会, 杨比伦, 胡刚 (1999) 西双版纳片断山地雨林蚁科昆虫群落研究. 动物学研究, 20, 288-293.] | |
[47] | Zhu H (2007) On the classification of forest vegetation in Xishuangbanna, Southern Yunnan. Acta Botanica Yunnanica, 29, 377-387. (in Chinese with English abstract) |
[ 朱华 (2007) 论滇南西双版纳的森林植被分类. 云南植物研究, 29, 377-387.] | |
[48] | Zhu H (2011) Tropical monsoon forest in Yunnan with comparison to the tropical rain forest. Chinese Journal of Plant Ecology, 35, 463-470. (in Chinese with English abstract) |
[ 朱华 (2011) 云南热带季雨林及其与热带雨林植被的比较. 植物生态学报, 35, 463-470.] | |
[49] | Zhu H, Li YH, Xu ZF, Wang H, Li BG (2001) Characteristics and affinity of the flora of Xishuangbanna, SW China. Guihaia, 21, 127-136. (in Chinese with English abstract) |
[ 朱华, 李延辉, 许再富, 王洪, 李宝贵 (2001) 西双版纳植物区系的特点与亲缘. 广西植物, 21, 127-136.] |
[1] | 吕晓波, 李东海, 杨小波, 张孟文. 红树林群落通过淹水时间及海水盐度的生态位分化实现物种共存[J]. 生物多样性, 2024, 32(3): 23302-. |
[2] | 陈敏豪, 张超, 王嘉栋, 湛振杰, 陈君帜, 栾晓峰. 北美水貂和欧亚水獭在东北地区的分布与生态位重叠[J]. 生物多样性, 2023, 31(1): 22289-. |
[3] | 郭朝丹, 赵彩云, 李飞飞, 李俊生. 天然林和人工林外来入侵和本地植物对比研究: 以弄岗国家级自然保护区为例[J]. 生物多样性, 2022, 30(4): 21356-. |
[4] | 杨思琪,张琪,宋希强,王健,李意德,许涵,郭守玉,丁琼. 尖峰岭热带山地雨林根部真菌-植物互作网络结构特征[J]. 生物多样性, 2019, 27(3): 314-326. |
[5] | 宋乃平, 王兴, 陈林, 薛毅, 陈娟, 随金明, 王磊, 杨新国. 荒漠草原“土岛”生境群落物种共存机制[J]. 生物多样性, 2018, 26(7): 667-677. |
[6] | 徐开达, 卢衎尔, 卢占晖, 戴乾. 韭山列岛自然保护区虾类优势种生态位[J]. 生物多样性, 2018, 26(6): 601-610. |
[7] | 孙燕, 周忠实, 王瑞, HeinzMüller-Schärer. 气候变化预计会减少东亚地区豚草的生物防治效果**[J]. 生物多样性, 2017, 25(12): 1285-1294. |
[8] | 龚雪伟, 吕光辉. 艾比湖流域杜加依林荒漠植物群落多样性及优势种生态位[J]. 生物多样性, 2017, 25(1): 34-45. |
[9] | 胡成业, 水玉跃, 田阔, 李良, 覃胡林, 张春草, 冀萌萌, 水柏年. 浙江七星列岛海洋特别保护区主要鱼类功能群划分及生态位分析[J]. 生物多样性, 2016, 24(2): 175-184. |
[10] | 田中平, 庄丽, 李建贵, 程模香. 伊犁河谷北坡野果林木本植物种间关系 及环境解释[J]. 生物多样性, 2011, 19(3): 335-342. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn