生物多样性 ›› 2010, Vol. 18 ›› Issue (3): 241-250. DOI: 10.3724/SP.J.1003.2010.241
张根1, 席贻龙1,*(), 薛颖昊1, 胡忻2, 项贤领1, 温新利1
收稿日期:
2010-02-02
接受日期:
2010-05-11
出版日期:
2010-05-20
发布日期:
2012-02-08
通讯作者:
席贻龙
作者简介:
E-mail: ylxi1965@yahoo.com.cn基金资助:
Gen Zhang1, Yilong Xi1,*(), Yinghao Xue1, Xin Hu2, Xianling Xiang1, Xinli Wen1
Received:
2010-02-02
Accepted:
2010-05-11
Online:
2010-05-20
Published:
2012-02-08
Contact:
Yilong Xi
摘要:
本文通过rDNA ITS序列测定和分析, 比较研究了粉煤灰污染水体(灰湖)与未污染水体(凤鸣湖和汀棠湖)萼花臂尾轮虫(Brachionus calyciflorus)的种群遗传多样性。结果表明, 灰湖萼花臂尾轮虫仅有1个姐妹种, 而两对照湖泊均存在2个姐妹种, 粉煤灰污染使萼花臂尾轮虫种复合体内姐妹种数量减少。就三个湖泊共有的姐妹种I而言, 灰湖轮虫种群单倍型多样性最低(h= 0.9516), 核苷酸多样性(π = 0.0066)低于汀棠湖(π = 0.0073)却高于凤鸣湖种群(π = 0.0052), 粉煤灰污染对萼花臂尾轮虫种群遗传多样性表现出一定的破坏作用; 凤鸣湖轮虫种群核苷酸多样性最低, 可能是由于水体中晶囊轮虫(Asplanchna)和桡足类动物捕食压力较高以及周围农田污染的联合作用造成的。三湖泊间, 仅汀棠湖与凤鸣湖轮虫种群间基因交流值较低(Nm = 1.95), 种群分化指数较高(Fst = 0.11358); 而灰湖与汀棠湖以及灰湖与凤鸣湖轮虫种群间基因交流水平较高(Nm均大于4), 种群分化指数较低(Fst分别为0.03535和0.00276)。AMOVA分析显示汀棠湖与凤鸣湖轮虫种群间变异所占比例较高, 为12.87%; 而灰湖与汀棠湖以及灰湖与凤鸣湖轮虫种群间变异所占比例较低, 分别为3.78%和2.78%。粉煤灰污染水体与未污染水体萼花臂尾轮虫种群间保持较高水平的基因交流, 种群分化不明显。
张根, 席贻龙, 薛颖昊, 胡忻, 项贤领, 温新利 (2010) 基于rDNA ITS序列探讨粉煤灰污染对萼花臂尾轮虫种群遗传多样性的影响. 生物多样性, 18, 241-250. DOI: 10.3724/SP.J.1003.2010.241.
Gen Zhang, Yilong Xi, Yinghao Xue, Xin Hu, Xianling Xiang, Xinli Wen (2010) Effects of coal ash pollution on the genetic diversity of Brachionus calyciflorus based on rDNA ITS sequences. Biodiversity Science, 18, 241-250. DOI: 10.3724/SP.J.1003.2010.241.
指标 Indexes | 灰湖 Lake Hui | 凤鸣湖 Lake Fengming | 汀棠湖 Lake Tingtang |
---|---|---|---|
温度 Temperature (℃) | 22 | 22.3 | 25 |
溶解氧 Dissolved oxygen (mg/L) | 10.24 | 9.26 | 7.5 |
pH | 9.82 | 8.5 | 7.82 |
可溶性总氮 Total dissolved nitrogen (mg/L) | 0.31 | 1.05 | 0.8 |
可溶性总磷 Total dissolved phosphate (mg/L) | 0.078 | 0.06 | 0.015 |
氨氮 Ammonia nitrogen (mg/L) | 3.25 | 1.47 | 1.89 |
叶绿素a Chlorophyll a (μg/L) | 8.19 | 36.58 | 32.76 |
表1 三湖泊水体理化指标
Table 1 Physical and chemical indexes in the three sampling lakes
指标 Indexes | 灰湖 Lake Hui | 凤鸣湖 Lake Fengming | 汀棠湖 Lake Tingtang |
---|---|---|---|
温度 Temperature (℃) | 22 | 22.3 | 25 |
溶解氧 Dissolved oxygen (mg/L) | 10.24 | 9.26 | 7.5 |
pH | 9.82 | 8.5 | 7.82 |
可溶性总氮 Total dissolved nitrogen (mg/L) | 0.31 | 1.05 | 0.8 |
可溶性总磷 Total dissolved phosphate (mg/L) | 0.078 | 0.06 | 0.015 |
氨氮 Ammonia nitrogen (mg/L) | 3.25 | 1.47 | 1.89 |
叶绿素a Chlorophyll a (μg/L) | 8.19 | 36.58 | 32.76 |
元素 Elements | 波长 Wave length (nm) | 检出限 Detection limit | 地表水标准限值 Limited values in surface water quality standard | 水质检测结果 Test results for water quality | ||
---|---|---|---|---|---|---|
灰湖 Lake Hui | 汀棠湖 Lake Tingtang | 凤鸣湖 Lake Fengming | ||||
Al (mg/L) | 396.153 | 0.0246 | - | 0.375 | BDL | 0.033 |
As (mg/L) | 193.696 | 0.1188 | 0.1 | 0.212* | BDL | BDL |
B (mg/L) | 249.677 | 0.0144 | 0.5 | 2.088* | 0.089 | 0.091 |
Ba (mg/L) | 455.403 | 0.0096 | 0.7 | 0.029 | 0.062 | 0.080 |
Be (mg/L) | 234.861 | 0.0000 | 0.002 | BDL | BDL | BDL |
Bi (mg/L) | 223.061 | 0.0225 | - | BDL | BDL | BDL |
Ca (mg/L) | 317.933 | 0.1335 | - | 68.560 | 31.120 | 41.010 |
Cd (mg/L) | 226.502 | 0.0018 | 0.01 | 0.002 | BDL | BDL |
Co (mg/L) | 228.616 | 0.0027 | 1.0 | BDL | BDL | BDL |
Cr (mg/L) | 267.716 | 0.0012 | Cr6+≤0.1 | 0.055 | BDL | BDL |
Cu (mg/L) | 324.752 | 0.0009 | 1 | 0.001 | 0.002 | 0.002 |
Fe (mg/L) | 259.939 | 0.0174 | 0.3 | BDL | BDL | BDL |
K (mg/L) | 766.490 | 0.0612 | - | 10.78 | 6.866 | 7.139 |
Li (mg/L) | 670.784 | 0.0015 | - | 0.404 | 0.008 | 0.004 |
Mg (mg/L) | 279.077 | 0.0120 | - | 0.769 | 9.827 | 11.140 |
Mn (mg/L) | 257.610 | 0.0003 | 0.1 | BDL | 0.001 | 0.005 |
Mo (mg/L) | 202.031 | 0.0042 | 0.07 | 0.346* | 0.007 | 0.013 |
Na (mg/L) | 589.592 | 0.0120 | - | 40.180 | 28.66 | 31.740 |
Ni (mg/L) | 231.604 | 0.0021 | 0.02 | BDL | BDL | BDL |
Pb (mg/L) | 220.353 | 0.0276 | 0.1 | BDL | BDL | 0.034 |
Pd (mg/L) | 340.458 | 0.0039 | - | BDL | BDL | BDL |
Sb (mg/L) | 217.582 | 0.0033 | 0.005 | 0.026* | 0.031* | 0.023* |
Se (mg/L) | 196.026 | 0.0384 | 0.02 | 0.164* | BDL | BDL |
Si (mg/L) | 251.611 | 0.0084 | - | 2.293 | 1.419 | 0.985 |
Sn (mg/L) | 283.998 | 0.0279 | - | 0.069 | BDL | BDL |
Sr (mg/L) | 460.733 | 0.0183 | - | 0.888 | 0.298 | 0.276 |
Ti (mg/L) | 334.940 | 0.0069 | 0.1 | BDL | BDL | BDL |
V (mg/L) | 292.402 | 0.0201 | 0.05 | 0.278* | BDL | BDL |
Zn (mg/L) | 213.857 | 0.0018 | 2 | 0.005 | 0.003 | 0.005 |
Hg (μg/L) | - | 0.0080 | 1 | 0.121 | 0.144 | 0.113 |
表2 三湖泊水体中化学元素含量
Table 2 Concentrations of chemical elements in the three sampling lakes
元素 Elements | 波长 Wave length (nm) | 检出限 Detection limit | 地表水标准限值 Limited values in surface water quality standard | 水质检测结果 Test results for water quality | ||
---|---|---|---|---|---|---|
灰湖 Lake Hui | 汀棠湖 Lake Tingtang | 凤鸣湖 Lake Fengming | ||||
Al (mg/L) | 396.153 | 0.0246 | - | 0.375 | BDL | 0.033 |
As (mg/L) | 193.696 | 0.1188 | 0.1 | 0.212* | BDL | BDL |
B (mg/L) | 249.677 | 0.0144 | 0.5 | 2.088* | 0.089 | 0.091 |
Ba (mg/L) | 455.403 | 0.0096 | 0.7 | 0.029 | 0.062 | 0.080 |
Be (mg/L) | 234.861 | 0.0000 | 0.002 | BDL | BDL | BDL |
Bi (mg/L) | 223.061 | 0.0225 | - | BDL | BDL | BDL |
Ca (mg/L) | 317.933 | 0.1335 | - | 68.560 | 31.120 | 41.010 |
Cd (mg/L) | 226.502 | 0.0018 | 0.01 | 0.002 | BDL | BDL |
Co (mg/L) | 228.616 | 0.0027 | 1.0 | BDL | BDL | BDL |
Cr (mg/L) | 267.716 | 0.0012 | Cr6+≤0.1 | 0.055 | BDL | BDL |
Cu (mg/L) | 324.752 | 0.0009 | 1 | 0.001 | 0.002 | 0.002 |
Fe (mg/L) | 259.939 | 0.0174 | 0.3 | BDL | BDL | BDL |
K (mg/L) | 766.490 | 0.0612 | - | 10.78 | 6.866 | 7.139 |
Li (mg/L) | 670.784 | 0.0015 | - | 0.404 | 0.008 | 0.004 |
Mg (mg/L) | 279.077 | 0.0120 | - | 0.769 | 9.827 | 11.140 |
Mn (mg/L) | 257.610 | 0.0003 | 0.1 | BDL | 0.001 | 0.005 |
Mo (mg/L) | 202.031 | 0.0042 | 0.07 | 0.346* | 0.007 | 0.013 |
Na (mg/L) | 589.592 | 0.0120 | - | 40.180 | 28.66 | 31.740 |
Ni (mg/L) | 231.604 | 0.0021 | 0.02 | BDL | BDL | BDL |
Pb (mg/L) | 220.353 | 0.0276 | 0.1 | BDL | BDL | 0.034 |
Pd (mg/L) | 340.458 | 0.0039 | - | BDL | BDL | BDL |
Sb (mg/L) | 217.582 | 0.0033 | 0.005 | 0.026* | 0.031* | 0.023* |
Se (mg/L) | 196.026 | 0.0384 | 0.02 | 0.164* | BDL | BDL |
Si (mg/L) | 251.611 | 0.0084 | - | 2.293 | 1.419 | 0.985 |
Sn (mg/L) | 283.998 | 0.0279 | - | 0.069 | BDL | BDL |
Sr (mg/L) | 460.733 | 0.0183 | - | 0.888 | 0.298 | 0.276 |
Ti (mg/L) | 334.940 | 0.0069 | 0.1 | BDL | BDL | BDL |
V (mg/L) | 292.402 | 0.0201 | 0.05 | 0.278* | BDL | BDL |
Zn (mg/L) | 213.857 | 0.0018 | 2 | 0.005 | 0.003 | 0.005 |
Hg (μg/L) | - | 0.0080 | 1 | 0.121 | 0.144 | 0.113 |
图2 基于ITS序列构建ML树。斜线分开的数值依次表示ML、MP和NJ树分支置信度; H表示来自灰湖的克隆; F表示来自凤鸣湖的克隆; T表示来自汀棠湖的克隆。
Fig. 2 ML tree based on the ITS sequences. Values isolated by slashes represent ML, MP, and NJ bootstrap support, respectively; H means the clone collected from Lake Hui; F means the clone collected from Lake Fengming; T means the clone collected from Lake Tingtang.
