生物多样性 ›› 2011, Vol. 19 ›› Issue (5): 519-527. DOI: 10.3724/SP.J.1003.2011.09048
所属专题: 生物多样性与生态系统功能; 土壤生物与土壤健康; 生物入侵
许湘琴1, 王莹莹1,2, 陆强1, 林植华1, 陈慧丽1,*()
收稿日期:
2011-04-19
接受日期:
2011-07-01
出版日期:
2011-09-20
发布日期:
2011-10-08
通讯作者:
陈慧丽
基金资助:
Xiangqin Xu1, Yingying Wang1,2, Qiang Lu1, Zhihua Lin1, Huili Chen1,*()
Received:
2011-04-19
Accepted:
2011-07-01
Online:
2011-09-20
Published:
2011-10-08
Contact:
Huili Chen
摘要:
近年来随着地下生态学的发展, 生态学家们逐渐重视生物入侵导致的地下生物多样性及其相关生态系统功能的改变。为探究加拿大一枝黄花(Solidago canadensis)入侵对土壤线虫的影响, 我们在杭州湾地区选取镇海、平湖、慈溪、奉贤、海盐和杭州6个研究地点, 比较外来种加拿大一枝黄花群落与土著种芦苇(Phragmites australis)群落土壤中的线虫群落结构和功能。结果显示: 两种植物群落土壤中的线虫属数和多样性没有显著差异, 而线虫营养多样性、大多数营养类群百分比以及线虫群落结构均存在显著差异, 表明加拿大一枝黄花的入侵在一定程度上改变了杭州湾地区土壤线虫的群落结构; 加拿大一枝黄花群落中土壤食真菌线虫比例趋于增加, 植食性线虫比例降低, 表明加拿大一枝黄花的入侵可能对土壤生态系统的能流途径产生影响, 在入侵地抗寄生线虫能力强于土著植物芦苇; 采样地点与植物的交互作用对线虫多样性和群落结构的影响显著, 表明入侵地点是决定加拿大一枝黄花对土壤生物影响的重要因素之一; 土壤颗粒组成、碳含量和氮含量是影响线虫群落结构的主要环境因子。
许湘琴, 王莹莹, 陆强, 林植华, 陈慧丽 (2011) 加拿大一枝黄花入侵对杭州湾地区土壤线虫群落的影响. 生物多样性, 19, 519-527. DOI: 10.3724/SP.J.1003.2011.09048.
Xiangqin Xu, Yingying Wang, Qiang Lu, Zhihua Lin, Huili Chen (2011) Effect of Solidago canadensis invasions on soil nematode communities in Hangzhou Bay. Biodiversity Science, 19, 519-527. DOI: 10.3724/SP.J.1003.2011.09048.
图1 杭州湾地区6个采样地点(镇海、奉贤、平湖、海盐、慈溪和杭州)示意图
Fig. 1 Location of six sampling sites (Zhenhai, Fengxian, Pinghu, Haiyan, Cixi and Hangzhou) in the Hangzhou Bay, China
砂粒 Sand (%) | 粉粒 Silt (%) | 粘粒 Clay (%) | pH | 总氮 Total nitrogen (mg/g) | 总碳 Total carbon (mg/g) | 株高 Height (cm) | 植株密度 Shoot density (ind./m2) | ||
---|---|---|---|---|---|---|---|---|---|
镇海 Zhenhai | S | 16.9 ± 1.4 | 45.0 ± 4.6 | 38.1 ± 5.5 | 8.7 ± 0.10 | 1.44 ± 0.24 | 65.23 ± 7.71 | 150 ± 18 | 116 ± 36 |
P | 13.5 ± 1.8 | 51.8 ± 3.0 | 34.7 ± 4.7 | 8.7 ± 0.07 | 0.61 ± 0.12 | 11.61 ± 0.58 | 156 ± 20 | 107 ± 44 | |
奉贤 Fengxian | S | 4.8 ± 0.8 | 23.9 ± 5.3 | 71.3 ± 6.0 | 8.7 ± 0.02 | 0.38 ± 0.10 | 11.89 ± 0.86 | 110 ± 4 | 98 ± 12 |
P | 5.4 ± 0.9 | 25.3 ± 1.6 | 69.3 ± 2.3 | 8.8 ± 0.03 | 0.46 ± 0.21 | 17.82 ± 1.43 | 161 ± 16 | 125 ± 23 | |
平湖 Pinghu | S | 6.5 ± 0.9 | 34.3 ± 1.8 | 59.1 ± 2.6 | 8.5 ± 0.17 | 0.49 ± 0.16 | 15.67 ± 1.58 | 143 ± 26 | 111 ± 24 |
P | 8.7 ± 4.0 | 38.7 ± 14.4 | 52.6 ± 18.4 | 8.6 ± 0.02 | 1.21 ± 0.32 | 17.23 ± 0.87 | 220 ± 47 | 63 ± 6 | |
海盐 Haiyan | S | 9.4 ± 0.6 | 45.1 ± 1.4 | 45.6 ± 1.9 | 8.5 ± 0.15 | 1.04 ± 0.06 | 12.40 ± 0.32 | 114 ± 19 | 117 ± 63 |
P | 12.5 ± 5.1 | 45.6 ± 14.4 | 41.9 ± 19.6 | 8.6 ± 0.04 | 0.61 ± 0.15 | 23.98 ± 2.55 | 190 ± 10 | 118 ± 26 | |
慈溪 Cixi | S | 6.7 ± 0.4 | 32.9 ± 1.6 | 60.4 ± 2.0 | 8.8 ± 0.05 | 0.91 ± 0.17 | 15.65 ± 3.52 | 177 ± 13 | 53 ± 15 |
P | 2.0 ± 0.8 | 22.3 ± 2.6 | 75.7 ± 3.1 | 9.0 ± 0.41 | 0.33 ± 0.10 | 9.98 ± 0.31 | 156 ± 14 | 173 ± 28 | |
杭州 Hangzhou | S | 2.5 ± 0.9 | 16.9 ± 1.6 | 80.7 ± 2.5 | 8.7 ± 0.05 | 0.34 ± 0.09 | 9.36 ± 0.63 | 224 ± 25 | 92 ± 46 |
P | 2.0 ± 0.7 | 15.8 ± 0.4 | 82.2 ± 1.1 | 9.1 ± 0.08 | 0.31 ± 0.05 | 8.64 ± 0.87 | 173 ± 29 | 37 ± 10 |
表1 加拿大一枝黄花群落(S)和芦苇群落(P)的土壤特性和植物特征(Mean ± SE, n = 4)
Table 1 Soil properties and plant characteristics of two communities dominated respectively by Solidago canadensis (S) and Phragmites australis(P)
砂粒 Sand (%) | 粉粒 Silt (%) | 粘粒 Clay (%) | pH | 总氮 Total nitrogen (mg/g) | 总碳 Total carbon (mg/g) | 株高 Height (cm) | 植株密度 Shoot density (ind./m2) | ||
---|---|---|---|---|---|---|---|---|---|
镇海 Zhenhai | S | 16.9 ± 1.4 | 45.0 ± 4.6 | 38.1 ± 5.5 | 8.7 ± 0.10 | 1.44 ± 0.24 | 65.23 ± 7.71 | 150 ± 18 | 116 ± 36 |
P | 13.5 ± 1.8 | 51.8 ± 3.0 | 34.7 ± 4.7 | 8.7 ± 0.07 | 0.61 ± 0.12 | 11.61 ± 0.58 | 156 ± 20 | 107 ± 44 | |
奉贤 Fengxian | S | 4.8 ± 0.8 | 23.9 ± 5.3 | 71.3 ± 6.0 | 8.7 ± 0.02 | 0.38 ± 0.10 | 11.89 ± 0.86 | 110 ± 4 | 98 ± 12 |
P | 5.4 ± 0.9 | 25.3 ± 1.6 | 69.3 ± 2.3 | 8.8 ± 0.03 | 0.46 ± 0.21 | 17.82 ± 1.43 | 161 ± 16 | 125 ± 23 | |
平湖 Pinghu | S | 6.5 ± 0.9 | 34.3 ± 1.8 | 59.1 ± 2.6 | 8.5 ± 0.17 | 0.49 ± 0.16 | 15.67 ± 1.58 | 143 ± 26 | 111 ± 24 |
P | 8.7 ± 4.0 | 38.7 ± 14.4 | 52.6 ± 18.4 | 8.6 ± 0.02 | 1.21 ± 0.32 | 17.23 ± 0.87 | 220 ± 47 | 63 ± 6 | |
海盐 Haiyan | S | 9.4 ± 0.6 | 45.1 ± 1.4 | 45.6 ± 1.9 | 8.5 ± 0.15 | 1.04 ± 0.06 | 12.40 ± 0.32 | 114 ± 19 | 117 ± 63 |
P | 12.5 ± 5.1 | 45.6 ± 14.4 | 41.9 ± 19.6 | 8.6 ± 0.04 | 0.61 ± 0.15 | 23.98 ± 2.55 | 190 ± 10 | 118 ± 26 | |
慈溪 Cixi | S | 6.7 ± 0.4 | 32.9 ± 1.6 | 60.4 ± 2.0 | 8.8 ± 0.05 | 0.91 ± 0.17 | 15.65 ± 3.52 | 177 ± 13 | 53 ± 15 |
P | 2.0 ± 0.8 | 22.3 ± 2.6 | 75.7 ± 3.1 | 9.0 ± 0.41 | 0.33 ± 0.10 | 9.98 ± 0.31 | 156 ± 14 | 173 ± 28 | |
杭州 Hangzhou | S | 2.5 ± 0.9 | 16.9 ± 1.6 | 80.7 ± 2.5 | 8.7 ± 0.05 | 0.34 ± 0.09 | 9.36 ± 0.63 | 224 ± 25 | 92 ± 46 |
P | 2.0 ± 0.7 | 15.8 ± 0.4 | 82.2 ± 1.1 | 9.1 ± 0.08 | 0.31 ± 0.05 | 8.64 ± 0.87 | 173 ± 29 | 37 ± 10 |
变量 Variables | 植物类型 Plant (df = 2) | 地点 Site (df = 5) | 植物类型×地点 Plant × Site (df = 5) | |||||
---|---|---|---|---|---|---|---|---|
F | P | F | P | F | P | |||
砂粒 Sand (%) | 0.59 | 0.449 | 41.75 | < 0.001 | 4.31 | 0.004 | ||
粉粒 Silt (%) | 0.02 | 0.897 | 30.31 | < 0.001 | 1.76 | 0.145 | ||
粘粒 Clay (%) | 0.01 | 0.928 | 33.33 | < 0.001 | 1.75 | 0.149 | ||
pH | 15.21 | < 0.001 | 9.75 | < 0.001 | 2.23 | 0.072 | ||
总氮 Total nitrogen | 13.57 | 0.001 | 20.83 | < 0.001 | 22.34 | < 0.001 | ||
总碳 Total carbon | 78.03 | < 0.001 | 119.78 | < 0.001 | 56.19 | < 0.001 | ||
株高 Height | 12.26 | < 0.001 | 8.00 | < 0.001 | 11.04 | < 0.001 | ||
植株密度 Shoot density | 0.42 | 0.52 | 3.34 | 0.014 | 7.84 | < 0.001 |
表2 植物类型、采样地点及其交互作用对土壤属性和植物特征的影响
Table 2 Summary of two-way ANOVA for testing the effects of plant species and sampling sites on soil properties and plant characteristics
变量 Variables | 植物类型 Plant (df = 2) | 地点 Site (df = 5) | 植物类型×地点 Plant × Site (df = 5) | |||||
---|---|---|---|---|---|---|---|---|
F | P | F | P | F | P | |||
砂粒 Sand (%) | 0.59 | 0.449 | 41.75 | < 0.001 | 4.31 | 0.004 | ||
粉粒 Silt (%) | 0.02 | 0.897 | 30.31 | < 0.001 | 1.76 | 0.145 | ||
粘粒 Clay (%) | 0.01 | 0.928 | 33.33 | < 0.001 | 1.75 | 0.149 | ||
pH | 15.21 | < 0.001 | 9.75 | < 0.001 | 2.23 | 0.072 | ||
总氮 Total nitrogen | 13.57 | 0.001 | 20.83 | < 0.001 | 22.34 | < 0.001 | ||
总碳 Total carbon | 78.03 | < 0.001 | 119.78 | < 0.001 | 56.19 | < 0.001 | ||
株高 Height | 12.26 | < 0.001 | 8.00 | < 0.001 | 11.04 | < 0.001 | ||
植株密度 Shoot density | 0.42 | 0.52 | 3.34 | 0.014 | 7.84 | < 0.001 |
变量 Variables | 植物类型 Plant type (df = 1) | 地点 Site (df = 5) | 植物类型 × 地点 Plant type × Site (df = 5) | |||||
---|---|---|---|---|---|---|---|---|
F | P | F | P | F | P | |||
属数 Genus number | 2.56 | 0.118 | 24.18 | < 0.001 | 6.90 | < 0.001 | ||
密度 Density | 3.59 | 0.006 | 5.76 | < 0.001 | 5.28 | < 0.001 | ||
Shannon-Wiener diversity index (H') | 0.01 | 0.92 | 28.18 | < 0.001 | 7.24 | < 0.001 | ||
营养多样性指数 Trophic diversity index (TD) | 17.05 | < 0.001 | 17.50 | < 0.001 | 3.76 | 0.008 | ||
富集指数 Enrichment index (EI) | 11.52 | 0.002 | 20.62 | < 0.001 | 13.15 | < 0.001 | ||
结构指数 Structure index (SI) | 9.07 | 0.005 | 4.08 | 0.005 | 3.39 | 0.013 | ||
线虫通路比值 Nematode channel ratio (NCR) | 22.94 | < 0.001 | 9.29 | < 0.001 | 5.37 | < 0.001 | ||
植食性线虫 Herbivores (%) | 24.14 | < 0.001 | 54.20 | < 0.001 | 11.85 | < 0.001 | ||
食藻类线虫 Algal feeders (%) | 0.90 | 0.348 | 6.78 | < 0.001 | 7.17 | < 0.001 | ||
食细菌线虫 Bacterivores (%) | 10.96 | 0.002 | 78.34 | < 0.001 | 15.69 | < 0.001 | ||
食真菌线虫 Fungivores (%) | 34.65 | < 0.001 | 8.98 | < 0.001 | 5.42 | < 0.001 | ||
杂食性线虫 Omnivores (%) | 11.89 | 0.001 | 14.01 | < 0.001 | 9.10 | < 0.001 | ||
捕食性线虫 Carnivores (%) | 14.65 | < 0.001 | 5.98 | < 0.001 | 8.70 | < 0.001 |
表3 植物类型、采样地点及其交互作用对土壤线虫的属数、密度、多样性指数、结构指数、富集指数、线虫通路比值和各营养类群比例的影响
Table 3 Summary of two-way ANOVA for testing the effects of plant type and sampling site on soil nematode genus number, density, diversity index, structure index, enrichment index, nematode channel ratio and trophic group proportions
变量 Variables | 植物类型 Plant type (df = 1) | 地点 Site (df = 5) | 植物类型 × 地点 Plant type × Site (df = 5) | |||||
---|---|---|---|---|---|---|---|---|
F | P | F | P | F | P | |||
属数 Genus number | 2.56 | 0.118 | 24.18 | < 0.001 | 6.90 | < 0.001 | ||
密度 Density | 3.59 | 0.006 | 5.76 | < 0.001 | 5.28 | < 0.001 | ||
Shannon-Wiener diversity index (H') | 0.01 | 0.92 | 28.18 | < 0.001 | 7.24 | < 0.001 | ||
营养多样性指数 Trophic diversity index (TD) | 17.05 | < 0.001 | 17.50 | < 0.001 | 3.76 | 0.008 | ||
富集指数 Enrichment index (EI) | 11.52 | 0.002 | 20.62 | < 0.001 | 13.15 | < 0.001 | ||
结构指数 Structure index (SI) | 9.07 | 0.005 | 4.08 | 0.005 | 3.39 | 0.013 | ||
线虫通路比值 Nematode channel ratio (NCR) | 22.94 | < 0.001 | 9.29 | < 0.001 | 5.37 | < 0.001 | ||
植食性线虫 Herbivores (%) | 24.14 | < 0.001 | 54.20 | < 0.001 | 11.85 | < 0.001 | ||
食藻类线虫 Algal feeders (%) | 0.90 | 0.348 | 6.78 | < 0.001 | 7.17 | < 0.001 | ||
食细菌线虫 Bacterivores (%) | 10.96 | 0.002 | 78.34 | < 0.001 | 15.69 | < 0.001 | ||
食真菌线虫 Fungivores (%) | 34.65 | < 0.001 | 8.98 | < 0.001 | 5.42 | < 0.001 | ||
杂食性线虫 Omnivores (%) | 11.89 | 0.001 | 14.01 | < 0.001 | 9.10 | < 0.001 | ||
捕食性线虫 Carnivores (%) | 14.65 | < 0.001 | 5.98 | < 0.001 | 8.70 | < 0.001 |
图2 两种植物群落中土壤线虫的属数、密度、Shannon-Wiener多样性和营养多样性指数。误差棒表示标准误(n = 4); * P < 0.05, ** P < 0.01, *** P < 0.001。
Fig. 2 Soil nematode genus number, density, Shannon-Wiener diversity index and trophic diversity index in two communities dominated respectively by Solidago canadensis and Phragmites australis. Bars indicate standard errors of mean data (n = 4) ); * P < 0.05, ** P < 0.01, *** P < 0.001.
图3 两种植物群落中土壤线虫营养类群的比例。误差棒表示标准误(n = 4); * P < 0.05, ** P < 0.01
Fig. 3 Proportions of soil nematode feeding groups in the two communities dominated respectively by Solidago canadensis and Phragmites australis. Bars indicate standard errors of mean data (n = 4).
[1] | Biederman LA, Boutton TW (2009) Biodiversity and trophic structure of soil nematode communities are altered following woody plant invasion of grassland. Soil Biology and Bio- chemistry, 41,1943-1950. |
[2] |
Callaway RM, Thelen GC, Rodriguez A, Holben WE (2004) Soil biota and exotic plant invasion. Nature, 427,731-733.
URL PMID |
[3] | Chen F (陈芳) (2006) Research progress of the invader— Solidago canadensis. Grassland and Turf (草原与草坪), (4),9-11. (in Chinese with English abstract) |
[4] | Chen HL (陈慧丽), Li YJ (李玉娟), Li B (李博), Chen JK (陈家宽), Wu JH (吴纪华) (2005) Impacts of exotic plant invasions on soil biodiversity and ecosystem processes. Biodiversity Science (生物多样性), 13,555-565. (in Chinese with English abstract) |
[5] | Chen HL, Li B, Hu JB, Chen JK, Wu JH (2007a) Benthic nematode communities in the Yangtze River estuary as influenced by Spartina alterniflora invasions . Marine Ecology Progress Series, 336,99-110. |
[6] | Chen HL, Li B, Fang CM, Chen JK, Wu JH (2007b) Exotic plant influences soil nematode communities through litter input. Soil Biology and Biochemistry, 39,1782-1793. |
[7] | Clarke KR, Warwick RM (1994) Change in marine communities: an approach to statistical analysis and interpretation. Plymouth Marine Laboratory, Plymouth, |
[8] |
Copley J (2000) Ecology goes underground. Nature, 406,452-454.
URL PMID |
[9] | Dong M (董梅), Lu JZ (陆建忠), Zhang WJ (张文驹), Chen JK (陈家宽), Li B (李博) (2006) Canada goldenrod ( Solidago canadensis): an invasive alien weed rapidly spreading in China . Acta Phytotaxonomica Sinica (植物分类学报), 44,72-85. (in Chinese with English abstract) |
[10] | Ehrenfeld JG (2006) A potential novel source of information for screening and monitoring the impact of exotic plants on ecosystems. Biological Invasions, 8,1511-1521. |
[11] | Ferris H, Bongers T,de Goede RGM (2001) A framework for soil food web diagnostics: extension of the nematode faunal analysis concept. Applied Soil Ecology, 18,13-29. |
[12] | Griffiths BS, Boag B, Neilson R, Palmer L (1990) The use of colloidal silica to extract nematodes from small samples of soil and sediment. Nematologica, 36,465-473. |
[13] | He JF (何锦峰) (2008) Advance in studies on invasion mechanisms of exotic plants. Chinese Journal of Applied and Environmental Biology (应用与环境生物学报), 14,863-870. (in Chinese with English abstract) |
[14] | He JS (贺金生), Wang ZQ (王政权), Fang JY (方精云) (2004) Issues and prospects of belowground ecology with special reference to global climate change. Chinese Science Bulletin (科学通报), 49,1226-1233. (in Chinese) |
[15] | Jin L (金樑) (2005) Ecology of Arbuscular Mycorrhizal Associations in Solidago canadensis, an Invasive Alien Plant (外来入侵种加拿大一枝黄花的菌根生态学研究). PhD dissertation, Fudan University, Shanghai. (in Chinese with English abstract) |
[16] | Keane RM, Crawley MJ (2002) Exotic plant invasions and the enemy release hypothesis. Trends in Ecology and Evolution, 17,164-170. |
[17] | Lei YB (类延宝), Xiao HF (肖海峰), Feng YL (冯玉龙) (2010) Impacts of alien plant invasions on biodiversity and evolutionary responses of native species. Biodiversity Science (生物多样性), 18,622-630. (in Chinese with English abstract) |
[18] |
Levine JM, Vilà M, D’Antonio CM, Dukes JS, Grigulis K, Lavorel S (2003) Mechanisms underlying the impacts of exotic plant invasions. Proceedings of the Royal Society of London Series B: Biological Sciences, 270,775-781.
DOI URL PMID |
[19] | Liang WJ (梁文举), Zhang WM (张万民), Li WG (李维光), Duan YX (段玉玺) (2001) Effect of chemical fertilizer on nematode community composition and diversity in the Black Soil Region. Biodiversity Science (生物多样性), 9,237-240. (in Chinese with English abstract) |
[20] | Li B (李博), Ma KP (马克平) (2010) Biological invasions: opportunities and challenges facing Chinese ecologists in the era of translational ecology. Biodiversity Science (生物多样性), 18,529-532. (in Chinese) |
[21] | Li Q (李琪), Liang WJ (梁文举), Jiang Y (姜勇) (2007) Present situation and prospect of soil nematode diversity in farmland ecosystems. Biodiversity Science (生物多样性), 15,134-141. (in Chinese with English abstract) |
[22] | Li YJ (李玉娟), Wu JH (吴纪华), Chen HL (陈慧丽), Chen JK (陈家宽) (2005) Nematodes as bioindicator of soil health: methods and applications. Chinese Journal of Applied Ecology (应用生态学报), 16,1541-1546. (in Chinese with English abstract) |
[23] | Lu JZ (陆建忠), Qiu W (裘伟), Chen JK (陈家宽), Li B (李博) (2005) Impact of invasive species on soil properties: Canadian goldenrod ( Solidago canadensis) as a case study . Biodiversity Science (生物多样性), 13,347-356. (in Chinese with English abstract) |
[24] | Porazinska DL, Bardgett RD, Blaauw MB, Hunt HW, Parsons AN, Seastedt TR, Wall DH (2003) Relationships at the aboveground-belowground interface: plants, soil biota, and soil processes. Ecological Monographs, 73,377-395. |
[25] |
Porazinska DL, Pratt PD, Giblin-Davis RM (2007) Consequences of Melaleuca quinquenervia invasion on soil nematodes in the Florida Everglades . Journal of Nematology, 39,305-312.
URL PMID |
[26] | Posey MH, Alphin TD, Meyer DL, Johnson JM (2003) Benthic communities of common reed Phragmites australis and marsh cordgrass Spartina alterniflora marshes in Chesapeake Bay. Marine Ecology Progress Series, 261,51-61. |
[27] | Shen LH (沈荔花), Guo QX (郭琼霞), Lin WX (林文雄), Chen Y (陈颖), Huang Z (黄振) (2007) Impacts of invasive alien weed Solidago canadensis L. on microbial population in the root soil . Chinese Agricultural Science Bulletin (中国农学通报), 23(4),323-327. (in Chinese with English abstract) |
[28] | van der Putten WH, Yeates GW, Duyts H, Reis CS, Karssen G (2005) Invasive plants and their escape from root herbivory: a worldwide comparison of the root-feeding nematode communities of the dune grass Ammophila arenaria in natural and introduced ranges . Biological Invasions, 7,733-746. |
[29] | Wang LC (王立成), Chu JJ (褚建君) (2007) Species association between Solidago canadensis and other plants . Journal of Shanghai Jiaotong University (Agricultural Science) (上海交通大学学报(农业科学版)), 25,115-119. (in Chinese with English abstract) |
[30] |
Wardle DA, Bardgett RD, Klironomos JN, Setälä H, van der Putten WH, Wall DH (2004) Ecological linkages between aboveground and belowground biota. Science, 304,1629-1633.
URL PMID |
[31] | Wolfe BE, Klironomos JN (2005) Breaking new ground: soil communities and exotic plant invasion. BioScience, 55,477-487. |
[32] | Xing L (邢璐) (2009) Alien species invasion and some problems in the ecological security. Legal System and Society (法制与社会), (9),351-352. (in Chinese) |
[33] | Yang RY (杨如意), Zan ST (昝树婷), Tang JJ (唐建军), Chen X (陈欣) (2011) Invasion mechanisms of Solidago canadensis L.: a review . Acta Ecologica Sinica (生态学报), 31,1185-1194. (in Chinese with English abstract) |
[34] |
Yeates GW, Bongers T, De Goede RGM, Freckman DW, Georgieva SS (1993) Feeding habitats in soil nematode families and genera—an outline for soil ecologists. Journal of Nematology, 25,315-331.
URL PMID |
[35] | Yeates GW, Bongers T (1999) Nematode diversity in agroecosystems. Agriculture, Ecosystems & Environment, 74,113-135. |
[36] | Yeates GW, Williams PA (2001) Influence of three invasive weeds and site factors on soil microfauna in New Zealand. Pedobiologia, 45,367-383. |
[37] | Yeates GW (2003) Nematodes as soil indicators: functional and biodiversity aspects. Biology and Fertility of Soils, 37,199-210. |
[38] | Yin LP (印丽萍), Tan YB (谭永彬), Shen GH (沈国辉), Yao HM (姚红梅) (2004) Research advances of Solidago canadensis L. Weed Science (杂草科学), (4),8-11. (in Chinese) |
[39] | Zhang GH (张桂花), Peng SL (彭少麟), Li GY (李光义), Li QF (李勤奋) (2009) Recent advances in the interaction between invasive plants and belowground ecosystem. Chinese Agricultural Science Bulletin (中国农学通报), 25,246-251. (in Chinese with English abstract) |
[1] | 崔玉进, 李婉莹, 周青青, 赵恒, 吴芳, 员瑗. 北京地区油松与大叶黄杨叶际表生真菌多样性及群落组成[J]. 生物多样性, 2024, 32(7): 23498-. |
[2] | 孙怡欣, 侯春雨, 周磊, 魏雪, 马金豪, 薛娟, 李小涵, 吴鹏飞. 青藏高原盆栽一年生和多年生豆科牧草对土壤线虫群落的影响[J]. 生物多样性, 2024, 32(7): 24040-. |
[3] | 王艳丽, 张英, 戚春林, 张昌达, 史佑海, 杜彦君, 丁琼. 海南热带雨林国家公园生物多样性热点与保护空缺区域识别: 基于大型真菌与植物视角[J]. 生物多样性, 2024, 32(7): 24081-. |
[4] | 顾燚芸, 薛嘉祈, 高金会, 谢心仪, 韦铭, 雷进宇, 闻丞. 一种基于公众科学数据的区域性鸟类多样性评价方法[J]. 生物多样性, 2024, 32(7): 24080-. |
[5] | 马骅, 李常青, 余品锋, 陈杰, 贺天耀, 王可洪. 澎溪河消落带大型土壤动物群落分布格局及其影响因素[J]. 生物多样性, 2024, 32(7): 24117-. |
[6] | 白雪, 李正飞, 刘洋, 张君倩, 张多鹏, 罗鑫, 杨佳莉, 杜丽娜, 蒋玄空, 武瑞文, 谢志才. 西江流域大型底栖无脊椎动物物种多样性及维持机制[J]. 生物多样性, 2024, 32(7): 23499-. |
[7] | 张作鹏, 要晨阳, 吴玲, 罗遵兰, 孙光, 郭宗勇, 李晓思, 林峰, 陈小勇. 怒江云南段鱼类多样性现状与威胁因子[J]. 生物多样性, 2024, 32(7): 24076-. |
[8] | 许佳, 崔小娟, 张翼飞, 吴昌, 孙远东. 南岭地区鱼类多样性及其地理分布[J]. 生物多样性, 2024, 32(7): 23482-. |
[9] | 时永强, 栾青杉, 单秀娟, 韦超, 赵永松, 孙策策, 金显仕. 长岛南部海域浮游动物多样性周年变化[J]. 生物多样性, 2024, 32(7): 23428-. |
[10] | 宋芬, 周芸芸, 黄太福, 杨存存, 于桂清, 田书荣, 向左甫. 基于红外相机技术的林麝行为PAE编码与多样性[J]. 生物多样性, 2024, 32(6): 24042-. |
[11] | 王腾, 李纯厚, 王广华, 赵金发, 石娟, 谢宏宇, 刘永, 刘玉. 西沙群岛七连屿珊瑚礁鱼类的物种组成与演替[J]. 生物多样性, 2024, 32(6): 23481-. |
[12] | 田瑜, 李俊生. 《昆明-蒙特利尔全球生物多样性框架》“3030”目标的内涵及实现路径分析[J]. 生物多样性, 2024, 32(6): 24086-. |
[13] | 姜熠辉, 刘岳, 曾旭, 林喆滢, 王楠, 彭吉豪, 曹玲, 曾聪. 东海六个国家级海洋保护区鱼类多样性和连通性[J]. 生物多样性, 2024, 32(6): 24128-. |
[14] | 连佳丽, 陈婧, 杨雪琴, 赵莹, 罗叙, 韩翠, 赵雅欣, 李建平. 荒漠草原植物多样性和微生物多样性对降水变化的响应[J]. 生物多样性, 2024, 32(6): 24044-. |
[15] | 赵富伟, 李颖硕, 陈慧. 新时期我国生物多样性法制建设思考[J]. 生物多样性, 2024, 32(5): 24027-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn