生物多样性 ›› 2010, Vol. 18 ›› Issue (5): 509-515.DOI: 10.3724/SP.J.1003.2010.509

• 研究报告 • 上一篇    下一篇

利用SRAP分析核盘菌遗传多样性

陈碧云1, 胡琼1, Christina Dixelius2, 李国庆3, 伍晓明1,*()   

  1. 1 中国农业科学院油料作物研究所, 农业部油料作物生物学重点开放实验室, 武汉 430062
    3 华中农业大学, 武汉 430070
  • 收稿日期:2010-02-25 接受日期:2010-07-27 出版日期:2010-09-20 发布日期:2010-09-20
  • 通讯作者: 伍晓明
  • 作者简介:* E-mail: wuxm@oilcrops.cn
  • 基金资助:
    863项目(2006AA10Z1E4);SIDA项目“抗病和抗虫油菜的遗传改良”和农业部油料作物生物学重点开放实验室开放课题(200503)

Genetic diversity in Sclerotinia sclerotiorum assessed with SRAP markers

Biyun Chen1, Qiong Hu1, Christina Dixelius2, Guoqing Li3, Xiaoming Wu1,*()   

  1. 1 Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Wuhan 430062
    2 Swedish University of Agricultural Sciences, Box 7080, 75007 Uppsala, Sweden
  • Received:2010-02-25 Accepted:2010-07-27 Online:2010-09-20 Published:2010-09-20
  • Contact: Xiaoming Wu

摘要:

核盘菌(Sclerotinia sclerotiorum)是危害油菜等多种经济作物的重要病原真菌。研究不同地区、相同或不同寄主核盘菌的遗传多样性对了解核盘菌的遗传演化过程和指导病害防控具有重要意义。我们采用序列相关扩增多态性(sequence-related amplified polymorphism, SRAP)标记对不同地理来源、不同寄主来源的76个核盘菌菌株的遗传多样性进行了分析。7对SRAP引物共获得260个位点, 其中114个为多态位点, 占43.85%。UPGMA聚类结果显示, 在相似性系数为0.64时, 76个核盘菌菌株分为4个组, 每组包含的菌株数分别为54、18、2和2。聚类及主成分分析结果显示, 来源于春油菜生态区和冬油菜生态区油菜上的核盘菌菌株可以明显分为两簇, 而油菜、大豆、莴苣等不同寄主植物上的核盘菌菌株没有明显的遗传分化。分子变异分析(AMOVA)结果显示, 不同地理来源、不同油菜生态区和不同寄主来源的核盘菌群体内的变异率分别为75.2%、81.2%和97.6%, 均达到极显著水平(P<0.001); 不同地理来源和不同油菜生态区的核盘菌群体间的变异率分别为24.8%和18.8%, 也达到极显著水平(P<0.001); 不同寄主来源的核盘菌群体间的变异率仅为2.4%, 变异不显著(P = 0.8673)。研究结果表明, 来源于春油菜生态区的核盘菌的遗传多样性高于冬油菜生态区。

关键词: Sclerotinia sclerotiorum, 油菜, SRAP标记, 遗传变异, 遗传分化

Abstract

Assessing the genetic diversity of Sclerotinia sclerotiorum isolates from different eco-geographi- cal regions and host plants is crucially important for understanding the evolution of this fungal pathogen and its control. We detected DNA polymorphism of 76 S. sclerotiorum isolates from different regions and host plants using sequence-related amplified polymorphism (SRAP) markers. A total of 260 scorable fragments were identified with seven SRAP primer combinations; among them 114 were polymorphic loci (43.85%). UPMGA (Unweighted Pair Group Method with Arithmetic Mean) indicated that the dendrogram consisted of four groups, which included 54, 18, 2, and 2 isolates, respectively, when the genetic similarity coefficient was 0.64. Little genetic difference was identified among the isolates from different host species by cluster and principal component analyses. AMOVA (Analysis of Molecular Variance) revealed that the percentage of variation among populations differed by geographical region (24.8%, P<0.001) and by ecological region (18.8%, P<0.001), but variation among populations of different host plants was not different than expected at random (2.4%, P = 0.8673). One of our most significant results was that S. sclerotiorum isolates on rapeseed plants from winter and spring ecological regions can be divided into two clusters, and that genetic diversity in isolates of spring rapeseed ecological regions was higher than that of winter rapeseed ecological regions.

Key words: Sclerotinia sclerotiorum, rape, SRAP markers, genetic variation, genetic differentiation