参数 Parameters | 灰湖 Lake Hui | 凤鸣湖 Lake Fengming | 汀棠湖 Lake Tingtang |
---|---|---|---|
样本量 Sample size | 38 | 27 | 9 |
单倍型总数 No. of haplotype | 28 | 26 | 9 |
单倍型多样性 Haplotype diversity | 0.9516 | 0.9943 | 1.0000 |
核苷酸多样性 Nucleotide diversity | 0.0066 | 0.0052 | 0.0073 |
表3 三个湖泊萼花臂尾轮虫姐妹种I种群遗传多样性
Table 3 Genetic diversities of sibling species I populations fromBrachionus calyciflorus species complex in the three lakes
参数 Parameters | 灰湖 Lake Hui | 凤鸣湖 Lake Fengming | 汀棠湖 Lake Tingtang |
---|---|---|---|
样本量 Sample size | 38 | 27 | 9 |
单倍型总数 No. of haplotype | 28 | 26 | 9 |
单倍型多样性 Haplotype diversity | 0.9516 | 0.9943 | 1.0000 |
核苷酸多样性 Nucleotide diversity | 0.0066 | 0.0052 | 0.0073 |
凤鸣湖 Lake Fengming | 汀棠湖 Lake Tingtang | 灰湖 Lake Hui | |
---|---|---|---|
凤鸣湖 Lake Fengming | 0.0052 | ||
汀棠湖 Lake Tingtang | 0.0071 | 0.0073 | |
灰湖 Lake Hui | 0.0061 | 0.0073 | 0.0067 |
表4 三个湖泊萼花臂尾轮虫姐妹种I种群的遗传距离
Table 4 Genetic distances among sibling species I populations from Brachionus calyciflorus complex in three lakes
凤鸣湖 Lake Fengming | 汀棠湖 Lake Tingtang | 灰湖 Lake Hui | |
---|---|---|---|
凤鸣湖 Lake Fengming | 0.0052 | ||
汀棠湖 Lake Tingtang | 0.0071 | 0.0073 | |
灰湖 Lake Hui | 0.0061 | 0.0073 | 0.0067 |
凤鸣湖 Lake Fengming | 灰湖 Lake Hui | 汀棠湖 Lake Tingtang | |
---|---|---|---|
凤鸣湖 Lake Fengming | 0.00276 | 0.11358 | |
灰湖 Lake Hui | 7.63 | 0.03535 | |
汀棠湖 Lake Tingtang | 1.95 | 6.82 |
表5 三个湖泊萼花臂尾轮虫姐妹种I种群间基因交流(Nm, 下三角)与种群分化指数(Fst, 上三角)
Table 5 Matrix of pairwise Nm (below diagonal) and Fst (above diagonal) among sibling species I populations from Brachionus calyciflorus complex in three lakes
凤鸣湖 Lake Fengming | 灰湖 Lake Hui | 汀棠湖 Lake Tingtang | |
---|---|---|---|
凤鸣湖 Lake Fengming | 0.00276 | 0.11358 | |
灰湖 Lake Hui | 7.63 | 0.03535 | |
汀棠湖 Lake Tingtang | 1.95 | 6.82 |
[1] | Adriano DC, Page AL, Elseewi AA, Chang AC, Straughan I (1980) Utilization and disposal of fly ash and other coal residues in terrestrial ecosystems: a review. Journal of Environmental Quality, 9, 333-344. |
[2] |
Adriano DC, Weber JT (2001) Influence of fly ash on soil physical properties and turfgrass establishment. Journal of Environmental Quality, 30, 596-601.
DOI URL PMID |
[3] | Alberts JJ, Newman MC, Evans DW (1985) Seasonal variations of trace elements in dissolved and suspended loads for coal ash ponds and pond effluents. Water, Air, and Soil Pollution, 26, 111-128. |
[4] |
Baba A, Gurdal G, Sengunalp F, Ozay O (2008) Effects of leachant temperature and pH on leachability of metals from fly ash, a case study: Can thermal power plant, province of Canakkale, Turkey. Environmental Monitoring and Assessment, 139, 287-298.
URL PMID |
[5] |
Bickham JW, Sandhu S, Hebert PDN, Chikhi L, Athwal R (2000) Effects of chemical contaminants on genetic diversity in natural populations: implications for biomonitoring and ecotoxicology. Mutation Research, 463, 33-51.
DOI URL PMID |
[6] | Brieger G, Wells JR, Hunter RD (1992) Plant and animal species composition and heavy metal content in fly ash ecosystems. Water, Air, and Soil Pollution, 63, 87-103. |
[7] | Burton WH, Pinkney AE (1994) Yellow perch larval survival in the Zekiah Swamp watershed (Wicomico River, Maryland) relative to the potential effects of a coal ash storage facility. Water, Air, and Soil Pollution, 72, 235-249. |
[8] |
Chakraborty R, Mukherjee AK, Mukherjee A (2009) Evaluation of genotoxicity of coal fly ash in Allium cepa root cells by combining comet assay with the Allium test. Environmental Monitoring and Assessment, 153, 351-357.
DOI URL PMID |
[9] | Cheng XF (程新峰), Xi YL (席贻龙), Li HB (李化炳) (2008) Seasonal changes in the genetic structure of a Brachionus calyciflorus population in Lake Liantang based on ITS sequences. Acta Zoologica Sinica (动物学报), 54, 245-255. (in Chinese with English abstract) |
[10] | Chung PP, Hyne RV, Mann RM, Ballard JWO (2008) Genetic and life-history trait variation of the amphipod Melita plumulosa from polluted and unpolluted waterways in eastern Australia. Science of the Total Environment, 403, 222-229. |
[11] |
Coors A, Vanoverbeke J, Bie TD, De Meester L (2009) Land use, genetic diversity and toxicant tolerance in natural populations of Daphnia magna. Aquatic Toxicology, 95, 71-79.
URL PMID |
[12] | De Meester L (1996) Evolutionary potential and local genetic differentiation in a phenotypically plastic trait of a cyclical parthenogen, Daphnia magna. Evolution, 50, 1293-1298. |
[13] |
Derycke S, Hendrickx F, Backeljau T, D’Hondt S, Camphijn L, Vincx M, Moens T (2007) Effects of sublethal abiotic stressors on population growth and genetic diversity of Pellioditis marina (Nematoda) from the Westerschelde estuary. Aquatic Toxicology, 82, 110-119.
DOI URL PMID |
[14] | Fratini S, Zane L, Ragionieri L, Vannini M, Cannicci S (2008) Relationship between heavy metal accumulation and genetic variability decrease in the intertidal crab Pachygrapsus marmoratus (Decapoda; Grapsidae). Estuarine, Coastal and Shelf Science, 79, 679-686. |
[15] | Ge YL (葛艳丽), Lin GH (林恭华), Ci HX (慈海鑫), Zhang TZ (张同作), Tang LZ (唐利洲), Su JP (苏建平) (2009) Genetic diversity and differentiation of Ochotona curzoniae based on ISSR and Cyt b gene. Chinese Journal of Zoology (动物学杂志), 44 (4),34-40. (in Chinese with English abstract) |
[16] | Gilbert JJ (1963) Mictic female production in rotifer Brachionus calyciflorus. The Journal of Experimental Zoology, 153, 113-124. |
[17] | Gilbert JJ, Walsh E (2005) Brachionus calyciflorus is a species complex: mating behavior and genetic differentiation among four geographically isolated strains. Hydrobiologia, 546, 257-265. |
[18] | Gillespie RB, Guttman SI (1989) Effects of contaminants on the frequencies of allozymes in populations of the central stoneroller. Environmental Toxicology and Chemistry, 8, 309-317. |
[19] | Gillespie RB, Guttman SI (1993) Correlations between water quality and frequencies of allozyme genotypes in spotfin shiner ( Notropis spilopteris) populations. Environmental Pollution, 81, 147-150. |
[20] |
Havens KE, Heath RT (1989) Acid and aluminum effects on freshwater zooplankton: an in situ mesocosm study. Environmental Pollution, 62, 195-211.
URL PMID |
[21] |
Kim SJ, Rodriguez-Lanetty M, Suh JH, Song JI (2003) Emergent effects of heavy metal pollution at a population level: Littorina brevicula, a study case. Marine Pollution Bulletin, 46, 74-80.
DOI URL PMID |
[22] |
Knapen D, De Wolf H, Knaepkens G, Bervoets L, Eens M, Blust R, Verheyen E (2009) Historical metal pollution in natural gudgeon populations: inferences from allozyme, microsatellite and condition factor analysis. Aquatic Toxicology, 95, 17-26.
DOI URL PMID |
[23] |
Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Briefings in Bioinformatics, 5, 150-163.
DOI URL PMID |
[24] | Ley SH (黎尚豪), Chu W (朱蕙), Hsia IT (夏宜琤), Yu MJ (俞敏娟), Lin KE (林坤二), Liu KS (刘昆山), Lo CY (乐正亚), Chen YX (陈云霞) (1959) The mass culture of unicellular green algae. Acta Hydrobiologica Sinica (水生生物学集刊), 4, 462-472. (in Chinese with English abstract) |
[25] | Li HB (李化炳), Xi YL (席贻龙), Cheng XF (程新峰), Xiang XL (项贤领), Hu CB (胡存兵), Tao LX (陶李祥) (2008) Sympatric speciation in rotifers: evidence from molecular phylogenetic relationships and reproductive isolation among Brachionus calyciflorus clones. Acta Zoologica Sinica (动物学报), 54, 256-264. (in Chinese with English abstract) |
[26] | Li HB (李化炳), Xi YL (席贻龙), Cheng XF (程新峰) (2009) Comparative studies on life history characteristics of three sibling species in Brachionus calyciflorus species complex. Acta Ecologica Sinica (生态学报), 29, 581-588. (in Chinese with English abstract) |
[27] | Ma Q, Xi YL, Zhang JY, Xiang XL (2009) Differences in asexual and sexual reproduction among eight geographic populations of Brachionus calyciflorus (Rotifera) from China. Journal of Freshwater Ecology, 24, 273-278. |
[28] |
Maes GE, Raeymaekers JAM, Pampoulie C, Seynaeve A, Goemans G, Belpaire C, Volckaert FAM (2005) The catadromous European eel Anguilla anguilla (L.) as a model for freshwater evolutionary ecotoxicology: relationship between heavy metal bioaccumulation, condition and genetic variability. Aquatic Toxicology, 73, 99-114.
DOI URL PMID |
[29] |
Martins N, Bollinger C, Harper MR, Ribeiro R (2009) Effects of acid mine drainage on the genetic diversity and structure of a natural population of Daphnia longispina. Aquatic Toxicology, 92, 104-112.
DOI URL PMID |
[30] | Millar CL, Libby WJ (1991) Strategies for conserving clinal, Ccotypic, Ana disjunct population diversity in widespread species. In: Genetics and Conservation of Rare Plants (eds Fald DA, Holsinger KE),pp.149-170. Oxford University Press, New York. |
[31] |
Morgan AJ, Kille P, Sturzenbaum SR (2007) Microevolution and ecotoxicology of metals in invertebrates. Environmental Science and Technology, 41, 1085-1096.
DOI URL PMID |
[32] | Murdoch M, Hebert P (1994) Mitochondrial DNA diversity of brown bullhead from contaminated and relatively pristine sites in the Great Lakes. Environmental Toxicology and Chemistry, 13, 1281-1289. |
[33] | Nadig SG, Lee KL, Adams SM (1998) Evaluating alterations of genetic diversity in sunfish populations exposed to contaminants using RAPD assay. Aquatic Toxicology, 43, 163-178. |
[34] |
Nowak C, Vogt C, Pfenninger M, Schwenk K, Oehlmann J, Streit B, Oetken M (2009) Rapid genetic erosion in pollutant-exposed experimental chironomid populations. Environmental Pollution, 157, 881-886.
URL PMID |
[35] | Patarnello T, Guinez R, Battaglia B (1991) Effects of pollution on heterozygosity in the barnacle Balanus amphitrite (Cirripedia: Thoracica). Marine Ecology Progress Series, 70, 237-243. |
[36] |
Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics, 14, 817-818.
URL PMID |
[37] |
Preston BL, Snell TW (2001) Full life-cycle toxicity assessment using rotifer resting egg production: implications for ecological risk assessment. Environmental Pollution, 114, 399-406.
DOI URL PMID |
[38] |
Reash RJ (2004) Dissolved and total copper in a coal ash effluent and receiving stream: assessment of in situ biological effects. Environmental Monitoring and Assessment, 96, 203-220.
DOI URL PMID |
[39] | Reijnders L (2005) Disposal uses and treatments of combustion ashes, a review. Resources, Conservation and Recycling, 43, 313-336. |
[40] | Reznick DN, Ghalambor CK (2001) The population ecology of contemporary adaptations: what empirical studies reveal about the conditions that promote adaptive evolution. Genetica, 112/113, 183-198. |
[41] | Ríos-Arana JV, Walsh EJ, Ortiz M (2007) Interaction effects of multi-metal solutions (As, Cr, Cu, Ni, Pb and Zn) on life history traits in the rotifer Plationus patulus. Journal of Environmental Science and Health, Part A, 42, 1473-1481. |
[42] |
Ross K, Cooper N, Bidwell JR, Elder J (2002) Genetic diversity and metal tolerance of two marine species: a comparison between populations from contaminated and reference sites. Marine Pollution Bulletin, 44, 671-679.
DOI URL PMID |
[43] |
Rowe CL, Hopkins WA, Congdon JD (2002) Ecotoxicological implications of aquatic disposal of coal combustion residues in the United States: a review. Environmental Monitoring and Assessment, 80, 207-276.
DOI URL PMID |
[44] |
Rozas J, Sánchez-DelBarrio JC, Messeguer X, Rozas R (2006) DNAsp: DNA polymorphism analyses by the coalescent and other methods. Bioinformatics, 19, 2496-2497.
URL PMID |
[45] | Singh H, Kolay PK (2009) Analysis of coal ash for trace elements and their geo-environmental implications. Water, Air, and Soil Pollution, 198, 87-94. |
[46] | Smeda A, Zyrnicki W (2002) Application of sequential extraction and the ICP-AES method for study of the partitioning of metals in fly ashes. Microchemical Journal, 72, 9-16. |
[47] |
Spitze K (1991) Chaoborus predation and life-history evolution in Daphnia pulex: temporal pattern of population diversity, fitness, and mean life history. Evolution, 45, 82-92.
URL PMID |
[48] | Steenari BM, Schelander S, Lindqvist O (1999) Chemical and leaching characteristics of ash from combustion of coal, peat and wood in a 12 MW CFB-a comparative study. Fuel, 78, 249-258. |
[49] | Swofford DL (2002) PAUP*. Phylogenetic Analysis Using Parsimony (* and other Methods). Version 4b10. Sinauer Associates, Sunderland, Massachusetts, USA. |
[50] |
Tajima F (1983) Evolutionary relationship of DNA sequences infinite populations. Genetics, 105, 437-460.
URL PMID |
[51] | Theodorakis CW, Shugart LR (1997) Genetic ecotoxicology II: population genetic structure in mosquitofish exposed to radionuclides. Ecotoxicology, 6, 335-354. |
[52] | Theodorakis CW, Bickham J, Elbl T, Shugart L, Chesser R (1998) Genetics of radionuclide-contaminated mosquitofish populations and homology between Gambusia affinis and G. holbrooki. Environmental Toxicology and Chemistry, 17, 1992-1998. |
[53] |
Thompson JD, Gibson TJ, Plewwniak F, Plewniak F, Jeanmougin F, Higgins DW (1997) The Clustal-X windows interface: flexible strategies for multiple sequences alignment aided by quality analysis tools. Nucleic Acids Research, 25, 4876-4882.
DOI URL PMID |
[54] | Ugurlu A (2004) Leaching characteristics of fly ash. Environmental Geology, 46, 890-895. |
[55] |
Ungherese G, Mengoni A, Somigli S, Baroni D, Focardi S, Ugolini A (2009) Relationship between heavy metals pollution and genetic diversity in Mediterranean populations of the sandhopper Talitrus saltator (Montagu)(Crustacea, Amphipoda). Environmental Pollution, 158, 1638-1643.
URL PMID |
[56] | van Straalen N, Timmermans M (2002) Genetic variation in toxicant-stressed populations: an evaluation of the “genetic erosion” hypothesis. Human and Ecological Risk Assessment, 998, 983-1002. |
[57] | Walia A, Mehra NK (1998a) A seasonal assessment of the impact of coal fly ash disposal on the river Yamuna, Delhi, I. Chemistry. Water, Air, and Soil Pollution, 103, 277-314. |
[58] | Walia A, Mehra NK (1998b) A seasonal assessment of the impact of coal fly ash disposal on the river Yamuna, Delhi, II. Biology. Water, Air, and Soil Pollution, 103, 315-339. |
[59] | Xi YL (席贻龙), Chen YQ (陈月琴), Zhuge Y (诸葛燕), Huang XF (黄祥飞) (2003) Sequence analysis of rDNA 18S-28S intergenic spacer regions from Brachionus calyciflorus, B. bidentata, B. diversicornis and B. angularis in Lake Donghu, China. Acta Hydrobiologica Sinica (水生生物学报), 27, 427-430. (in Chinese with English abstract) |
[60] | Xiang XL, Xi YL, Hu HY (2006) Study on the phylogenetic relationships of Brachionus based on rDNA ITS1 gene sequence. Acta Zoologica Sinica, 52, 1067-1074. |
[61] | Xiang XL, Xi YL, Wen XL, Zhang JY, Ma Q (2010) Spatial patterns of genetic differentiation in Brachionus calyciflorus species complex collected from East China in summer. Hydrobiologia, 638, 67-83. |
[62] | Yang B (杨博), Chen XY (陈小勇), Yang JX (杨君兴) (2008) Structure of the mitochondrial DNA control region and population genetic diversity analysis of Anabarilius grahami (Regan). Zoological Research (动物学研究), 29, 379-385. (in Chinese with English abstract) |
[63] | Zhang ZS (章宗涉), Huang XF (黄祥飞) (1991) Method for Study on Freshwater Plankton (淡水浮游生物研究方法). Science Press, Beijing. (in Chinese) |
[64] |
Zietkiewicz E, Rafalski A, Labuda D (1994) Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics, 20, 176-183.
DOI URL PMID |
[1] | 熊飞, 刘红艳, 翟东东, 段辛斌, 田辉伍, 陈大庆. 基于基因组重测序的长江上游瓦氏黄颡鱼群体遗传结构[J]. 生物多样性, 2023, 31(4): 22391-. |
[2] | 吴科毅, 阮文达, 周棣锋, 陈庆春, 张承云, 潘新园, 余上, 刘阳, 肖荣波. 基于音节聚类分析的被动声学监测技术及其在鸟类监测中的应用[J]. 生物多样性, 2023, 31(1): 22370-. |
[3] | 陶克涛, 白东义, 图格琴, 赵若阳, 安塔娜, 铁木齐尔·阿尔腾齐米克, 宝音德力格尔, 哈斯, 芒来, 韩海格. 基于基因组SNPs对东亚家马不同群体遗传多样性的评估[J]. 生物多样性, 2022, 30(5): 21031-. |
[4] | 刘厶瑶, 李柱, 柯欣, 孙丽娜, 吴龙华, 赵杰杰. 贵州省典型汞铊矿区周边农田土壤跳虫群落特征[J]. 生物多样性, 2022, 30(12): 22265-. |
[5] | 翁茁先, 黄佳琼, 张仕豪, 余锴纯, 钟福生, 黄勋和, 张彬. 利用线粒体COI基因揭示中国乌骨鸡遗传多样性和群体遗传结构[J]. 生物多样性, 2019, 27(6): 667-676. |
[6] | 于少帅, 林彩丽, 王圣洁, 张文鑫, 田国忠. 植原体tuf基因与其上游部分基因结构和相关基因启动子保守区域特征及活性分析[J]. 生物多样性, 2018, 26(7): 738-748. |
[7] | 刘润, 张朝晖, 申家琛, 王智慧. 岩溶洞穴苔藓群落特征及其对重金属污染的指示意义: 以贵州织金洞为例[J]. 生物多样性, 2018, 26(12): 1277-1288. |
[8] | 武星彤, 陈璐, 王敏求, 张原, 林雪莹, 李鑫玉, 周宏, 文亚峰. 丹霞梧桐群体遗传结构及其遗传分化[J]. 生物多样性, 2018, 26(11): 1168-1179. |
[9] | 刘青青, 董志军. 基于线粒体COI基因分析钩手水母的群体遗传结构[J]. 生物多样性, 2018, 26(11): 1204-1211. |
[10] | 刘若愚, 孙忠民, 姚建亭, 胡自民, 段德麟. 中国近海重要生态建群红藻真江蓠的群体遗传多样性[J]. 生物多样性, 2016, 24(7): 781-790. |
[11] | 于少帅, 徐启聪, 林彩丽, 王圣洁, 田国忠. 植原体遗传多样性研究现状与展望[J]. 生物多样性, 2016, 24(2): 205-215. |
[12] | 周蓉, 李佳琦, 李铀, 刘迺发, 房峰杰, 施丽敏, 王莹. 基于线粒体DNA的大石鸡种群遗传变异[J]. 生物多样性, 2012, 20(4): 451-459. |
[13] | 陈碧云, 胡琼, Christina Dixelius, 李国庆, 伍晓明. 利用SRAP分析核盘菌遗传多样性[J]. 生物多样性, 2010, 18(5): 509-515. |
[14] | 张俊红, 黄华宏, 童再康, 程龙军, 梁跃龙, 陈奕良. 光皮桦6个南方天然群体的遗传多样性[J]. 生物多样性, 2010, 18(3): 233-240. |
[15] | 傅洪拓, 乔慧, 姚建华, 龚永生, 吴滟, 蒋速飞, 熊贻伟. 基于SRAP分子标记的海南沼虾种群遗传多样性[J]. 生物多样性, 2010, 18(2): 145-149. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn