生物多样性 ›› 2026, Vol. 34 ›› Issue (1): 25398.  DOI: 10.17520/biods.2025398  cstr: 32101.14.biods.2025398

• 生态学数据分析方法专题 • 上一篇    

空间聚集度指数及其估计不确定性对聚集度–多度关系的影响

邢丁亮   

  1. 华东师范大学生态与环境科学学院,浙江天童森林生态系统国家野外科学观测研究站,上海 200241
  • 收稿日期:2025-10-09 修回日期:2025-12-15 接受日期:2025-12-30 出版日期:2026-01-20 发布日期:2026-01-21
  • 通讯作者: 邢丁亮
  • 基金资助:
    国家自然科学基金(32471623)

Influence of aggregation indices and estimation uncertainty on the aggregation–abundance relationship

Dingliang Xing   

  1. Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
  • Received:2025-10-09 Revised:2025-12-15 Accepted:2025-12-30 Online:2026-01-20 Published:2026-01-21
  • Contact: Dingliang Xing

摘要:

物种空间分布格局是群落生态学和宏生态学研究的核心问题之一。广泛用于度量空间聚集度的指标包括针对样方数据的负二项分布参数k,以及针对点格局数据的非参邻域密度指数(如Condit等(2000)提出的Ω和Wiegand等(2025)提出的kff),但这两类指数及对应的估计误差如何影响聚集度–多度关系尚不清楚。本文基于一个空间显式中性模型模拟的群落数据,计算了上述聚集度指数及其标准误,以分析这些指数及其估计误差如何影响聚集度与物种多度之间的关系。结果表明:(1)在空间聚集程度较高时,3种聚集度指数之间存在高度正相关。聚集程度较弱时,尽管估计误差增大,k仍能区分聚集度种间差异,而两个点格局指数则判别力不足。(2)不同指数的估计误差之间存在一定正相关,但相关性较弱。极大似然法给出的稀有种和弱聚集物种k值标准误较大,与模拟结果一致;相比之下,基于重采样方法的点格局指数标准误整体偏小。(3)聚集度–多度关系受所选指数及回归方法(是否加权)影响。对于1/k,加权回归能够稳定复现出中性理论所预测的幂律关系及幂指数(等于–1),不加权回归得到的幂指数较理论值更接近0,且在聚集程度较弱的群落中尤为明显。两种点格局指数与多度之间亦呈幂律关系,但幂指数随群落平均聚集程度而变化,聚集程度越弱幂指数越接近0。综上所述,忽略聚集度估计的不确定性会显著影响对聚集度–多度关系的推断,可能导致错误地拒绝中性零假设,增加I类统计错误的风险。两种基于点格局的指数与多度的关系能反映群落平均聚集程度的影响,但并不适用于检验中性与非中性群落构建机制。建议在分析样方数据时,采用基于极大似然估计的负二项分布k值及其标准误来度量物种聚集度,并将不确定性纳入后续分析。对于其他聚集度指数及其与多度之间的关系,需进一步发展基于中性理论的零假设。

关键词: 空间格局, 聚集度—多度关系, 负二项分布, 点格局分析, 中性理论

Abstract

Aim: Spatial distribution of species represents a core issue in population biology and macroecology. Commonly used metrics for quantifying species aggregation include the negative binomial distribution parameter k for quadrat data and neighborhood density indices (such as Ω proposed by Condit et al, 2000 and kff proposed by Wiegand et al, 2025) for point pattern data. However, how the choice of index and its estimation uncertainty jointly affect the inference of the aggregation–abundance relationship remains unclear. 

Methods: We use a spatially explicit neutral model to simulate community data, then computed the aforementioned aggregation indices along with their standard errors. Finally, we analyzed how the index selection and its estimation error influence the power-law relationship between aggregation and species abundance. 

Results: (1) The three aggregation indices are strongly correlated under high aggregation intensity. Under weak aggregation, however, k remains effective in discriminating interspecific differences in aggregation, whereas the two point-pattern indices lack such discriminative power. (2) Estimation errors of different indices are weakly positively correlated. The standard error of k for rare and weakly aggregated species estimated by maximum likelihood is large, consistent with simulation results. In contrast, standard errors of point pattern indices based on resampling methods are generally smaller. (3) The aggregation–abundance relationship varies depending on the chosen index and whether weighted regression is applied. For 1/k, weighted regression consistently recovers the theoretical exponent of –1 predicted by neutral theory, whereas unweighted regression yields shallower slopes, especially in communities with weak aggregation. The exponents for the two point-pattern indices vary with the mean aggregation intensity of the community. 

Main conclusions: Ignoring the uncertainty in aggregation estimates can significantly bias inferences of the aggregation–abundance relationship, potentially leading to the incorrect rejection of the neutral null hypothesis (i.e., an increased risk of Type I error). The relationships derived from the two point-pattern-based indices reflect mean community aggregation but are not suitable for directly testing neutral assembly mechanisms. We recommend using the maximum likelihood estimate of the negative binomial parameter k and its standard error to measure species aggregation from quadrat data and incorporating uncertainty into subsequent analyses. For other aggregation indices, there is a need to develop predictions of their relation with species abundance from theories such as the simple neutral case.

Key words: spatial pattern, aggregation-abundance relationship, negative binomial distribution, point pattern analysis, neutral theory