生物多样性 ›› 2014, Vol. 22 ›› Issue (4): 449-457. DOI: 10.3724/SP.J.1003.2014.14101
王婷1, 任思远1, 袁志良2, 祝燕3, 潘娜1, 李鹿鑫1, 叶永忠2,,A;*()
收稿日期:
2014-05-26
接受日期:
2014-07-16
出版日期:
2014-07-20
发布日期:
2014-07-24
通讯作者:
叶永忠
基金资助:
Ting Wang1, Siyuan Ren1, Zhiliang Yuan2, Yan Zhu3, Na Pan1, Luxin Li1, Yongzhong Ye2,*()
Received:
2014-05-26
Accepted:
2014-07-16
Online:
2014-07-20
Published:
2014-07-24
Contact:
Ye Yongzhong
摘要:
为了在温带和亚热带的过渡带中验证森林树木死亡是否受密度制约的影响, 我们在宝天曼国家级自然保护区选择1个100 m×100 m的暖温带落叶阔叶林样地, 用双变量函数g(r)(the pair-correlation function)研究了锐齿栎(Quercus aliena var. acuteserrata)死亡前(活树和枯木统称为死亡前树木)和死亡后(活树为死亡后树木)的分布格局。把样地中的锐齿栎分为幼树(1 cm ≤ DBH<10 cm)、小树(10 cm ≤ DBH<20 cm)和成年树(DBH≥20 cm)3个不同的生长阶段来研究密度制约对空间分布格局的影响机制。结果表明: (1)死亡前锐齿栎在r>5 m尺度呈聚集分布, 死亡后幼树(1 cm≤DBH<10 cm)和成年树(DBH≥20 cm)在1-25 m尺度呈现随机分布, 死亡后小树(10 cm≤DBH< 20 cm)在r<1.5 m和2.5-4.5 m的尺度为随机分布, 在r>5 m的尺度呈聚集分布; (2)采用随机标签零模型和案例-对照设计的方法, 排除生境异质性影响后, 将幼树和小树的分布格局作为案例, 将成年树的分布格局作为对照, 并代表生境异质性的作用, 通过小径级树木与成年树分布格局的对比发现, 密度制约效应对死亡前后的锐齿栎分布格局均具有影响; (3)幼树和小树在成年树周围的分布死亡前为显著聚集分布格局, 死亡后剩余树木的聚集强度下降; 随着与成年树之间距离的增加, 死亡后的幼树(仅包括现存的活树)逐渐向随机分布格局演替。本研究初步表明锐齿栎空间格局受生境异质性的影响并呈现出显著的聚集效应, 排除生境异质性影响后, 锐齿栎死亡前后的空间格局受到密度制约的影响, 这一结果为Janzen-Connell假说提供了支持。
王婷, 任思远, 袁志良, 祝燕, 潘娜, 李鹿鑫, 叶永忠 (2014) 密度制约对宝天曼落叶阔叶林锐齿栎死亡前后分布格局的影响. 生物多样性, 22, 449-457. DOI: 10.3724/SP.J.1003.2014.14101.
Ting Wang, Siyuan Ren, Zhiliang Yuan, Yan Zhu, Na Pan, Luxin Li, Yongzhong Ye (2014) Effects of density dependence on the spatial patterns of Quercus aliena var. acuteserrata trees in deciduous broad-leaved forest in the Baotianman Nature Reserve, central China. Biodiversity Science, 22, 449-457. DOI: 10.3724/SP.J.1003.2014.14101.
图1 宝天曼1 ha样地(100 m×100 m)中锐齿栎枯木的点格局分析。黑色实线为实际点格局, 虚线之间为置信区间。
Fig. 1 Spatial patterns of Quercus aliena var. acuteserrata deadwoods in the 1-ha plot in the Baotianman National Nature Reserve. The solid black line represents the point pattern of the dead trees, the confidence interval is showed by the region between the two dashed gray lines.
图2 宝天曼1 ha样地锐齿栎活树的分布格局, 基于完全随机模型下的双关联函数g(r)和L(r)函数的格局分析。黑色实线表实际点的格局, 灰色区间和虚线之间代表置信区间。
Fig. 2 Spatial patterns of living Q. aliena var. acuteserrata trees in the 1-ha plot in Baotianman Nature Reserve. It presents the double correlation functions g(r) and L(r) functions pattern analysis with complete spatial randomness model. The solid black line represents the point pattern of the living trees, the confidence interval is shown by the gray part and the region between the two dashed lines.
图3 宝天曼1 ha样地不同径级间锐齿栎枯木点格局分析, A为幼树, B为小树, C为成年树。黑实线表实际点的格局, 虚线之间代表置信区间。
Fig. 3 Point pattern analysis of Q. aliena var. acuteserrata deadwoods at different growth stages in the 1-ha plot in the Baotianman National Nature Reserve. The solid black line represents the point pattern of the dead trees, the confidence interval is shown by the region between the dotted lines. A, Saplings (1 cm ≤ DBH < 10 cm); B, Juveniles (10 cm ≤ DBH <20 cm); C, Adult trees (DBH ≥20 cm).
图4 宝天曼锐齿栎密度制约效应分析。以成年树的格局作为对照代表生境异质性, 幼树或小径级树木的格局作为案例格局, a为幼树, b为小树, c为成年树; A1、B1分别为死亡前幼树、小树为案例的密度制约效应分析, A2、B2分别为死亡后幼树、小树为案例的密度制约效应分析。
Fig. 4 Examples for density dependent effect within a case-control design in the 1-ha plot in the Baotianman National Nature Reserve. The pattern of adult trees serves as “control”, which corrects for possible heterogeneity in habitat quality, the pattern of smaller size classes serves as “cases”. A, Saplings (1 cm ≤ DBH <10 cm); B, Juveniles (10 cm ≤ DBH < 20 cm); C, Adult trees (DBH ≥ 20 cm). A1 and B1 represent the negative density dependence analysis of pre-mortality saplings and juveniles; A2 and B2 show the negative density dependence analysis of post-mortality saplings and juveniles, respectively.
图5 运用双关联函数g12(r)和独立性零模型分析不同生长阶段锐齿栎死亡前后的关联性. A1到F1为死亡前, A2到F2为死亡后。a为幼树, b为小树, c为成年树。Monte Carlo模拟循环999次取99%的置信区间(灰色区间)。
Fig. 5 Comparative analysis of the correlation of pre-mortality and post-mortality of Quercus aliena var. acuteserrata trees at different growth stages by using double correlation functions g12 (r) and random labeling null model. A1to F1 for pre-mortality trees, A2 to F2 for post-mortality trees. a, Saplings (1 cm ≤ DBH <10 cm); b, Juveniles (10 cm ≤ DBH <20 cm); c, Adult trees (DBH ≥20 cm). It shows the 99% confidence interval (grey section) after 999 times circles with Monte Carlo simulation.
[1] | Franklin JF, Shugart HH, Harmon ME (1987) Tree death as an ecological process.BioScience, 37, 550-556. |
[2] | Barot S, Gignoux J, Menaut JC (1999) Demography of a savanna palm tree: predictions from comprehensive spatial pattern analyses.Ecology, 80, 1987-2005. |
[3] | Besag J (1977) Contribution to the discussion of Dr. Ripley’s paper.Journal of the Royal Statistical Society, B39,193-195. |
[4] | Bravo-Oviedo A, Sterba H, del Río M, Bravo F (2006) Competition-induced mortality for mediterranean Pinus pinaster Ait and P. sylvestris L.Forest Ecology and Management, 222, 88-98. |
[5] | Bugmann H (2001) A review of forest gap models.Climatic Change, 51, 259-305. |
[6] | Comita LS, Hubbell SP (2009) Local neighborhood and species’ shade tolerance influence survival in a diverse seedling bank. Ecology, 90, 328-334. |
[7] | Condit R, Ashton PS, Baker P, Bunyavejchewin S, Gunatilleke S, Gunatilleke N, Hubbell SP, Foster RB, Itoh A, LaFrankie J V, Lee HS, Losos E, Manokaran N, Sukumar R, Yamakura T (2000) Spatial patterns in the distribution of tropical tree species.Science, 288, 1414-1418. |
[8] | Condit R (1995) Research in large long-term tropical forest plots.Trends in Ecology and Evolution, 10, 18-22. |
[9] | Das A, Battles J, van Mantgem PJ, Stephenson NL (2008) Spatial elements of mortality risk in old-growth forests. Ecology, 89, 1744-1756. |
[10] | Diggle PJ, Chetwynd AG (1991) Second order analysis of spatial clustering for inhomogeneous populations.Biometrics, 47, 1155-1163. |
[11] | Gatrell AC, Bailey TC, Diggle PJ (1996) Spatial point pattern analysis and its application in geographical epidemiology.Transactions of the Institute of British Geographers, 21, 256-274. |
[12] | Getzin S, Dean C, He FL, Trofymow J, Wiegand K, Wiegand T (2006) Spatial patterns and competition of tree species in a Douglas fir chronosequence on Vancouver Island.Ecography, 29, 671-682. |
[13] | Greig-Smith P (1983) Quantitative Plant Ecology, 3rd edn. Blackwell, Oxford. |
[14] | Hardy OJ, Sonké B (2004) Spatial pattern analysis of tree species distribution in a tropical rain forest of Cameroon: assessing the role of limited dispersal and niche differentiation.Forest Ecology and Management, 197, 191-202. |
[15] | He FL, Duncan RP (2000) Density dependent effects on tree survival in an old growth Douglas fir forest. Journal of Ecology, 88, 676-688. |
[16] | HilleRisLambers J, Clark JS, Beckage B (2002) Density dependent mortality and the latitudinal gradient in species diversity. Nature, 417, 732-735. |
[17] | Howe HF, Schupp EW, Westley LC (1985) Early consequences of seed dispersal for a neotropical tree (Virola surinamensis).Ecology, 66, 781-791. |
[18] | Hubbell SP, Ahumada JA, Condit R, Foster RB (2001) Local neighborhood effects on long-term survival of individual trees in a Neotropical forest.Ecological Research, 16, 859-875. |
[19] | Hubbell SP (2004) Two decades of research on the BCI forest dynamics plot. In: Tropical Forest Diversity and Dynamism: Findings from a Large-Scale Plot Network, pp. 8-30. University of Chicago Press, Chicago. |
[20] | Hyatt LA, Rosenberg MS, Howard TG, Bole G, Fang W, Anastasia J, Gurevitch J (2003) The distance dependence prediction of the Janzen-Connell hypothesis: a meta-analysis.Oikos, 103, 590-602. |
[21] | Illian J, Penttinen A, Stoyan H, Stoyan D (2008) Statistical Analysis and Modelling of Spatial Point Patterns. Scitech Book News. |
[22] | Monserud RA, Thomas L, Hubert S (2004) Are self-thinning constraints needed in a tree-specific mortality model? Forest Science, 50, 848-858. |
[23] | Moravie MA, Robert A (2003) A model to assess relationships between forest dynamics and spatial structure.Journal of Vegetation Science, 14, 823-834. |
[24] | Murrell D, Purves D, Law R (2002) Intraspecific aggregation and species coexistence.Trends in Ecology and Evolution, 17, 211-212. |
[25] | Oliver CD, Larson BC (1990) Forest Stand Dynamics. McGrawHill, New York. |
[26] | Pacala SW, Canham CD, Saponara J, Silander JA, Kobe RK, Ribbens E (1996) Forest models defined by field measurements: estimation, error analysis and dynamics.Ecological Monographs, 66, 1-43. |
[27] | Packer A, Clay K (2000) Soil pathogens and spatial patterns of seedling mortality in a temperate tree.Nature, 404, 278-281. |
[28] | Ratikainen II, Gill JA, Gunnarsson TG, Sutherland WJ, Kokko H (2008) When density dependence is not instantaneous: theoretical developments and management implications.Ecology Letters, 11, 184-198. |
[29] | Ripley BD (1976) The second-order analysis of stationary point processes.Journal of Applied Probability, 13, 255-266. |
[30] | Song CS (宋朝枢) (1999) Scientific Investigation in the Baotianman Nature Reserve (宝天曼自然保护区科学考察集). China Forestry Publishing House, Beijing. (in Chinese) |
[31] | Sterner RW, Ribic CA, Schatz GE (1986) Testing for life historical changes in spatial patterns of four tropical tree species.Journal of Ecology, 74, 621-633. |
[32] | Temesgen H, Mitchell SJ (2005) An individual-tree mortality model for complex stands of southeastern British Columbia.Western Journal of Applied Forestry, 20, 101-109. |
[33] | Waring RH (1987) Characteristics of trees predisposed to die. BioScience, 37, 569-574. |
[34] | Wiegand TA, Moloney K (2004) Rings circles and null models for point pattern analysis in ecology.Oikos, 104, 209-229. |
[35] | Wright SJ (2002) Plant diversity in tropical forests: a review of mechanisms of species coexistence.Oecologia, 130, 1-14. |
[36] | Yoda K, Kira T, Ogawa H, Hozumi K (1963) Self-thinning in overcrowded pure stands under cultivated and natural conditions.Journal of Biology, Osaka City University, 14, 107-129. |
[37] | Lu XL (卢训令), Hu N (胡楠), Ding SY (丁圣彦), Liao BH (廖秉华), Fang HP (房会普) (2010) Study on photosynthetic ecophysiological characteristics of Quercus aliena var. acuteserrata in the Funiu Mountain Nature Reserve. Journal of Henan University (Natural Science) (河南大学学报(自然科学版)), 40, 617-621. (in Chinese with English abstract) |
[38] | Zhang JY (张俊艳), Cheng KW (成克武), Zang RG (臧润国) (2014) The spatial distribution patterns and associations of the principal trees and shrubs in a natural tropical coniferous forest on Hainan Island, China.Biodiversity Science(生物多样性), 22,129-140. (in Chinese with English abstract) |
[39] | Zhu Y (祝燕) (2009) The Prevalence of Density Dependence in Gutianshan Subtropical Evergreen Broadleaved Forest, China (古田山亚热带常绿阔叶林密度制约普遍性研究). PhD dissertation, Institute of Botany, Chinese Academy of Sciences, Beijing. (in Chinese with English abstract) |
[1] | 李雪萌, 蒋际宝, 张曾鲁, 刘晓静, 王亚利, 吴宜钊, 李银生, 邱江平, 赵琦. 宝天曼国家级自然保护区蚯蚓物种多样性及其影响因素[J]. 生物多样性, 2024, 32(4): 23352-. |
[2] | 王鹏, 隋佳容, 丁欣瑶, 王伟中, 曹雪倩, 赵海鹏, 王彦平. 郑州城市公园鸟类群落嵌套分布格局及其影响因素[J]. 生物多样性, 2024, 32(3): 23359-. |
[3] | 林迪, 陈双林, 杜榷, 宋文龙, 饶固, 闫淑珍. 大别山黏菌的物种多样性调查[J]. 生物多样性, 2024, 32(2): 23242-. |
[4] | 孟敬慈, 王国栋, 曹光兰, 胡楠林, 赵美玲, 赵延彤, 薛振山, 刘波, 朴文华, 姜明. 中国芦苇沼泽植物物种丰富度分布格局及其驱动因素[J]. 生物多样性, 2024, 32(2): 23194-. |
[5] | 王丽媛, 胡慧建, 姜杰, 胡一鸣. 南岭哺乳类和鸟类物种丰富度空间分布格局及其影响因子[J]. 生物多样性, 2024, 32(1): 23026-. |
[6] | 刘志发, 王新财, 龚粤宁, 陈道剑, 张强. 基于红外相机监测的广东南岭国家级自然保护区鸟兽多样性及其垂直分布特征[J]. 生物多样性, 2023, 31(8): 22689-. |
[7] | 杨俊毅, 关潇, 李俊生, 刘晶晶, 郝颢晶, 王槐睿. 乌江流域生物多样性与生态系统服务的空间格局及相互关系[J]. 生物多样性, 2023, 31(7): 23061-. |
[8] | 杨胜娴, 杨清, 李晓东, 巢欣, 刘惠秋, 魏蓝若雪, 巴桑. 确定性过程主导高原典型河流浮游植物地理分布格局和群落构建[J]. 生物多样性, 2023, 31(7): 23092-. |
[9] | 丁炳扬, 金孝锋, 张永华, 李根有, 陈征海, 张方钢. 浙江野生种子植物的分布格局与区系分区[J]. 生物多样性, 2023, 31(4): 22515-. |
[10] | 刘向, 刘木, 肖瑶. 叶片病原真菌对植物物种共存的影响: 进展与挑战[J]. 生物多样性, 2023, 31(2): 22525-. |
[11] | 孟宏虎, 宋以刚. 东南亚生物地理格局: 回溯与思考[J]. 生物多样性, 2023, 31(12): 23261-. |
[12] | 高瑞贺, 范世明, 董江海, 李蓉姣, 张志伟. 关帝山不同海拔昆虫功能群特征及分布格局[J]. 生物多样性, 2023, 31(10): 23152-. |
[13] | 刘高慧, 崔建国, 王玥, 王洪良, 香宝, 肖能文. 四川省康定市两栖动物多样性及其时空分布格局[J]. 生物多样性, 2022, 30(6): 21494-. |
[14] | 王雅婷, 张定海, 张志山. 古尔班通古特沙漠固定沙丘上白梭梭和梭梭的空间分布及种间关联性[J]. 生物多样性, 2022, 30(3): 21280-. |
[15] | 王重阳, 赵联军, 孟世勇. 王朗国家级自然保护区滑坡体兰科植物分布格局及其保护策略[J]. 生物多样性, 2022, 30(2): 21313-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn