生物多样性 ›› 2024, Vol. 32 ›› Issue (9): 24186. DOI: 10.17520/biods.2024186
陈静1, 张丙昌1,*(), 刘燕晋1, 武杰1, 赵康2, 明姣1
收稿日期:
2024-05-16
接受日期:
2024-08-14
出版日期:
2024-09-20
发布日期:
2024-11-19
通讯作者:
* E-mail: 基金资助:
Jing Chen1, Bingchang Zhang1,*(), Yanjin Liu1, Jie Wu1, Kang Zhao2, Jiao Ming1
Received:
2024-05-16
Accepted:
2024-08-14
Online:
2024-09-20
Published:
2024-11-19
Contact:
* E-mail: Supported by:
摘要:
细鞘丝藻类蓝藻(Leptolyngbya-like cyanobacteria)是干旱生态系统生物结皮中的常见藻种, 其形态特征差别细微, 仅依靠形态特征难以在物种水平对其进行准确分类。本文利用形态特征、16S rRNA谱系分析和ITS (internal transcribed spacer)二级结构相结合的多相分析方法, 系统研究了古尔班通古特沙漠和毛乌素沙地生物土壤结皮中分离纯化出的6株细丝状蓝藻。结果表明, 6株实验藻株隶属2目3科4属4种, 包括细鞘丝藻目细鞘丝藻科细鞘丝藻属(Leptolyngbya)的鲍氏细鞘丝藻(L. boryana)、粘鞘藻属(Myxacorys)的加利福尼亚粘鞘藻(M. californica)和须鞘藻科须鞘藻属(Trichocoleus)的沙生须鞘藻(T. desertorum), 以及细点丝藻目细点丝藻科细点丝藻属(Oculatella)的细长细点丝藻(O. coburniia)。其中细点丝藻目为中国新记录目, 须鞘藻科和细点丝藻科为中国新记录科, 粘鞘藻属、须鞘藻属和细点丝藻属为中国新记录属; 沙生须鞘藻、加利福尼亚粘鞘藻和细长细点丝藻是中国新记录种。该研究结果丰富了对荒漠生物结皮蓝藻多样性的认识。
陈静, 张丙昌, 刘燕晋, 武杰, 赵康, 明姣 (2024) 荒漠生物结皮细鞘丝藻类(Leptolyngbya-like)蓝藻多样性. 生物多样性, 32, 24186. DOI: 10.17520/biods.2024186.
Jing Chen, Bingchang Zhang, Yanjin Liu, Jie Wu, Kang Zhao, Jiao Ming (2024) Diversity of Leptolyngbya-like cyanobacteria in biocrusts in desert area. Biodiversity Science, 32, 24186. DOI: 10.17520/biods.2024186.
图1 荒漠带细鞘丝藻类蓝藻藻株形态(箭头所指方向为藻株粘液帽)。1: CXA030; 2: CXA033; 3: CXA025; 4: 93-2-1; 5: 124-3-1; 6: 1345-1-1。样品CXA030、CXA033、CXA025、93-2-1、124-3-1来自古尔班通古特沙漠, 1345-1-1来自毛乌素沙地。
Fig. 1 Morphology of Leptolyngbya-like cyanobacteria strains in the desert zone (The direction of the arrow is the algae stalk mucus cap). 1, CXA030; 2, CXA033; 3, CXA025; 4, 93-2-1; 5, 124-3-1; 6, 1345-1-1. Samples of CXA030, CXA033, CXA025, 93-2-1, and 124-3-1 are from the Gurbantunggut Desert, while sample 1345-1-1 is from the Mu Us Desert.
图2 荒漠带细鞘丝藻类蓝藻藻株基于16S rRNA基因的系统进化树。(a)最大似然法系统进化树; (b)贝叶斯系统进化树。*加粗表示实验藻株。
Fig. 2 Phylogenetic tree of Leptolyngbya-like cyanobacteria strains based on the 16S rRNA gene in the desert zone. (a) Phylogenetic tree based on maximum likelihood method; (b) Phylogenetic tree based on Bayesian inference method. *
藻株 Strain | ITS全长 Complete ITS (nt) | D1-D1'螺旋 D1-D1' Helix (nt) | 异亮氨酸转运RNA tRNAIle (nt) | 丙氨酸转运RNA tRNAAla (nt) | Box-B螺旋 Box-B Helix (nt) | V3螺旋 V3 Helix (nt) |
---|---|---|---|---|---|---|
CXA030 | 332 | 57 | - | - | 33 | 89 |
CXA033 | 332 | 57 | - | - | 33 | 89 |
CXA025 | 519 | 62 | 74 | 73 | 37 | 36 |
93-2-1 | 443 | 64 | - | - | 33 | 51 |
124-3-1 | 435 | 64 | - | - | 33 | 46 |
1345-1-1 | 519 | 64 | 74 | 73 | 35 | 52 |
表1 本研究藻株的16S-23S rRNA内部转录间隔区(ITS)分析
Table 1 Analyses of 16S-23S rRNA ITS region of the strains in this study
藻株 Strain | ITS全长 Complete ITS (nt) | D1-D1'螺旋 D1-D1' Helix (nt) | 异亮氨酸转运RNA tRNAIle (nt) | 丙氨酸转运RNA tRNAAla (nt) | Box-B螺旋 Box-B Helix (nt) | V3螺旋 V3 Helix (nt) |
---|---|---|---|---|---|---|
CXA030 | 332 | 57 | - | - | 33 | 89 |
CXA033 | 332 | 57 | - | - | 33 | 89 |
CXA025 | 519 | 62 | 74 | 73 | 37 | 36 |
93-2-1 | 443 | 64 | - | - | 33 | 51 |
124-3-1 | 435 | 64 | - | - | 33 | 46 |
1345-1-1 | 519 | 64 | 74 | 73 | 35 | 52 |
图3 荒漠带细鞘丝藻类蓝藻的D1-D1′螺旋结构
Fig. 3 D1-D1′ helix structure of Leptolyngbya-like cyanobacteria in the desert zone. a, CXA030 and CXA033; b, Leptolyngbya boryana (OQ453216); c, L. corticola (EF429300); d, CXA025; e, Trichocoleus desertorum (KF307614)/T. badius (EF429297); f, 93-2-1/124-3-1; g, Myxacorys californica (KJ939052); h, M. chilensis (KJ939079); i, 1345-1-1; j, Oculatella coburnii (AY239600); k, O. mojaviensis (KF761572).
图4 荒漠带细鞘丝藻类蓝藻的BOX-B螺旋结构
Fig. 4 BOX-B helix structure of Leptolyngbya-like cyanobacteria in the desert zone. a, CXA030 and CXA033; b, Leptolyngbya boryana (OQ453216); c, L. corticola (EF429300); d, CXA025; e, Trichocoleus desertorum (KF307614); f, T. badius (EF429297); g, 93-2-1; h, 124-3-1; i, Myxacorys californica (KJ939052); j, M. chilensis (KJ939079); k, 1345-1-1; l, Oculatella coburnii (AY239600); M, O. mojaviensis (KF761572).
图5 荒漠带细鞘丝藻类蓝藻的V3螺旋结构
Fig. 5 V3 helix structure of Leptolyngbya-like cyanobacteria in the desert zone. a, CXA030; b, CXA033; c, Leptolyngbya boryana (OQ453216); d, L. corticola (EF429300); e, CXA025; f, Trichocoleus desertorum (KF307614); g, T. badius (EF429297); h, 93-2-1; i, 124-3-1; j, Myxacorys californica (KJ939052); k, M. chilensis (KJ939079); l, 1345-1-1; m, Oculatella coburnii (AY239600); n, O. mojaviensis (KF761572).
[1] | Anagnostidis K (2001) Nomenclatural changes in cyanoprokaryotic order Oscillatoriales. Preslia, 73, 359-376. |
[2] | Anagnostidis K, Komárek J (1988) Modern approach to the classification system of cyanophytes. 3. Oscillatoriales. Algological Studies/Archiv für Hydrobiologie, Supplement Volumes, 50-53, 327-472. |
[3] | Bao JT, Wang J, Chen CY (2015) Cyanobacterial diversity of communities in biological soil crusts of sand-fixing vegetation regions. Journal of Desert Research, 35, 1592-1598. (in Chinese with English abstract) |
[鲍婧婷, 王进, 陈翠云 (2015) 固沙植被区生物土壤结皮中蓝藻群落的多样性. 中国沙漠, 35, 1592-1598.]
DOI |
|
[4] | Bohunická M, Johansen JR, Kováčik L, Martin MP, Miscoe LH, Osorio-Santos K, Pietrasiak N (2014) Seven new species of Oculatella (Pseudanabaenales, Cyanobacteria): Taxonomically recognizing cryptic diversification. European Journal of Phycology, 49, 450-470. |
[5] | Bowker MA (2007) Biological soil crust rehabilitation in theory and practice: An underexploited opportunity. Restoration Ecology, 15, 13-23. |
[6] | Bowker MA, Maestre FT, Mau RL (2013) Diversity and patch- size distributions of biological soil crusts regulate dryland ecosystem multifunctionality. Ecosystems, 16, 923-933. |
[7] | Cai FF, Li SH, Chen JX, Li RH (2024) Gansulinema gen. nov. and Komarkovaeasiopsis gen. nov.: Novel Oculatellaceae genera (Cyanobacteria) isolated from desert soils and hot spring. Journal of Phycology, 60, 432-446. |
[8] | Hauer T, Komárek J (2022) CyanoDB 2.0: Online Database of Cyanobacterial Genera. Worldwide Electronic Publication, University of South Bohemia & Institute of Botany Academy of Sciences, Czech Republic. http://www.cyanodb.cz. (accessed on 2024-03-21) |
[9] | Hauerová R, Hauer T, Kaštovský J, Komárek J, Lepšová- Skácelová O, Mareš J (2021) Tenebriella gen. nov.—The dark twin of Oscillatoria. Molecular Phylogenetics and Evolution, 165, 107293. |
[10] | Hoffmann L, Komárek J, Kaštovský J (2005) System of cyanoprokaryotes (cyanobacteria) state in 2004. Algological Studies/Archiv für Hydrobiologie, Supplement Volumes, 117, 95-115. |
[11] | Hu HJ, Wei YX (2006) Freshwater Algae of China Systematics, Taxonomy and Ecology, pp. 23-201. Science Press, Beijing. (in Chinese) |
[胡鸿钧, 魏印心 (2006) 中国淡水藻类——系统、分类及生态, 23-201页. 科学出版社, 北京.] | |
[12] | Johansen JR, Kovacik L, Casamatta DA, Iková KF, Kaštovský J (2011) Utility of 16S-23S ITS sequence and secondary structure for recognition of intrageneric and intergeneric limits within cyanobacterial taxa: Leptolyngbya corticola sp. nov. (Pseudanabaenaceae, Cyanobacteria). Nova Hedwigia, 92, 283-302. |
[13] | Komárek J (2018) Several problems of the polyphasic approach in the modern cyanobacterial system. Hydrobiologia, 811, 7-17. |
[14] | Komárek J, Anagnostidis K (2007) Süßwasserflora von Mitteleuropa, Bd. 19/2: Cyanoprokaryota. Spektrum Akademischer Verlag, Heidelberg. |
[15] | Komárek J, Kaštovský J, Mareš J, Johansen JR (2014) Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach. Preslia, 86, 295-335. |
[16] | Li XR, Zhang YM, Zhao YG (2009) A study of biological soil crusts: Recent development trend and prospect. Advances in Earth Science, 24, 11-24. (in Chinese with English abstract) |
[李新荣, 张元明, 赵允格 (2009) 生物土壤结皮研究: 进展、前沿与展望. 地球科学进展, 24, 11-24.]
DOI |
|
[17] | Lu Q, Xiao Y, Lu YJ (2022) Employment of algae-based biological soil crust to control desertification for the sustainable development: A mini-review. Algal Research, 65, 102747. |
[18] | Mai T, Johansen JR, Pietrasiak N, Bohunická M, Martin MP (2018) Revision of the Synechococcales (Cyanobacteria) through recognition of four families including Oculatellaceae fam. nov. and Trichocoleaceae fam. nov. and six new genera containing 14 species. Phytotaxa, 365, 1-59. |
[19] | Muhlsteinova R, Johansen JR, Pietrasiak N, Martin MP, Osorio-Santos K, Warren SD (2014) Polyphasic characterization of Trichocoleus desertorum sp. nov. (Pseudanabaenales, Cyanobacteria) from desert soils and phylogenetic placement of the genus Trichocoleus. Phytotaxa, 163, 241-261. |
[20] |
Parks DH, Chuvochina M, Chaumeil PA, Rinke C, Mussig AJ, Hugenholtz P (2020) A complete domain-to-species taxonomy for Bacteria and Archaea. Nature Biotechnology, 38, 1079-1086.
DOI PMID |
[21] |
Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A, Chaumeil PA, Hugenholtz P (2018) A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nature Biotechnology, 36, 996-1004.
DOI PMID |
[22] | Patrizia A, Maria GC (1988) Structural and ultrastructural characters of a red biodeteriorating Lyngbya sp. in culture. Algological Studies/Archiv für Hydrobiologie, Supplement Volumes, 50-53, 55-57. |
[23] |
Pietrasiak N, Osorio-Santos K, Shalygin S, Martin MP, Johansen JR (2019) When is a lineage a species? A case study in Myxacorys gen. nov. (Synechococcales: Cyanobacteria) with the description of two new species from the Americas. Journal of Phycology, 55, 976-996.
DOI PMID |
[24] | Sciuto K, Moro I (2015) Cyanobacteria: The bright and dark sides of a charming group. Biodiversity and Conservation, 24, 711-738. |
[25] |
Sciuto K, Moro I (2016) Detection of the new cosmopolitan genus Thermoleptolyngbya (Cyanobacteria, Leptolyngbyaceae) using the 16S rRNA gene and 16S-23S ITS region. Molecular Phylogenetics and Evolution, 105, 15-35.
DOI PMID |
[26] |
Shimura Y, Hirose Y, Misawa N, Osana Y, Katoh H, Yamaguchi H, Kawachi M (2015) Comparison of the terrestrial cyanobacterium Leptolyngbya sp. NIES-2104 and the freshwater Leptolyngbya boryana PCC 6306 genomes. DNA Research, 22, 403-412.
DOI PMID |
[27] | Strunecký O, Ivanova AP, Mareš J (2023) An updated classification of cyanobacterial orders and families based on phylogenomic and polyphasic analysis. Journal of Phycology, 59, 12-51. |
[28] | Vaz MGMV, Genuário DB, Andreote APD, Malone CFS, Sant’Anna CL, Barbiero L, Fiore MF (2015) Pantanalinema gen. nov. and Alkalinema gen. nov.: Novel pseudanabaenacean genera (Cyanobacteria) isolated from saline-alkaline lakes. International Journal of Systematic and Evolutionary Microbiology, 65, 298. |
[29] | Vinogradova O, Mikhailyuk T, Glaser K, Holzinger A, Karsten U (2017) New species of Oculatella (Synechococcales, Cyanobacteria) from terrestrial habitats of Ukraine. Ukrainian Botanical Journal, 74, 509-520. |
[30] | Zammit G, Billi D, Albertano P (2012) The subaerophytic cyanobacterium Oculatella subterranea (Oscillatoriales, Cyanophyceae) gen. et sp. nov.: A cytomorphological and molecular description. European Journal of Phycology, 47, 341-354. |
[1] | 张雅丽, 张丙昌, 赵康, 李凯凯, 刘燕晋. 毛乌素沙地不同类型生物结皮细菌群落差异及其驱动因子[J]. 生物多样性, 2023, 31(8): 23027-. |
[2] | 王江, 赵一凡, 屈彦福, 张财文, 张亮, 陈传武, 王彦平. 中国蛇类形态、生活史和生态学特征数据集[J]. 生物多样性, 2023, 31(7): 23126-. |
[3] | 钟雨茜, 陈传武, 王彦平. 中国蜥蜴类生活史和生态学特征数据集[J]. 生物多样性, 2022, 30(4): 22071-. |
[4] | 丁晨晨, 梁冬妮, 信文培, 李春旺, 蒋志刚. 中国哺乳动物形态、生活史和生态学特征数据集[J]. 生物多样性, 2022, 30(2): 21520-. |
[5] | 王彦平, 宋云枫, 钟雨茜, 陈传武, 赵郁豪, 曾頔, 吴亦如, 丁平. 中国鸟类的生活史和生态学特征数据集[J]. 生物多样性, 2021, 29(9): 1149-1153. |
[6] | 俞正森, 宋娜, 本村浩之, 高天翔. 中国银口天竺鲷属鱼类的分类厘定[J]. 生物多样性, 2021, 29(7): 971-979. |
[7] | 刘鑫, 荣晓莹, 张元明. 古尔班通古特沙漠生物土壤结皮对氨氧化微生物生态位的影响[J]. 生物多样性, 2021, 29(1): 43-52. |
[8] | 刘君, 王宁, 崔岱宗, 卢磊, 赵敏. 大小兴安岭可培养细菌的资源多样性[J]. 生物多样性, 2019, 27(8): 903-910. |
[9] | 张雪, 李兴安, 苏秦之, 曹棋钠, 李晨伊, 牛庆生, 郑浩. |
[10] | 郑硕理, 田晓玲, 黄承玲, 王灵军, 冯元, 张敬丽. 结合分子手段和形态分析验证大白杜鹃与马缨杜鹃的自然杂交[J]. 生物多样性, 2017, 25(6): 627-637. |
[11] | 王雨, 张会勇, 项鹏, 叶又茵, 林更铭, 杨清良, 林茂. 颗石藻颗石粒形态的原子力显微观测方法: 以赫氏艾密里藻为例[J]. 生物多样性, 2016, 24(7): 847-854. |
[12] | 刘国红, 刘波, 朱育菁, 车建美, 葛慈斌, 苏明星, 唐建阳. 台湾地区芽胞杆菌物种多样性[J]. 生物多样性, 2016, 24(10): 1154-1163. |
[13] | 葛慈斌, 郑榕, 刘波, 刘国红, 车建美, 唐建阳. 武夷山自然保护区土壤可培养芽胞杆菌 的物种多样性及分布[J]. 生物多样性, 2016, 24(10): 1164-1176. |
[14] | 李海涛, 张保学, 高阳, 时小军, 周鹏. DNA条形码技术在海洋贝类鉴定中的实践: 以大亚湾生态监控区为例[J]. 生物多样性, 2015, 23(3): 299-305. |
[15] | 王盼盼, 武永秀, 宋彤彤, 马春玲, 赵文, 王瑛, 孙磊. 野生及温室盆栽蕙兰可培养根内生细菌的遗传多样性[J]. 生物多样性, 2015, 23(1): 61-67. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn