生物多样性 ›› 2022, Vol. 30 ›› Issue (5): 21332. DOI: 10.17520/biods.2021332
所属专题: 昆虫多样性与生态功能
付飞1, 魏慧玉2, 常育腾1, 王备新1, 陈凯1,*()
收稿日期:
2021-08-21
接受日期:
2022-01-08
出版日期:
2022-05-20
发布日期:
2022-01-10
通讯作者:
陈凯
作者简介:
* E-mail: kai.chen@njau.edu.cn基金资助:
Fei Fu1, Huiyu Wei2, Yuteng Chang1, Beixin Wang1, Kai Chen1,*()
Received:
2021-08-21
Accepted:
2022-01-08
Online:
2022-05-20
Published:
2022-01-10
Contact:
Kai Chen
摘要:
物种通过功能性状响应环境变化, 探究群落功能性状多样性的海拔格局是揭示生物多样性空间分布格局和形成机制的重要研究内容。气候变化和土地利用是影响溪流生物多样性变化及其群落构建的重要因素, 然而气候和土地利用沿海拔梯度如何影响水生昆虫功能性状垂直分布格局的系统研究仍旧比较缺乏。本文基于2016年和2018年在云南澜沧江中游1,000-3,000 m海拔共56个溪流样点的水生昆虫群落调查数据, 利用线性和二次回归模型探索并比较了生活史性状(化性、生活史快慢、成虫寿命)和生态学性状(营养习性、生活习性、温度偏好)的群落加权平均性状多样性指数沿海拔梯度的分布特征, 并通过随机森林模型解析流域尺度气候和土地利用变量对生活史和生态学性状多样性垂直分布格局的影响。结果表明: 生活史性状中, 少于1世代、无季节性、慢季节性、成虫寿命长等性状多样性沿海拔梯度呈显著的“U”型分布格局, 而快季节性和成虫寿命极短多样性呈显著的单峰型海拔格局, 成虫寿命短多样性呈显著递增的海拔格局。生态学性状中, 温度偏好多样性与海拔梯度无关, 附着者和爬行者的多样性沿海拔梯度分别呈显著的递增和“U”型格局, 滤食者、植食者和捕食者的多样性分别呈显著递增、递减和“U”型海拔格局。随机森林模型分析结果表明, 气候和土地利用对生活史性状多样性的解释量高于对生态学性状多样性的解释量, 年平均温度和农业面积百分比是共同的关键因素。综上, 水生昆虫群落功能性状多样性海拔格局存在差异, 主要受不同自然环境梯度和人类干扰因素驱动。研究结果可为制定澜沧江流域生物多样性保护对策提供理论基础。
付飞, 魏慧玉, 常育腾, 王备新, 陈凯 (2022) 澜沧江中游水生昆虫生活史和生态学性状多样性的海拔格局: 气候和土地利用的影响. 生物多样性, 30, 21332. DOI: 10.17520/biods.2021332.
Fei Fu, Huiyu Wei, Yuteng Chang, Beixin Wang, Kai Chen (2022) Elevational patterns of life history and ecological trait diversity of aquatic insects in the middle of the Lancang River: The effects of climate and land use variables. Biodiversity Science, 30, 21332. DOI: 10.17520/biods.2021332.
环境变量 Environmental variables | 平均值 Mean | 标准差 SD | 最小值 Min | 最大值 Max |
---|---|---|---|---|
海拔 Elevation (m) | 2,030 | 480 | 1,274 | 2,899 |
森林面积百分比 % forest area | 75.5 | 16.0 | 21.6 | 98.4 |
农业面积百分比 % agriculture area | 1.3 | 4.7 | 0.0 | 32.0 |
不透水面积百分比 % impervious area | 0.08 | 0.4 | 0.0 | 3.0 |
年平均气温 Annual mean temperature (℃) (BIO 1) | 10.3 | 3.0 | 2.4 | 16.4 |
季节性气温变异(标准差 × 100) Temperature seasonality (standard deviation × 100) (BIO 4) | 494.5 | 42.9 | 430.1 | 594.7 |
气温年较差 Temperature annual range (℃) (BIO 7) | 23.5 | 0.9 | 21.7 | 26.3 |
年平均降水量 Annual precipitation (mm) (BIO 12) | 920.6 | 101.4 | 649.4 | 1,232.5 |
季节性降水变异(变异系数) Precipitation seasonality (Coefficient of variation) (BIO 15) | 62.0 | 2.2 | 58.0 | 70.9 |
表1 研究区域溪流采样点位环境因子概况
Table 1 Summary of environmental variables across stream sites collected in the study area
环境变量 Environmental variables | 平均值 Mean | 标准差 SD | 最小值 Min | 最大值 Max |
---|---|---|---|---|
海拔 Elevation (m) | 2,030 | 480 | 1,274 | 2,899 |
森林面积百分比 % forest area | 75.5 | 16.0 | 21.6 | 98.4 |
农业面积百分比 % agriculture area | 1.3 | 4.7 | 0.0 | 32.0 |
不透水面积百分比 % impervious area | 0.08 | 0.4 | 0.0 | 3.0 |
年平均气温 Annual mean temperature (℃) (BIO 1) | 10.3 | 3.0 | 2.4 | 16.4 |
季节性气温变异(标准差 × 100) Temperature seasonality (standard deviation × 100) (BIO 4) | 494.5 | 42.9 | 430.1 | 594.7 |
气温年较差 Temperature annual range (℃) (BIO 7) | 23.5 | 0.9 | 21.7 | 26.3 |
年平均降水量 Annual precipitation (mm) (BIO 12) | 920.6 | 101.4 | 649.4 | 1,232.5 |
季节性降水变异(变异系数) Precipitation seasonality (Coefficient of variation) (BIO 15) | 62.0 | 2.2 | 58.0 | 70.9 |
性状 Trait | 性状类别 Trait modality |
---|---|
生活史性状 Life history | |
化性 Voltinism | 少于1世代 Semivoltine |
1世代 Univoltine | |
多于1世代 Bi- & multi-voltine | |
生活史快慢 Development | 快季节性 Fast seasonal |
慢季节性 Slow seasonal | |
无季节性 Nonseasonal | |
成虫寿命 Adult life span | 极短 Very short |
短 Short | |
长 Long | |
生态学性状 Ecological traits | |
营养习性 Trophic habit | 集食者 Collector-gatherer |
滤食者 Collector-filterer | |
植食者 Herbivore | |
捕食者 Predator | |
撕食者 Shredder | |
生活习性 Habit | 掘穴者 Burrower |
攀附者 Climber | |
爬行者 Sprawler | |
附着者 Clinger | |
游泳者 Swimmer | |
温度偏好 Thermal preference | 喜凉 Cold-cool |
广温 Cool-warm | |
喜温 Warm |
表2 水生昆虫生活史和生态学性状及其类别
Table 2 Life history and ecological traits and trait modalities of aquatic insects
性状 Trait | 性状类别 Trait modality |
---|---|
生活史性状 Life history | |
化性 Voltinism | 少于1世代 Semivoltine |
1世代 Univoltine | |
多于1世代 Bi- & multi-voltine | |
生活史快慢 Development | 快季节性 Fast seasonal |
慢季节性 Slow seasonal | |
无季节性 Nonseasonal | |
成虫寿命 Adult life span | 极短 Very short |
短 Short | |
长 Long | |
生态学性状 Ecological traits | |
营养习性 Trophic habit | 集食者 Collector-gatherer |
滤食者 Collector-filterer | |
植食者 Herbivore | |
捕食者 Predator | |
撕食者 Shredder | |
生活习性 Habit | 掘穴者 Burrower |
攀附者 Climber | |
爬行者 Sprawler | |
附着者 Clinger | |
游泳者 Swimmer | |
温度偏好 Thermal preference | 喜凉 Cold-cool |
广温 Cool-warm | |
喜温 Warm |
图2 水生昆虫生活史性状多样性的海拔格局。黑色实线表示群落加权平均性状多样性指数(CWM)海拔分布格局的线性或二次相关关系显著(P < 0.05)或极显著(P < 0.01), 黑色虚线表示不显著(P > 0.05)。灰色区域为95%置信区间。
Fig. 2 The relationship between community-level weighted means (CWM) of aquatic insect life history traits and elevation. Black solid line indicates significant (P < 0.05) or highly significant (P <0.01) linear or quadratic relationships, black dotted line indicates non-significant (P > 0.05) relationships. The grey area indicates 95% confidence interval for the selected linear or quadratic model.
图3 水生昆虫生态学性状多样性的海拔格局。黑色实线表示群落加权平均性状多样性指数(CWM)海拔分布格局的线性或二次相关关系显著(P < 0.05)或极显著(P < 0.01), 黑色虚线表示不显著(P > 0.05)。灰色区域为95%置信区间。
Fig. 3 The relationship between community-level weighted means (CWM) of aquatic insect ecological traits and elevation. Black solid line indicates significant (P < 0.05) or highly significant (P < 0.01) linear or quadratic relationships, black dotted line indicates non-significant (P > 0.05) relationships. The grey area indicates 95% confidence interval for the selected linear or quadratic model.
性状 Trait | 性状类别 Trait modality | 解释量 RF % variation | 解释变量 Explanatory variables |
---|---|---|---|
生活史性状 | |||
生活史快慢 Development | 快季节性 Fast seasonal | 25.7 | 森林面积百分比 + 年平均气温+ 年平均降水量 % forest area + BIO 1 + BIO 12 |
无季节性 Nonseasonal | 19.3 | 森林面积百分比 % forest area | |
慢季节性 Slow seasonal | 28.8 | 年平均气温 + 年平均降水量 + 农业面积百分比 BIO 1 + BIO 12 + % agriculture area | |
成虫寿命 Adult life span | 长 Long | 20.6 | 森林面积百分比 % forest area |
短 Short | 31.0 | 农业面积百分比 + 年平均气温 + 年平均降水量 + 季节性降水变异(变异系数) % agriculture area + BIO 1 + BIO 12 + BIO 15 | |
极短 Very short | 25.8 | 森林面积百分比 + 年平均气温 + 年平均降水量 % forest area + BIO 1 + BIO12 | |
化性 Voltinism | 多于1世代 Bi- & multi-voltine | 16.8 | 不透水面积百分比 + 年平均气温 + 农业面积百分比 + 季节性降水变异(变异系数) % impervious area + BIO 1 + % agriculture area + BIO 15 |
少于1世代 Semivoltine | 10.4 | 森林面积百分比 + 季节性降水变异(变异系数) + 农业面积百分比 % forest area + BIO 15 + % agriculture area | |
1世代 Univoltine | 16.9 | 年平均气温 + 不透水面积百分比 + 农业面积百分比 + 年平均降水量 BIO 1 + % impervious area + % agriculture area + BIO 12 | |
生态学性状 | |||
生活习性 Habit | 掘穴者 Burrower | 3.9 | 不透水面积百分比 + 年平均降水量 % impervious area + BIO 12 |
攀附者 Climber | 0 | NA | |
附着者 Clinger | 1.0 | 年平均气温 BIO 1 | |
爬行者 Sprawler | 11.5 | 农业面积百分比 + 年平均气温 + 气温年较差 % agriculture area + BIO 1 + BIO 7 | |
游泳者 Swimmer | 0 | NA | |
温度偏好 Thermal preference | 喜凉 Cold-cool | 6.3 | 年平均气温 + 不透水面积百分比 + 农业面积百分比 + 季节性降水变异(变异系数) BIO 1 + % impervious area + % agriculture area + BIO 15 |
广温 Cool-warm | 5.0 | 年平均气温 + 季节性降水变异(变异系数) + 年平均降水量 + 森林面积百分比 BIO 1 + BIO 15 + BIO 12 + % forest area | |
喜温 Warm | 0.9 | 不透水面积百分比 % impervious area | |
营养习性 Trophic habit | 滤食者 Collector-filterer | 15.6 | 农业面积百分比 + 年平均降水量 + 季节性降水变异(变异系数) % agriculture area + BIO 12 + BIO 15 |
集食者 Collector-gatherer | 7.5 | 农业面积百分比 + 不透水面积百分比 % agriculture area + % impervious area | |
植食者 Herbivore | 10.2 | 年平均气温 + 季节性气温变异(标准差 × 100) + 年平均降水量 + 农业面积百分比 BIO 1 + BIO 4 + BIO 12 + % agriculture area | |
捕食者 Predator | 18.5 | 季节性降水变异(变异系数) + 农业面积百分比 BIO 15 + % agriculture area | |
撕食者 Shredder | 17.8 | 农业面积百分比 + 季节性降水变异(变异系数) + 年平均气温 % agriculture area + BIO 15 + BIO 1 |
表3 水生昆虫群落加权平均性状多样性指数(CWM)对气候和土地利用响应的随机森林模型。解释变量重要性排序从左到右按降序排列。
Table 3 Random forest model based responses of community-level weighted means (CWM) of aquatic insect life history and ecological traits to the climatic and land use variables. RF % variation = % variation of each CWM explained in a random forest model. Explanatory variables are arranged by variable importance with decreasing importance from left to right.
性状 Trait | 性状类别 Trait modality | 解释量 RF % variation | 解释变量 Explanatory variables |
---|---|---|---|
生活史性状 | |||
生活史快慢 Development | 快季节性 Fast seasonal | 25.7 | 森林面积百分比 + 年平均气温+ 年平均降水量 % forest area + BIO 1 + BIO 12 |
无季节性 Nonseasonal | 19.3 | 森林面积百分比 % forest area | |
慢季节性 Slow seasonal | 28.8 | 年平均气温 + 年平均降水量 + 农业面积百分比 BIO 1 + BIO 12 + % agriculture area | |
成虫寿命 Adult life span | 长 Long | 20.6 | 森林面积百分比 % forest area |
短 Short | 31.0 | 农业面积百分比 + 年平均气温 + 年平均降水量 + 季节性降水变异(变异系数) % agriculture area + BIO 1 + BIO 12 + BIO 15 | |
极短 Very short | 25.8 | 森林面积百分比 + 年平均气温 + 年平均降水量 % forest area + BIO 1 + BIO12 | |
化性 Voltinism | 多于1世代 Bi- & multi-voltine | 16.8 | 不透水面积百分比 + 年平均气温 + 农业面积百分比 + 季节性降水变异(变异系数) % impervious area + BIO 1 + % agriculture area + BIO 15 |
少于1世代 Semivoltine | 10.4 | 森林面积百分比 + 季节性降水变异(变异系数) + 农业面积百分比 % forest area + BIO 15 + % agriculture area | |
1世代 Univoltine | 16.9 | 年平均气温 + 不透水面积百分比 + 农业面积百分比 + 年平均降水量 BIO 1 + % impervious area + % agriculture area + BIO 12 | |
生态学性状 | |||
生活习性 Habit | 掘穴者 Burrower | 3.9 | 不透水面积百分比 + 年平均降水量 % impervious area + BIO 12 |
攀附者 Climber | 0 | NA | |
附着者 Clinger | 1.0 | 年平均气温 BIO 1 | |
爬行者 Sprawler | 11.5 | 农业面积百分比 + 年平均气温 + 气温年较差 % agriculture area + BIO 1 + BIO 7 | |
游泳者 Swimmer | 0 | NA | |
温度偏好 Thermal preference | 喜凉 Cold-cool | 6.3 | 年平均气温 + 不透水面积百分比 + 农业面积百分比 + 季节性降水变异(变异系数) BIO 1 + % impervious area + % agriculture area + BIO 15 |
广温 Cool-warm | 5.0 | 年平均气温 + 季节性降水变异(变异系数) + 年平均降水量 + 森林面积百分比 BIO 1 + BIO 15 + BIO 12 + % forest area | |
喜温 Warm | 0.9 | 不透水面积百分比 % impervious area | |
营养习性 Trophic habit | 滤食者 Collector-filterer | 15.6 | 农业面积百分比 + 年平均降水量 + 季节性降水变异(变异系数) % agriculture area + BIO 12 + BIO 15 |
集食者 Collector-gatherer | 7.5 | 农业面积百分比 + 不透水面积百分比 % agriculture area + % impervious area | |
植食者 Herbivore | 10.2 | 年平均气温 + 季节性气温变异(标准差 × 100) + 年平均降水量 + 农业面积百分比 BIO 1 + BIO 4 + BIO 12 + % agriculture area | |
捕食者 Predator | 18.5 | 季节性降水变异(变异系数) + 农业面积百分比 BIO 15 + % agriculture area | |
撕食者 Shredder | 17.8 | 农业面积百分比 + 季节性降水变异(变异系数) + 年平均气温 % agriculture area + BIO 15 + BIO 1 |
[1] |
Allan JD (2004) Landscapes and riverscapes: The influence of land use on stream ecosystems. Annual Review of Ecology, Evolution, and Systematics, 35, 257-284.
DOI URL |
[2] |
Barnum TR, Weller DE, Williams M (2017) Urbanization reduces and homogenizes trait diversity in stream macroinvertebrate communities. Ecological Applications, 27, 2428-2442.
DOI URL |
[3] | Bartoń K (2020) MuMIn: Multi-Model Inference. R package version 1. 43.17. https://CRAN.R-project.org/package=MuMIn. (accessed on 2020-04-15) |
[4] |
Belmar O, Bruno D, Guareschi S, Mellado-Díaz A, Millán A, Velasco J (2019) Functional responses of aquatic macroinvertebrates to flow regulation are shaped by natural flow intermittence in Mediterranean streams. Freshwater Biology, 64, 1064-1077.
DOI URL |
[5] |
Bogan MT, Hwan JL, Cervantes-Yoshida K, Ponce J, Carlson SM (2017) Aquatic invertebrate communities exhibit both resistance and resilience to seasonal drying in an intermittent coastal stream. Hydrobiologia, 799, 123-133.
DOI URL |
[6] |
Bonada N, Dolédec S, Statzner B (2007) Taxonomic and biological trait differences of stream macroinvertebrate communities between Mediterranean and temperate regions: Implications for future climatic scenarios. Global Change Biology, 13, 1658-1671.
DOI URL |
[7] |
Breiman L (2001) Random Forests. Machine Learning, 45, 5-32.
DOI URL |
[8] |
Briers RA, Gee JHR, Geoghegan R (2004) Effects of the North Atlantic Oscillation on growth and phenology of stream insects. Ecography, 27, 811-817.
DOI URL |
[9] |
Chen J, Chen J (2018) GlobeLand30: Operational global land cover mapping and big-data analysis. Science China Earth Sciences, 61, 1533-1534.
DOI URL |
[10] | Chinnayakanahalli K, Kroeber C, Hill R, Tarboton DG, Olson J, Hawkins CP (2006) The Multi-Watershed Delineation Tool:GIS Software in Support of Regional Watershed Analyses. The University of Chicago Press, Logan, Utah. |
[11] |
Colzani E, Siqueira T, Suriano MT, Roque FO (2013) Responses of aquatic insect functional diversity to landscape changes in Atlantic forest. Biotropica, 45, 343-350.
DOI URL |
[12] |
Covich AP, Palmer MA, Crowl TA (1999) The role of benthic invertebrate species in freshwater ecosystems: Zoobenthic species influence energy flows and nutrient cycling. BioScience, 49, 119-127.
DOI URL |
[13] |
Cressa C, Maldonado V, Segnini S, Chacón MM (2008) Size variation with elevation in adults and larvae of some Venezuelan stoneflies (Insecta: Plecoptera: Perlidae). Aquatic Insects, 30, 127-134.
DOI URL |
[14] |
Cutler DR, Edwards TC Jr, Beard KH, Cutler A, Hess KT, Gibson J, Lawler JJ (2007) Random forests for classification in ecology. Ecology, 88, 2783-2792.
DOI URL |
[15] |
DeWalt RE, Favret C, Webb DW (2005) Just how imperiled are aquatic insects? A case study of stoneflies (Plecoptera) in Illinois. Annals of the Entomological Society of America, 98, 941-950.
DOI URL |
[16] |
Dohet A, Hlúbiková D, Wetzel CE, L’Hoste L, Iffly JF, Hoffmann L, Ector L (2015) Influence of thermal regime and land use on benthic invertebrate communities inhabiting headwater streams exposed to contrasted shading. Science of the Total Environment, 505, 1112-1126.
DOI URL |
[17] | Dou XD, Huang W, Yi Q, Liu XZ, Zuo HT, Li M, Li ZL (2019) Impacts of LUCC and climate change on runoff in Lancang River Basin. Acta Ecologica Sinica, 39, 4687-4696. (in Chinese with English abstract) |
[窦小东, 黄玮, 易琦, 刘晓舟, 左慧婷, 李蒙, 李忠良 (2019) LUCC及气候变化对澜沧江流域径流的影响. 生态学报, 39, 4687-4696.] | |
[18] |
Dubuis A, Rossier L, Pottier J, Pellissier L, Vittoz P, Guisan A (2013) Predicting current and future spatial community patterns of plant functional traits. Ecography, 36, 1158-1168.
DOI URL |
[19] |
Epele LB, Miserendino ML, Pessacq P (2011) Life history, seasonal variation and production of Andesiops torrens (Lugo-Ortiz and McCafferty) and Andesiops peruvianus (Ulmer) (Ephemeroptera: Baetidae) in a headwater Patagonian stream. Limnologica, 41, 57-62.
DOI URL |
[20] |
Finn DS, Poff NL (2005) Variability and convergence in benthic communities along the longitudinal gradients of four physically similar Rocky Mountain streams. Freshwater Biology, 50, 243-261.
DOI URL |
[21] |
Fogaça FNO, Gomes LC, Higuti J (2013) Percentage of impervious surface soil as indicator of urbanization impacts in neotropical aquatic insects. Neotropical Entomology, 42, 483-491.
DOI PMID |
[22] |
Gladstone-Gallagher RV, Pilditch CA, Stephenson F, Thrush SF (2019) Linking traits across ecological scales determines functional resilience. Trends in Ecology and Evolution, 34, 1080-1091.
DOI PMID |
[23] | Haapala A, Muotka T, Laasonen P (2003) Distribution of benthic macroinvertebrates and leaf litter in relation to streambed retentivity: Implications for headwater stream restoration. Boreal Environment Research, 8, 19-30. |
[24] |
Hamilton AT, Schäfer RB, Pyne MI, Chessman B, Kakouei K, Boersma KS, Verdonschot PFM, Verdonschot RCM, Mims M, Khamis K, Bierwagen B, Stamp J (2020) Limitations of trait-based approaches for stressor assessment: The case of freshwater invertebrates and climate drivers. Global Change Biology, 26, 364-379.
DOI PMID |
[25] | Han J, Song MM, Zhang J, Yin XW, Xu ZX, Zhang Y (2019) Selective adaptations of macrobenthic functional feeding groups in the Hunhe River Basin. Acta Ecologica Sinica, 39, 2013-2020. (in Chinese with English abstract) |
[韩洁, 宋蒙蒙, 张杰, 殷旭旺, 徐宗学, 张远 (2019) 浑河流域大型底栖动物摄食功能群对栖息地环境的选择适应性. 生态学报, 39, 2013-2020.] | |
[26] |
Harrington RA, Poff NL, Kondratieff BC (2016) Aquatic insect β-diversity is not dependent on elevation in Southern Rocky Mountain streams. Freshwater Biology, 61, 195-205.
DOI URL |
[27] | Harvey E, Altermatt F (2019) Regulation of the functional structure of aquatic communities across spatial scales in a major river network. Ecology, 100, e02633. |
[28] |
Hughes RM, Peck DV (2008) Acquiring data for large aquatic resource surveys: The art of compromise among science, logistics, and reality. Journal of the North American Benthological Society, 27, 837-859.
DOI URL |
[29] |
Humpesch UH (1979) Life cycles and growth rates of Baetis spp. (Ephemeroptera: Baetidae) in the laboratory and in two stony streams in Austria. Freshwater Biology, 9, 467-479.
DOI URL |
[30] |
Jacobsen D (2004) Contrasting patterns in local and zonal family richness of stream invertebrates along an Andean altitudinal gradient. Freshwater Biology, 49, 1293-1305.
DOI URL |
[31] | Jiang WX, Cai QH, Tang T, Qu XD (2009) The functional feeding group ecology of macroinvertebrate in Xiangxi River system. Acta Ecologica Sinica, 29, 5207-5218. (in Chinese with English abstract) |
[蒋万祥, 蔡庆华, 唐涛, 渠晓东 (2009) 香溪河水系大型底栖动物功能摄食类群生态学. 生态学报, 29, 5207-5218.] | |
[32] | Jiang Y, Gao JX, Ou XK (2006) Change of land use pattern and analysis of environment impact of Lancang watershed in Yunnan. Research of Environmental Sciences, 19, 46-51. (in Chinese with English abstract) |
[姜昀, 高吉喜, 欧晓昆 (2006) 澜沧江流域云南段土地利用格局变化及环境影响分析. 环境科学研究, 19, 46-51.] | |
[33] |
Knysh KM, Giberson DJ, van den Heuvel MRJ (2016) The influence of agricultural land-use on plant and macroinvertebrate communities in springs. Limnology and Oceanography, 61, 518-530.
DOI URL |
[34] | Laliberté E, Legendre P, Shipley B (2014) FD: Measuring Functional Diversity from Multiple Traits, and Other Tools for Functional Ecology. R package version 1.0-12. https://CRAN.R-project.org/package=FD. (accessed on 2014-08- 19) |
[35] |
Lamouroux N, Dolédec S, Gayraud S (2004) Biological traits of stream macroinvertebrate communities: Effects of microhabitat, reach, and basin filters. Journal of the North American Benthological Society, 23, 449-466.
DOI URL |
[36] | Larned ST, Datry T, Arscott DB, Tockner K (2010) Emerging concepts in temporary-river ecology. Freshwater Biology, 55, 717-738. |
[37] | Lavorel S, Grigulis K, McIntyre S, Williams NSG, Garden D, Dorrough J, Berman S, Quétier F, Thébault A, Bonis A (2008) Assessing functional diversity in the field- methodology matters! Functional Ecology, 22, 134-147. |
[38] | Liaw A, Wiener M (2002) Classification and regression by randomForest. R News, 2, 18-22. |
[39] | Liu SN, Wang J (2020) Study on the seasonal different characteristics of streamflow and climate factors in the Lancang-Mekong River Basin. Transactions of Atmospheric Sciences, 43, 1031-1041. (in Chinese with English abstract) |
[刘松楠, 汪君 (2020) 澜沧江-湄公河流域径流与气候因子变化的季节差异特征研究. 大气科学学报, 43, 1031-1041.] | |
[40] |
Liu ZY, Li ZF, Castro DMP, Tan X, Jiang XM, Meng XL, Ge YH, Xie ZC (2021) Effects of different types of land-use on taxonomic and functional diversity of benthic macroinver- tebrates in a subtropical river network. Environmental Science and Pollution Research International, 28, 44339-44353.
DOI URL |
[41] |
Lytle DA, Poff NL (2004) Adaptation to natural flow regimes. Trends in Ecology & Evolution, 19, 94-100.
DOI URL |
[42] |
Mermillod-Blondin F (2011) The functional significance of bioturbation and biodeposition on biogeochemical processes at the water-sediment interface in freshwater and marine ecosystems. Journal of the North American Benthological Society, 30, 770-778.
DOI URL |
[43] |
Morais M, Guilherme P, Rosado J, Antunes I (2004) Integrated assessment of running waters in Europe. Hydrobiologia, 516, 229-249.
DOI URL |
[44] | Morse JC, Yang LF, Tian LX (1994) Aquatic Insects of China Useful for Monitoring Water Quality. Hohai University Press, Nanjing. |
[45] |
Murdoch A, Mantyka-Pringle C, Sharma S (2020) The interactive effects of climate change and land use on boreal stream fish communities. Science of the Total Environment, 700, 134518.
DOI URL |
[46] |
Nogués-Bravo D, Araújo MB, Romdal T, Rahbek C (2008) Scale effects and human impact on the elevational species richness gradients. Nature, 453, 216-219.
DOI URL |
[47] |
Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature, 421, 37-42.
DOI URL |
[48] |
Paul MJ, Meyer JL (2001) Streams in the urban landscape. Annual Review of Ecology and Systematics, 32, 333-365.
DOI URL |
[49] |
Perkin EK, Wilson MJ (2021) Anthropogenic alteration of flow, temperature, and light as life-history cues in stream ecosystems. Integrative and Comparative Biology, 61, 1134-1146.
DOI URL |
[50] |
Piano E, Doretto A, Mammola S, Falasco E, Fenoglio S, Bona F (2020) Taxonomic and functional homogenisation of macroinvertebrate communities in recently intermittent Alpine watercourses. Freshwater Biology, 65, 2096-2107.
DOI URL |
[51] |
Pilière AFH, Verberk WCEP, Gräwe M, Breure AM, Dyer SD, Posthuma L, de Zwart D, Huijbregts MAJ, Schipper AM (2016) On the importance of trait interrelationships for understanding environmental responses of stream macroin- vertebrates. Freshwater Biology, 61, 181-194.
DOI URL |
[52] |
Poff NL, Olden JD, Vieira NKM, Finn DS, Simmons MP, Kondratieff BC (2006) Functional trait niches of North American lotic insects: Traits-based ecological applications in light of phylogenetic relationships. Journal of the North American Benthological Society, 25, 730-755.
DOI URL |
[53] |
Rabení CF, Doisy KE, Zweig LD (2005) Stream invertebrate community functional responses to deposited sediment. Aquatic Sciences, 67, 395-402.
DOI URL |
[54] |
Rahbek C (2005) The role of spatial scale and the perception of large-scale species-richness patterns. Ecology Letters, 8, 224-239.
DOI URL |
[55] |
Schmera D, Heino J, Podani J, Erős T, Dolédec S (2017) Functional diversity: A review of methodology and current knowledge in freshwater macroinvertebrate research. Hydrobiologia, 787, 27-44.
DOI URL |
[56] |
Scotti A, Füreder L, Marsoner T, Tappeiner U, Stawinoga AE, Bottarin R (2020) Effects of land cover type on community structure and functional traits of alpine stream benthic macroinvertebrates. Freshwater Biology, 65, 524-539.
DOI URL |
[57] |
Sharma K, Acharya BK, Sharma G, Valente D, Pasimeni MR, Petrosillo I, Selvan T (2020) Land use effect on butterfly alpha and beta diversity in the Eastern Himalaya. Ecological Indicators, 110, 105605.
DOI URL |
[58] |
Statzner B, Bêche LA (2010) Can biological invertebrate traits resolve effects of multiple stressors on running water ecosystems? Freshwater Biology, 55, 80-119.
DOI URL |
[59] |
Stuart-Smith RD, Bates AE, Lefcheck JS, Duffy JE, Baker SC, Thomson RJ, Stuart-Smith JF, Hill NA, Kininmonth SJ, Airoldi L, Becerro MA, Campbell SJ, Dawson TP, Navarrete SA, Soler GA, Strain EMA, Willis TJ, Edgar GJ (2013) Integrating abundance and functional traits reveals new global hotspots of fish diversity. Nature, 501, 539-542.
DOI URL |
[60] |
Tanaka Y, Mano H (2012) Functional traits of herbivores and food chain efficiency in a simple aquatic community model. Ecological Modelling, 237/238, 88-100.
DOI URL |
[61] |
Teresa FB, Casatti L (2012) Influence of forest cover and mesohabitat types on functional and taxonomic diversity of fish communities in Neotropical lowland streams. Ecology of Freshwater Fish, 21, 433-442.
DOI URL |
[62] |
Tomanova S, Tedesco PA, Campero M, van Damme PA, Moya N, Oberdorff T (2007) Longitudinal and altitudinal changes of macroinvertebrate functional feeding groups in neotropical streams: A test of the river continuum concept. Fundamental and Applied Limnology, 170, 233-241.
DOI URL |
[63] | Twardochleb L, Hiltner E, Pyne M, Zarnetske P (2021) Freshwater insects CONUS: A database of freshwater insect occurrences and traits for the contiguous United States. Global Ecology and Biogeography, 30, 826-841. |
[64] |
Usseglio-Polatera P, Bournaud M, Richoux P, Tachet H (2000) Biological and ecological traits of benthic freshwater macroinvertebrates: Relationships and definition of groups with similar traits. Freshwater Biology, 43, 175-205.
DOI URL |
[65] |
Vannote RL, Minshall GW, Cummins KW, Sedell JR, Cushing CE (1980) The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences, 37, 130-137.
DOI URL |
[66] |
Verberk WCEP, Siepel H, Esselink H (2008) Life-history strategies in freshwater macroinvertebrates. Freshwater Biology, 53, 1722-1738.
DOI URL |
[67] |
Vinson MR, Hawkins CP (2003) Broad-scale geographical patterns in local stream insect genera richness. Ecography, 26, 751-767.
DOI URL |
[68] | Wang BH, Wu D, Zhang J, Yin XW, Zhao CS, Dou TW (2017) Diversity and temporal-spatial dynamics of macroinverte- brate functional feeding groups in the rivers of the Jinan Region. Acta Ecologica Sinica, 37, 7128-7139. (in Chinese with English abstract) |
[王博涵, 吴丹, 张吉, 殷旭旺, 赵长森, 窦同文 (2017) 济南河流大型底栖动物摄食功能群多样性及时空动态. 生态学报, 37, 7128-7139.] | |
[69] | Wang C, Li B, Xie SG, Jin L, Zhang YG (2013) The macrobenthic communities and distribution of the Lancang River. Freshwater Fisheries, 43, 37-43. (in Chinese with English abstract) |
[王川, 李斌, 谢嗣光, 金丽, 张耀光 (2013) 澜沧江大型底栖动物群落结构及分布格局. 淡水渔业, 43, 37-43. | |
[70] | Wang F, Hong L, Tuniyazi Yasen, Xiong JD, Jiang HS (2020) Spatial-temporal variations of climate over Lancang River Basin. Engineering Journal of Wuhan University, 53, 394-403. (in Chinese with English abstract) |
[汪飞, 洪林, 吐尼亚孜·亚森, 熊继东, 江洪珊 (2020) 澜沧江流域气候时空变化规律. 武汉大学学报(工学版), 53, 394-403.] | |
[71] |
Wang JJ, Meier S, Soininen J, Casamayor EO, Pan FY, Tang XM, Yang XD, Zhang YL, Wu QL, Zhou JZ, Shen J (2017) Regional and global elevational patterns of microbial species richness and evenness. Ecography, 40, 393-402.
DOI URL |
[72] | Wang Q, Pang X, Wang ZJ, Yuan XZ, Zhang YG (2017) Advances in research on the influence of urbanization on stream benthic macroinvertebrate communities. Acta Ecologica Sinica, 37, 6275-6288. (in Chinese with English abstract) |
[王强, 庞旭, 王志坚, 袁兴中, 张耀光 (2017) 城市化对河流大型底栖动物群落的影响研究进展. 生态学报, 37, 6275-6288.] | |
[73] |
Ward JV, Stanford JA (1982) Thermal responses in the evolutionary ecology of aquatic insects. Annual Review of Entomology, 27, 97-117.
DOI URL |
[74] |
Wei HY, Chen K, Wang BX (2020) The spatial scale dependency of elevational patterns of taxonomic and functional diversity in aquatic insects in the Lancang River, Yunnan, China. Biodiversity Science, 28, 504-514. (in Chinese with English abstract)
DOI URL |
[魏慧玉, 陈凯, 王备新 (2020) 澜沧江流域水生昆虫群落分类多样性和功能多样性海拔格局的空间尺度依赖性. 生物多样性, 28, 504-514.]
DOI |
|
[75] | Wickham H, Chang W, Henry L, Pedersen TL, Takahashi K, Wilke C, Woo K, Yutani H, Dunnington D (2021) ggplot2: Create Elegant Data Visualisations Using the Grammar of Graphics. R package version 3.3.5. https://CRAN.R-project.org/package=ggplot2. (accessed on 2021-06-25) |
[76] | Yamaoka K, Nakagawa T, Uno T (1978) Application of Akaike’s information criterion (AIC) in the evaluation of linear pharmacokinetic equations. Journal of Pharmaco- kinetics and Biopharmaceutics, 6, 165-175. |
[77] | Zhang JT, Fan LH (2011) Development of species functional diversity and its measurement methods. Journal of Mountain Science, 29, 513-519. (in Chinese with English abstract) |
[张金屯, 范丽宏 (2011) 物种功能多样性及其研究方法. 山地学报, 29, 513-519.] |
[1] | 姜熠辉, 刘岳, 曾旭, 林喆滢, 王楠, 彭吉豪, 曹玲, 曾聪. 东海六个国家级海洋保护区鱼类多样性和连通性[J]. 生物多样性, 2024, 32(6): 24128-. |
[2] | 田瑜, 李俊生. 《昆明-蒙特利尔全球生物多样性框架》“3030”目标的内涵及实现路径分析[J]. 生物多样性, 2024, 32(6): 24086-. |
[3] | 连佳丽, 陈婧, 杨雪琴, 赵莹, 罗叙, 韩翠, 赵雅欣, 李建平. 荒漠草原植物多样性和微生物多样性对降水变化的响应[J]. 生物多样性, 2024, 32(6): 24044-. |
[4] | 马碧玉. 印度《生物多样性法》修订述要及对我国完善生物多样性保护法制的启示[J]. 生物多样性, 2024, 32(5): 23412-. |
[5] | 董云伟, 鲍梦幻, 程娇, 陈义永, 杜建国, 高养春, 胡利莎, 李心诚, 刘春龙, 秦耿, 孙进, 王信, 杨光, 张崇良, 张雄, 张宇洋, 张志新, 战爱斌, 贺强, 孙军, 陈彬, 沙忠利, 林强. 中国海洋生物地理学研究进展和热点: 物种分布模型及其应用[J]. 生物多样性, 2024, 32(5): 23453-. |
[6] | 蔡颖莉, 朱洪革, 李家欣. 中国生物多样性保护政策演进、主要措施与发展趋势[J]. 生物多样性, 2024, 32(5): 23386-. |
[7] | 艾妍雨, 胡海霞, 沈婷, 莫雨轩, 杞金华, 宋亮. 附生维管植物多样性及其与宿主特征的相关性: 以哀牢山中山湿性常绿阔叶林为例[J]. 生物多样性, 2024, 32(5): 24072-. |
[8] | 鄢德奎. 中国生物多样性保护政策的共同要素、不足和优化建议[J]. 生物多样性, 2024, 32(5): 23293-. |
[9] | 赵富伟, 李颖硕, 陈慧. 新时期我国生物多样性法制建设思考[J]. 生物多样性, 2024, 32(5): 24027-. |
[10] | 刘荆州, 钱易鑫, 张燕雪丹, 崔凤. 基于潜在迪利克雷分布(LDA)模型的旗舰物种范式研究进展与启示[J]. 生物多样性, 2024, 32(4): 23439-. |
[11] | 吴乐婕, 刘泽康, 田星, 张群, 李博, 吴纪华. 海三棱藨草基因型多样性对种群营养生长和繁殖策略的影响[J]. 生物多样性, 2024, 32(4): 23478-. |
[12] | 李雪萌, 蒋际宝, 张曾鲁, 刘晓静, 王亚利, 吴宜钊, 李银生, 邱江平, 赵琦. 宝天曼国家级自然保护区蚯蚓物种多样性及其影响因素[J]. 生物多样性, 2024, 32(4): 23352-. |
[13] | 郝操, 吴东辉, 莫凌梓, 徐国良. 越冬动物肠道微生物多样性及功能研究进展[J]. 生物多样性, 2024, 32(3): 23407-. |
[14] | 刘海鸥, 杜乐山, 刘文慧, 李子圆, 潘丽波, 刘蕾. 全球生物多样性框架基金管理政策分析与启示[J]. 生物多样性, 2024, 32(3): 23334-. |
[15] | 魏嘉欣, 姜治国, 杨林森, 熊欢欢, 金胶胶, 罗方林, 李杰华, 吴浩, 徐耀粘, 乔秀娟, 魏新增, 姚辉, 余辉亮, 杨敬元, 江明喜. 湖北神农架中亚热带山地落叶阔叶林25 ha动态监测样地群落物种组成与结构特征[J]. 生物多样性, 2024, 32(3): 23338-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn