生物多样性 ›› 2014, Vol. 22 ›› Issue (4): 508-515. DOI: 10.3724/SP.J.1003.2014.14053
所属专题: 土壤生物与土壤健康
阚靖博1, 李丽娜2, 曲东2,,A;*(), 王保莉1,,A;*()
收稿日期:
2014-03-14
接受日期:
2014-05-16
出版日期:
2014-07-20
发布日期:
2014-07-24
通讯作者:
曲东,王保莉
基金资助:
Jingbo Kan1, Lina Li2, Dong Qu2,*(), Baoli Wang1,*()
Received:
2014-03-14
Accepted:
2014-05-16
Online:
2014-07-20
Published:
2014-07-24
Contact:
Qu Dong,Wang Baoli
摘要:
水稻土是非常复杂又典型的生态系统, 分析淹水培养过程中水稻土细菌的丰度和群落结构变化规律, 可以客观反映水稻土中细菌群落结构信息, 为深入探讨水稻土细菌微生物对稻田的影响和在生态系统中的作用(营养元素转换、重金属还原与抑制甲烷生成过程等)提供实验基础与理论依据。作者采用淹水非种植水稻土微环境模式系统, 提取水稻土淹水培养1 h和1、5、10、20、30、40、60 d后的微生物总DNA, 利用Real-time PCR和PCR-DGGE (denaturing gradient gel electrophoresis)技术检测了淹水培养过程中细菌丰度与群落结构的变化。结果表明: 淹水水稻土中细菌的丰度在1 d时最大, 并在40 d到达第二个峰值, 说明淹水过程改变了细菌的丰度。基于16S rRNA基因V3区的DGGE图谱分析显示, 淹水过程中细菌的群落结构发生了演替性变化: r-策略生存的细菌仅存在于淹水初期; k-策略生存的细菌存在于淹水后期; r-和k-策略共生存的细菌存在于整个淹水过程中, 淹水后期k-策略的细菌占据优势。淹水培养过程中优势种群多样性指数大体呈现先上升后减小的趋势。主成分分析(PCA)将淹水处理过程分成几类不同的生境, 反映出中、后期细菌群落结构较为稳定; 测序结果表明, 32个优势条带所代表的细菌分别属于厚壁菌门、绿弯菌门、拟杆菌门、变形菌门和酸杆菌门, 且与来自不同地域的水稻土、其他类型土壤、活性污泥以及湖泊沉积物等生态系统的细菌关系密切。
阚靖博, 李丽娜, 曲东, 王保莉 (2014) 淹水培养过程中水稻土细菌丰度与群落结构变化. 生物多样性, 22, 508-515. DOI: 10.3724/SP.J.1003.2014.14053.
Jingbo Kan, Lina Li, Dong Qu, Baoli Wang (2014) Changes in bacterial abundance and community structure associated with flooding in paddy soil. Biodiversity Science, 22, 508-515. DOI: 10.3724/SP.J.1003.2014.14053.
图2 水稻土淹水培养不同时期细菌群落DGGE图谱。泳道1-8分别代表淹水处理的1 h、1 d、5 d、10 d、20 d、30 d、40 d和60 d。
Fig. 2 DGGE profiles of bacterial community in different flooding time of paddy soil. Lane 1-8 showed the samples of flooding time of 1 h, 1 d, 5 d, 10 d, 20 d, 30 d, 40 d and 60 d, respectively.
淹水时间 Flooding time | 丰富度指数 Margalef index (dMa) | Shannon指数 Shannon-Wiener index (H') | 均匀度指数 Evenness index (E) | Simpson指数 Simpson index (Ds) |
---|---|---|---|---|
1 h | 3.954 | 2.991 | 0.941 | 0.948 |
1 d | 3.655 | 2.962 | 0.932 | 0.945 |
5 d | 5.102 | 3.304 | 0.945 | 0.965 |
10 d | 5.371 | 3.368 | 0.955 | 0.965 |
20 d | 5.316 | 3.379 | 0.950 | 0.966 |
30 d | 5.657 | 3.382 | 0.959 | 0.965 |
40 d | 5.328 | 3.261 | 0.917 | 0.963 |
60 d | 4.914 | 3.228 | 0.931 | 0.963 |
表1 水稻土淹水培养不同时期细菌群落的多样性指数
Table 1 Diversity indices of bacterial community in different flooding periods of a paddy soil
淹水时间 Flooding time | 丰富度指数 Margalef index (dMa) | Shannon指数 Shannon-Wiener index (H') | 均匀度指数 Evenness index (E) | Simpson指数 Simpson index (Ds) |
---|---|---|---|---|
1 h | 3.954 | 2.991 | 0.941 | 0.948 |
1 d | 3.655 | 2.962 | 0.932 | 0.945 |
5 d | 5.102 | 3.304 | 0.945 | 0.965 |
10 d | 5.371 | 3.368 | 0.955 | 0.965 |
20 d | 5.316 | 3.379 | 0.950 | 0.966 |
30 d | 5.657 | 3.382 | 0.959 | 0.965 |
40 d | 5.328 | 3.261 | 0.917 | 0.963 |
60 d | 4.914 | 3.228 | 0.931 | 0.963 |
淹水时间 Flooding time | 1 h | 1 d | 5 d | 10 d | 20 d | 30 d | 40 d | 60 d |
---|---|---|---|---|---|---|---|---|
1 h | 100 | |||||||
1 d | 79.167 | 100 | ||||||
5 d | 70.175 | 70.175 | 100 | |||||
10 d | 67.857 | 62.069 | 92.537 | 100 | ||||
20 d | 61.017 | 57.627 | 85.294 | 89.855 | 100 | |||
30 d | 62.069 | 58.621 | 86.567 | 91.177 | 95.652 | 100 | ||
40 d | 61.017 | 57.627 | 85.294 | 86.957 | 91.429 | 95.652 | 100 | |
60 d | 57.143 | 57.143 | 83.087 | 84.849 | 86.567 | 90.909 | 95.522 | 100 |
表2 水稻土淹水培养不同时期细菌群落的相似性指数(%)
Table 2 Similarity index (%) of bacterial community in different flooding periods of a paddy soil
淹水时间 Flooding time | 1 h | 1 d | 5 d | 10 d | 20 d | 30 d | 40 d | 60 d |
---|---|---|---|---|---|---|---|---|
1 h | 100 | |||||||
1 d | 79.167 | 100 | ||||||
5 d | 70.175 | 70.175 | 100 | |||||
10 d | 67.857 | 62.069 | 92.537 | 100 | ||||
20 d | 61.017 | 57.627 | 85.294 | 89.855 | 100 | |||
30 d | 62.069 | 58.621 | 86.567 | 91.177 | 95.652 | 100 | ||
40 d | 61.017 | 57.627 | 85.294 | 86.957 | 91.429 | 95.652 | 100 | |
60 d | 57.143 | 57.143 | 83.087 | 84.849 | 86.567 | 90.909 | 95.522 | 100 |
图4 基于16S rRNA基因V3区的序列构建的细菌系统发育树。黑体字表示本文获得的优势条带编号, 刻度尺表示10%序列估计偏差; U. 代表uncultured。
Fig. 4 Phylogenetic tree constructed with neighbor-joining methods based on 16S rRNA V3 gene sequences. Boldface type indicates bands number obtained in this study. The scale bar represents 10% estimated sequence divergence. U. stands for uncultured.
[1] | Cerli C, Liu Q, Hanke A, Kaiser K, Kalbitz K (2013) Lignin decomposition and microbial community in paddy soils: effects of alternating redox conditions. In: General Assembly Conference Abstracts (ed. Reichart GJ), Vol.15, p 13896. European Geosciences Union, Vienna. |
[2] | Charlesworth B (1971) Selection in density-regulated populations.Ecology, 52, 469-474. |
[3] | Chen X, Zhang LM, Shen JP, Xu Z, He JZ (2010) Soil type determines the abundance and community structure of ammonia-oxidizing bacteria and archaea in flooded paddy soils.Journal of Soils and Sediments, 10, 1510-1516. |
[4] | Eichorst SA, Breznak JA, Schmidt TM (2007) Isolation and characterization of soil bacteria that define Terriglobus gen. nov., in the phylum Acidobacteria.Applied and Environmental Microbiology, 73, 2708-2717. |
[5] | Goecks J, Nekrutenko A, Taylor J (2010) Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences.Genome Biology, 11, R86. |
[6] | Gordon H, Haygarth PM, Bardgett RD (2008) Drying and rewetting effects on soil microbial community composition and nutrient leaching.Soil Biology and Biochemistry, 40, 302-311. |
[7] | Higashioka Y, Kojima H, Watanabe M, Fukui M (2013) Desulfatitalea tepidiphila gen. nov., sp. nov., a sulfate-reducing bacterium isolated from tidal flat sediment.International Journal of Systematic and Evolutionary Microbiology, 63, 761-765. |
[8] | Hill TC, Walsh KA, Harris JA (2003) Using ecological diversity measures with bacterial communities.FEMS Microbiol Ecol, 43, 1-11 |
[9] | Ji B, Gimenez G, Barbe V, Vacherie B, Rouy Z, Amrani A, Fardeau ML, Bertin P, Alazard D, Leroy S, Talla E, Ollivier B, Dolla A, Pradel N (2013) Complete genome sequence of the piezophilic, mesophilic, sulfate-reducing bacterium Desulfovibrio hydrothermalis AM13T.Genome Announcements, 1(1), e00226. |
[10] | Katoh M, Iwata A, Shaku I, Nakajima Y, Matsuya K, Kimura M (2003) Impact of water percolation on nutrient leaching from an irrigated paddy field in Japan.Soil Use and Management, 19, 298-304. |
[11] | Kudo K, Yamaguchi N, Makino T, Ohtsuka T, Kimura K, Dong DT, Amachi S (2013) Release of arsenic from soil by a novel dissimilatory arsenate-reducing bacterium, Anaeromyxobacter sp. strain PSR-1.Applied and Environmental Microbiology, 79, 4635-4642. |
[12] | Lee HJ, Kim SY, Kim PJ, Madsen EL, Jeon CO (2014) Methane emission and dynamics of methanotrophic and methanogenic communities in a flooded rice field ecosystem.FEMS Microbiology Ecology, 88, 195-212. |
[13] | Li HJ, Peng JJ, Weber KA, Zhu YG (2011) Phylogenetic diversity of Fe (III)-reducing microorganisms in rice paddy soil: enrichment cultures with different short-chain fatty acids as electron donors.Journal of Soils and Sediments, 11, 1234-1242. |
[14] | Liu L, Peng YK, Zheng XH, Xiao L, Yang LY (2010) Vertical structure of bacterial and archaeal communities within the sediment of a eutrophic lake as revealed by culture-independent methods.Journal of Freshwater Ecology, 25, 565-573. |
[15] | Lüdemann H, Arth I, Liesack W (2000) Spatial changes in the bacterial community structure along a vertical oxygen gradient in flooded paddy soil cores.Applied and Environmental Microbiology, 66, 754-762. |
[16] | Noll M, Matthies D, Frenzel P, Derakshani M, Liesack W (2005) Succession of bacterial community structure and diversity in a paddy soil oxygen gradient.Environmental Microbiology, 7, 382-395. |
[17] | Rappé MS, Giovannoni SJ (2003) The uncultured microbial majority.Annual Reviews in Microbiology, 57, 369-394. |
[18] | Reim A, Lüke C, Krause S, Pratscher J, Frenzel P (2012) One millimetre makes the difference: high-resolution analysis of methane-oxidizing bacteria and their specific activity at the oxic-anoxic interface in a flooded paddy soil.The ISME Journal, 6, 2128-2139. |
[19] | Rizzo A, Boano F, Revelli R, Ridolfi L (2013) Role of water flow in modeling methane emissions from flooded paddy soils.Advances in Water Resources, 52, 261-274. |
[20] | Sar P, Kazy SK, Paul D, Sarkar A (2013) Metal bioremediation by thermophilic microorganisms. In: Thermophilic Microbes in Environmental and Industrial Biotechnology(ed. Satyanarayana T, Littlechild J, Kawarabayasi Y), pp. 171-201. Springer, the Netherlands. |
[21] | Shu W, Pablo GP, Jun Y, Danfeng H (2012). Abundance and diversity of nitrogen-fixing bacteria in rhizosphere and bulk paddy soil under different duration of organic management.World Journal of Microbiology and Biotechnology, 28, 493-503. |
[22] | Silva AF, Carvalho G, Oehmen A, Lousada-Ferreira M, van Nieuwenhuijzen A, Reis MA, Crespo MTB (2012) Microbial population analysis of nutrient removal-related organisms in membrane bioreactors.Applied Microbiology and Biotechnology, 93, 2171-2180. |
[23] | Sorokin DY, Lücker S, Vejmelkova D, Kostrikina NA, Kleerebezem R, Rijpstra WIC, Damsté JSS, Paslier DL, Muyzer G, Wagner M, Van Loosdrecht MCM, Daims H (2012) Nitrification expanded: discovery, physiology and genomics of a nitrite-oxidizing bacterium from the phylum Chloroflexi.The ISME Journal, 6, 2245-2256. |
[24] | Tuo XH (拓晓骅), Zhu H (朱辉), Wang BL (王保莉), Qu D (曲东) (2012) Changing characteristics of Geobacteraceae community structure in paddy soil during flooding incubation.Journal of Agro-Environment Science(农业环境科学学报), 31, 1165-1171. (in Chinese with English abstract) |
[25] | Wang BL (王保莉), Huang S (黄森), Liu H (刘浩), Qu D (曲东) (2013) Characteristics of Bacillus communities in flooded paddy soil.Journal of Agro-Environment Science(农业环境科学学报), 32, 1021-1027. (in Chinese with English abstract) |
[26] | Wang Y (王英), Teng QH (滕齐辉), Cui ZL (崔中利), Sun B (孙波), Cao H (曹慧), Hu F (胡锋) (2007) Diversity and spatial distribution of bacteria in non-tillage paddy fields.Acta Pedologica Sinica(土壤学报), 44, 137-143. (in Chinese with English abstract) |
[27] | Wu MN, Qin HL, Chen Z, Wu JS, Wei WX (2011) Effect of long-term fertilization on bacterial composition in rice paddy soil.Biology and Fertility of Soils, 47, 397-405. |
[28] | Yi WJ, You JH, Zhu C, Wang BL, Qu D (2013) Diversity, dynamic and abundance of Geobacteraceae species in paddy soil following slurry incubation.European Journal of Soil Biology, 56, 11-18. |
[29] | Zhou W, Kageyama K, Li F, Yuasa A (2007) Monitoring of microbiological water quality by real-time PCR.Environmental Technology, 28, 545-553. |
[1] | 王腾, 李纯厚, 王广华, 赵金发, 石娟, 谢宏宇, 刘永, 刘玉. 西沙群岛七连屿珊瑚礁鱼类的物种组成与演替[J]. 生物多样性, 2024, 32(6): 23481-. |
[2] | 倪艳梅, 陈莉, 董志远, 孙德斌, 李宝泉, 王绪敏, 陈琳琳. 黄河三角洲湿地生态修复区大型底栖动物群落结构与生态健康评价[J]. 生物多样性, 2024, 32(3): 23303-. |
[3] | 陈瑶琪, 郭晶晶, 蔡国俊, 葛依立, 廖宇, 董正, 符辉. 近七十年(1954-2021)长江中下游湖泊沉水植物群落多样性演变特征[J]. 生物多样性, 2024, 32(3): 23319-. |
[4] | 魏嘉欣, 姜治国, 杨林森, 熊欢欢, 金胶胶, 罗方林, 李杰华, 吴浩, 徐耀粘, 乔秀娟, 魏新增, 姚辉, 余辉亮, 杨敬元, 江明喜. 湖北神农架中亚热带山地落叶阔叶林25 ha动态监测样地群落物种组成与结构特征[J]. 生物多样性, 2024, 32(3): 23338-. |
[5] | 刘啸林, 吴友贵, 张敏华, 陈小荣, 朱志成, 陈定云, 董舒, 李步杭, 丁炳扬, 刘宇. 浙江百山祖25 ha亚热带森林动态监测样地群落组成与结构特征[J]. 生物多样性, 2024, 32(2): 23294-. |
[6] | 杨舒涵, 王贺, 陈磊, 廖蓥飞, 严光, 伍一宁, 邹红菲. 松嫩平原异质生境对土壤线虫群落特征的影响[J]. 生物多样性, 2024, 32(1): 23295-. |
[7] | 殷正, 张乃莉, 张春雨, 赵秀海. 长白山不同演替阶段温带森林木本植物菌根类型对林下草本植物多样性的影响[J]. 生物多样性, 2024, 32(1): 23337-. |
[8] | 李庆多, 栗冬梅. 全球蝙蝠巴尔通体流行状况分析[J]. 生物多样性, 2023, 31(9): 23166-. |
[9] | 段晓敏, 李佳佳, 李靖宇, 李艳楠, 袁存霞, 王英娜, 刘建利. 腾格里沙漠东南缘藓结皮植物-土壤连续体不同粒径土壤微生物群落多样性[J]. 生物多样性, 2023, 31(9): 23131-. |
[10] | 张雅丽, 张丙昌, 赵康, 李凯凯, 刘燕晋. 毛乌素沙地不同类型生物结皮细菌群落差异及其驱动因子[J]. 生物多样性, 2023, 31(8): 23027-. |
[11] | 张多鹏, 刘洋, 李正飞, 葛奕豪, 张君倩, 谢志才. 长江上游支流赤水河流域底栖动物物种多样性与保护对策[J]. 生物多样性, 2023, 31(8): 22674-. |
[12] | 吴春玲, 罗竹慧, 李意德, 许涵, 陈德祥, 丁琼. 热带山地雨林木本豆科和樟科植物叶内生细菌群落: 物种与功能群多样性及驱动因子[J]. 生物多样性, 2023, 31(8): 23146-. |
[13] | 刘彩莲, 许庆, 王林龙, 邢衍阔, 宋稼豪, 林柏岸, 康斌, 刘敏. 闽东近海春秋季游泳动物多样性、密度及群落特征[J]. 生物多样性, 2023, 31(7): 22635-. |
[14] | 李发扬, 李滢钰, 蒋文妮, 刘曙光, 霍超, 孙巧奇, 邹红菲. 火后恢复时间影响大兴安岭寒温带森林内部与边缘鸟类多样性[J]. 生物多样性, 2023, 31(7): 22665-. |
[15] | 朱晓华, 高程, 王聪, 赵鹏. 尿素对土壤细菌与真菌多样性影响的研究进展[J]. 生物多样性, 2023, 31(6): 22636-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn