生物多样性 ›› 2020, Vol. 28 ›› Issue (11): 1431-1443. DOI: 10.17520/biods.2020225
• 综述 • 上一篇
收稿日期:
2020-06-01
接受日期:
2020-07-16
出版日期:
2020-11-20
发布日期:
2020-07-30
通讯作者:
刘权兴
作者简介:
* E-mail: qxliu@sklec.ecnu.edu.cn基金资助:
Received:
2020-06-01
Accepted:
2020-07-16
Online:
2020-11-20
Published:
2020-07-30
Contact:
Quanxing Liu
摘要:
近30年来, 自组织理论已经发展成为解释生态系统呈现规则空间格局的有效理论。伴随着生态系统自发有序空间格局的生成, 自组织过程产生一系列的涌现属性, 这些特征对生态系统功能至关重要。在此, 我们将介绍这一正蓬勃发展的研究领域的主要理论进展。首先, 叙述了自组织这一概念的发展历程与定义, 详细阐述了自组织理论的两个经典理论框架: 图灵原理与相分离原理。然后, 根据几个典型的生态自组织研究案例, 描述了图灵原理与相分离原理在不同生态系统中的具体数学模型表达形式。接着, 分别阐述了图灵原理的涌现属性对生态系统功能以及相分离原理的涌现属性对细胞功能的作用。最后, 从多尺度自组织斑图、瞬态斑图和生物个体行为自组织3个方面对未来生态自组织理论发展方向进行了探讨。自组织研究在生态学与生物学研究中方兴未艾, 希望更多的学者在未来关注与参与该领域的发展。
葛振鹏, 刘权兴 (2020) 整体大于部分之和: 生态自组织斑图及其涌现属性. 生物多样性, 28, 1431-1443. DOI: 10.17520/biods.2020225.
Zhenpeng Ge, Quanxing Liu (2020) More than the sum of its parts: Self-organized patterns and emergent properties of ecosystems. Biodiversity Science, 28, 1431-1443. DOI: 10.17520/biods.2020225.
图1 贻贝(Mytilus edulis)与“细胞”内的规则斑图以及相应的尺度依赖的反馈与密度依赖的运动的机制。(a)荷兰瓦登海潮间带贻贝床, 图片来自于本文的通讯作者; (b)基于液体光影技术对细胞内结构的重现, 图片来自https://liquidlightlab.com/artwork/3839057. html/, 版权属于Oil art: Steve Pavlovsky/Liquid Light Lab.; (c)尺度依赖的反馈示意图; (d)密度依赖的运动示意图, 其中主图中的两条曲线对应插图中的两条曲线, (c)和(d)修改自Liu等(2016)。
Fig. 1 The regular patterns of mussel and “cell”, and the scale-dependent feedback and density-dependent feedback. (a) Mussel bed in the intertidal zone of Wadden Sea, the Netherlands, the image come from the corresponding author of this paper; (b) The recurrence of a cell based on liquid light technology, the image is modified from https://liquidlightlab.com/home.html Copyright Oil art: Steve Pavlovsky/Liquid Light Lab.; (c) Schematic representation of scale-dependent feedback; (d) Schematic representation of density-dependent movement, (c) and (d) are modified from Liu et al (2016).
图2 方程组(7)和(8)所表示的系统相图与数值模拟。上方子图中红色实线为均相区与双节区的分界线, 蓝色实线为双节区与旋节线分解区的分界线。上方子图中“1”至“5”对应下方5张子图, 这些子图为相应的数值模拟结果, “1”与“5”位于均质区, 系统不存在斑图; “2”与“4”位于双节区, 系统存在点状斑图; “3”位于旋节线分解区, 系统存在迷宫状斑图。数值模拟采用周期边界条件, 数值模拟的matlab代码可在https://github.com/liufengyinxue/Liu_Mussel_PNAS下载。
Fig. 2 Phase diagram and numerical simulations of the equations (7) and (8). In the upper figure, the red solid line is the boundary between homogeneous zone and binodal zone, and the solid blue line is the boundary between binodal zone and spinodal decomposition zone. ‘1’ to ‘5’ in the upper figure correspond to the below five figures which are the numerical simulation results, ‘1’ and ‘5’ are located in homogeneous zone where the system doesn’t have pattern; ‘2’ and ‘4’ are located in binodal zone where the system has spot pattern, ‘3’ is located in the spinodal decomposition zone where the system has labyrinth pattern. The numerical simulation adopts periodic boundary condition, and the corresponding matlab code can be downloaded at https://github.com/liufengyinxue/Liu_Mussel_ PNAS.
图4 自组织在生态学中的发展趋势展望(英文版见附录1)。经过多年发展的图灵原理被发现并不能完全解释各种生态系统的多尺度斑图, 新兴的相分离原理亦然, 因而未来需要发展新的理论框架来理解生态系统的多尺度斑图; 瞬态斑图由于可能具备独特的生态功能在未来将备受关注; 生物对环境变化产生响应导致生物行为发生改变, 这种响应如何涌现至生态系统层次对理解跨尺度的生态系统自组织至关重要。
Fig. 4 The predominant research ideas of self-organization ecology in the future (The English version see appendix 1). After years of development, Turing's principle was found to be unable to fully explain the multi-scale patterns of various ecosystems, as well as the phase separation principle. Therefore, a new theoretical framework needs to be developed in the future to understand the multi-scale patterns of ecosystems. Transient pattern will be paid more attention in the future due to its unique ecological functioning. The response of organisms to environmental change leads to changes in biological behavior, and how this response emerges to the ecosystem level is critical to understanding the self-organization of ecosystems across scales.
[1] | Alberti S (2017) Phase separation in biology. Current Biology, 27, R1097-R1102. |
[2] |
Alberti S, Dormann D (2019) Liquid-liquid phase separation in disease. Annual Review of Genetics, 53, 171-194.
URL PMID |
[3] |
Alberti S, Gladfelter A, Mittag T (2019) Considerations and challenges in studying liquid-liquid phase separation and biomolecular condensates. Cell, 176, 419-434.
DOI URL PMID |
[4] |
Anderson PW (1972) More is different. Science, 177, 393-396.
DOI URL PMID |
[5] |
Battle C, Broedersz CP, Fakhri N, Geyer VF, Howard J, Schmidt CF, MacKintosh FC (2016) Broken detailed balance at mesoscopic scales in active biological systems. Science, 352, 604-607.
DOI URL PMID |
[6] |
Ben-Hur E, Kadmon R (2020) Heterogeneity-diversity relationships in sessile organisms: A unified framework. Ecology Letters, 23, 193-207.
DOI URL PMID |
[7] |
Bergmann F, Rapp L, Zimmermann W (2018) Active phase separation: A universal approach. Physical Review E, 98, 020603.
DOI URL PMID |
[8] | Bertalanffy L (1969) General System Theory: Foundations, Development, Applications. Georges Braziller, Inc., New York. |
[9] |
Boeynaems S, Alberti S, Fawzi NL, Mittag T, Polymenidou M, Rousseau F, Schymkowitz J, Shorter J, Wolozin B, van den Bosch L, Tompa P, Fuxreiter M (2018) Protein phase separation: A new phase in cell biology. Trends in Cell Biology, 28, 420-435.
URL PMID |
[10] |
Boija A, Klein IA, Sabari BR, Dall’Agnese A, Coffey EL, Zamudio AV, Li CH, Shrinivas K, Manteiga JC, Hannett NM, Abraham BJ, Afeyan LK, Guo YE, Rimel JK, Fant CB, Schuijers J, Lee TI, Taatjes DJ, Young RA (2018) Transcription factors activate genes through the phase-separation capacity of their activation domains. Cell, 175, 1842-1855.
DOI URL PMID |
[11] |
Brangwynne CP, Eckmann CR, Courson DS, Rybarska A, Hoege C, Gharakhani J, Julicher F, Hyman AA (2009) Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science, 324, 1729-1732.
URL PMID |
[12] | Burke J, Knobloch E (2006) Localized states in the generalized Swift-Hohenberg equation. Physical Review E, 73, 056211. |
[13] | Cahn JW, Hilliard JE (1958) Free energy of a nonuniform system. I. Interfacial free energy. The Journal of Chemical Physics, 28, 258-267. |
[14] | Camazine S (2001) Self-organization in Biological Systems. Princeton University Press, Princeton. |
[15] | Cates ME, Marenduzzo D, Pagonabarraga I, Tailleur J (2010) Arrested phase separation in reproducing bacteria creates a generic route to pattern formation. Proceedings of the National Academy of Sciences, USA, 107, 11715-11720. |
[16] | Cates ME, Tailleur J (2015) Motility-induced phase separation. Annual Review of Condensed Matter Physics, 6, 219-244. |
[17] | Cohen DS, Murray JD (1981) A generalized diffusion model for growth and dispersal in a population. Journal of Mathematical Biology, 12, 237-249. |
[18] | Coveney S (2015) Fundamentals of Phase Separation in Polymer Blend Thin Films. Springer International Publishing, Cham. |
[19] | Cuddington K (2007) Ecosystem Engineers: Plants to Protists. Academic Press, Boston. |
[20] | D’Odorico P, Laio F, Ridolfi L (2006) Patterns as indicators of productivity enhancement by facilitation and competition in dryland vegetation. Journal of Geophysical Research: Biogeosciences, 111, G03010. |
[21] |
de Jager M, Weissing FJ, Herman PMJ, Nolet BA, van de Koppel J (2011) Levy walks evolve through interaction between movement and environmental complexity. Science, 332, 1551-1553.
DOI URL PMID |
[22] | de Paoli H, van der Heide T, van den Berg A, Silliman BR, Herman PMJ, van de Koppel J (2017) Behavioral self-organization underlies the resilience of a coastal ecosystem. Proceedings of the National Academy of Sciences, USA, 114, 8035-8040. |
[23] |
Engelhardt KAM, Ritchie ME (2001) Effects of macrophyte species richness on wetland ecosystem functioning and services. Nature, 411, 687-689.
DOI URL PMID |
[24] |
Franklin O, Harrison SP, Dewar R, Farrior CE, Brännström Å, Dieckmann U, Pietsch S, Falster D, Cramer W, Loreau M, Wang H, Mäkelä A, Rebel KT, Meron E, Schymanski SJ, Rovenskaya E, Stocker BD, Zaehle S, Manzoni S, van Oijen M, Wright IJ, Ciais P, van Bodegom PM, Peñuelas J, Hofhansl F, Terrer C, Soudzilovskaia NA, Midgley G, Prentice IC (2020) Organizing principles for vegetation dynamics. Nature Plants, 6, 444-453.
URL PMID |
[25] |
Gilad E, von Hardenberg J, Provenzale A, Shachak M, Meron E (2004) Ecosystem engineers: From pattern formation to habitat creation. Physical Review Letters, 93, 098105.
URL PMID |
[26] | Guttal V, Jayaprakash C (2007) Self-organization and productivity in semi-arid ecosystems: Implications of seasonality in rainfall. Journal of Theoretical Biology, 248, 490-500. |
[27] | Haken H (1988) Information and Self-organization: A Macroscopic Approach to Complex Systems. Springer-Verlag, New York. |
[28] | Halatek J, Frey E (2018) Rethinking pattern formation in reaction-diffusion systems. Nature Physics, 14, 507-514. |
[29] | Hastings A, Abbott KC, Cuddington K, Francis T, Gellner G, Lai YC, Morozov A, Petrovskii S, Scranton K, Zeeman ML (2018) Transient phenomena in ecology. Science, 361, eaat6412. |
[30] | Hiemstra CA, Liston GE, Reiners WA (2006) Observing, modelling, and validating snow redistribution by wind in a Wyoming upper treeline landscape. Ecological Modelling, 197, 35-51. |
[31] | Juergens N (2015) Exploring common ground for different hypotheses on Namib fairy circles. Ecography, 38, 12-14. |
[32] |
Kerr B, Riley MA, Feldman MW, Bohannan BJM (2002) Local dispersal promotes biodiversity in a real-life game of rock-paper-scissors. Nature, 418, 171-174.
DOI URL PMID |
[33] |
Klausmeier CA (1999) Regular and irregular patterns in semiarid vegetation. Science, 284, 1826-1828.
DOI URL PMID |
[34] |
Kondo S, Miura T (2010) Reaction-diffusion model as a framework for understanding biological pattern formation. Science, 329, 1616-1620.
DOI URL PMID |
[35] | Levin SA (1992) The problem of pattern and scale in ecology. Ecology, 73, 1943-1967. |
[36] | Levin SA (2005) Self-organization and the emergence of complexity in ecological systems. BioScience, 55, 1075-1079. |
[37] | Liu QX, Doelman A, Rottschafer V, de Jager M, Herman PMJ, Rietkerk M, van de Koppel J (2013) Phase separation explains a new class of self-organized spatial patterns in ecological systems. Proceedings of the National Academy of Sciences, USA, 110, 11905-11910. |
[38] | Liu QX, Herman PMJ, Mooij WM, Huisman J, Scheffer M, Olff H, van de Koppel J (2014) Pattern formation at multiple spatial scales drives the resilience of mussel bed ecosystems. Nature Communications, 5, 6234. |
[39] |
Liu QX, Rietkerk M, Herman PMJ, Piersma T, Fryxell JM, van de Koppel J (2016) Phase separation driven by density-dependent movement: A novel mechanism for ecological patterns. Physics of Life Reviews, 19, 107-121.
DOI URL PMID |
[40] | Loreau M, Mouquet N, Gonzalez A (2003) Biodiversity as spatial insurance in heterogeneous landscapes. Proceedings of the National Academy of Sciences, USA, 100, 12765-12770. |
[41] | Meinhardt H (2003) The Algorithmic Beauty of Sea Shells. Springer, Berlin. |
[42] | Meron E (2015) Nonlinear Physics of Ecosystems. CRC Press, Taylor & Francis Group, Boca Raton. |
[43] |
Meron E (2016) Pattern formation—A missing link in the study of ecosystem response to environmental changes. Mathematical Biosciences, 271, 1-18.
DOI URL PMID |
[44] | Mistr S, Bercovici D (2003) A theoretical model of pattern formation in coral reefs. Ecosystems, 6, 61-74. |
[45] | Nathan J, Osem Y, Shachak M, Meron E (2016) Linking functional diversity to resource availability and disturbance: A mechanistic approach for water-limited plant communities. Journal of Ecology, 104, 419-429. |
[46] |
Nathan J, von Hardenberg J, Meron E (2013) Spatial instabilities untie the exclusion-principle constraint on species coexistence. Journal of Theoretical Biology, 335, 198-204.
DOI URL PMID |
[47] | Nicolis G, Prigogine I (1977) Self-organization in Nonequilibrium Systems: From Dissipative Structures to Order Through Fluctuations. Wiley, New York. |
[48] | Ouyang Q, Swinney HL (1991) Transition from a uniform state to hexagonal and striped Turing patterns. Nature, 352, 610-612. |
[49] | Paine RT (1966) Food web complexity and species diversity. The American Naturalist, 100, 65-75. |
[50] | Pereira ML, Sadras VO, Batista W, Casal JJ, Hall AJ (2017) Light-mediated self-organization of sunflower stands increases oil yield in the field. Proceedings of the National Academy of Sciences, USA, 114, 7975-7980. |
[51] | Prigogine I (1967) On symmetry-breaking instabilities in dissipative systems. Journal of Chemical Physics, 46, 3542. |
[52] |
Pringle RM, Doak DF, Brody AK, Jocque R, Palmer TM (2010) Spatial pattern enhances ecosystem functioning in an African savanna. PLoS Biology, 8, e1000377.
DOI URL PMID |
[53] | Rietkerk M, Dekker SC, de Ruiter PC, van de Koppel J (2004) Self-organized patchiness and catastrophic shifts in ecosystems. Science, 305, 1926-1929. |
[54] |
Rietkerk M, van de Koppel J (2008) Regular pattern formation in real ecosystems. Trends in Ecology & Evolution, 23, 169-175.
DOI URL PMID |
[55] |
Sabari BR, Dall’Agnese A, Boija A, Klein IA, Coffey EL, Shrinivas K, Abraham BJ, Hannett NM, Zamudio AV, Manteiga JC, Li CH, Guo YE, Day DS, Schuijers J, Vasile E, Malik S, Hnisz D, Lee TI, Cisse II, Roeder RG, Sharp PA, Chakraborty AK, Young RA (2018) Coactivator condensation at super-enhancers links phase separation and gene control. Science, 361, eaar3958.
URL PMID |
[56] | Scheffer M, van Nes EH (2006) Self-organized similarity, the evolutionary emergence of groups of similar species. Proceedings of the National Academy of Sciences, USA, 103, 6230-6235. |
[57] | Schnitzer MJ (1993) Theory of continuum random walks and application to chemotaxis. Physical Review E, 48, 2553-2568. |
[58] | Schrödinger E (1962) What is Life: The Physical Aspect of the Living Cell. University Press Macmillan Co., New York. |
[59] |
Shin Y, Brangwynne CP (2017) Liquid phase condensation in cell physiology and disease. Science, 357, eaaf4382.
DOI URL PMID |
[60] | Speck T, Bialké J, Menzel AM, Löwen H (2014) Effective Cahn-Hilliard equation for the phase separation of active brownian particles. Physical Review Letters, 112, 218304. |
[61] | Stavi I, Rachmilevitch S, Hjazin A, Yizhaq H (2018) Geodiversity decreases shrub mortality and increases ecosystem tolerance to droughts and climate change. Earth Surface Processes & Landforms, 43, 2808-2817. |
[62] | Tarnita CE, Bonachela JA, Sheffer E, Guyton JA, Coverdale TC, Long RA, Pringle RM (2017) A theoretical foundation for multi-scale regular vegetation patterns. Nature, 541, 398-401. |
[63] | Tejedor A, Longjas A, Edmonds DA, Zaliapin I, Georgiou TT, Rinaldo A, Foufoula-Georgiou E (2017) Entropy and optimality in river deltas. Proceedings of the National Academy of Sciences, USA, 114, 11651-11656. |
[64] | Tsimring L, Levine H, Aranson I, Ben-Jacob E, Cohen I, Shochet O, Reynolds WN (1995) Aggregation patterns in stressed bacteria. Physical Review Letters, 75, 1859-1862. |
[65] | Turing A (1952) The chemical basis of morphogenesis. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences, 237, 37-72. |
[66] | van de Koppel J, Gascoigne JC, Theraulaz G, Rietkerk M, Mooij WM, Herman PMJ (2008) Experimental evidence for spatial self-organization and its emergent effects in mussel bed ecosystems. Science, 322, 739-742. |
[67] |
van de Koppel J, Rietkerk M, Dankers N, Herman PMJ (2005) Scale-dependent feedback and regular spatial patterns in young mussel beds. The American Naturalist, 165, E66-E77.
DOI URL PMID |
[68] |
van de Koppel J, Crain CM (2006) Scale‐dependent inhibition drives regular tussock spacing in a freshwater marsh. The American Naturalist, 168, E136-E147.
DOI URL PMID |
[69] |
van der Heide T, Bouma TJ, van Nes EH, van de Koppel J, Scheffer M, Roelofs JGM, van Katwijk MM, Smolders AJP (2010) Spatial self-organized patterning in seagrasses along a depth gradient of an intertidal ecosystem. Ecology, 91, 362-369.
DOI URL PMID |
[70] |
Vicsek T, Czirók A, Ben-Jacob E, Cohen II, Shochet O (1995) Novel type of phase transition in a system of self-driven particles. Physical Review Letters, 75, 1226-1229.
DOI URL PMID |
[71] |
von Hardenberg J, Meron E, Shachak M, Zarmi Y (2001) Diversity of vegetation patterns and desertification. Physical Review Letters, 87, 198101.
DOI URL PMID |
[72] |
Weerman EJ, van de Koppel J, Eppinga MB, Montserrat F, Liu QX, Herman PMJ (2010) Spatial self-organization on intertidal mudflats through biophysical stress divergence. The American Naturalist, 176, E15-E32.
DOI URL PMID |
[73] | Werdelin L, Olsson L (1997) How the leopard got its spots: A phylogenetic view of the evolution of felid coat patterns. Biological Journal of the Linnean Society, 62, 383-400. |
[74] | Yizhaq H, Gilad E, Meron E (2005) Banded vegetation: Biological productivity and resilience. Physica A: -Statistical Mechanics and Its Applications, 356, 139-144. |
[75] | Zelnik YR, Meron E, Bel G (2015) Gradual regime shifts in fairy circles. Proceedings of the National Academy of Sciences, USA, 112, 12327-12331. |
[76] |
Zhabotinskii AM (1964) Periodic course of the oxidation of malonic acid in a solution (studies on the kenetics of beolusov’s reaction). Biofizika, 9, 306-311.
URL PMID |
[77] | Zhao L, Zhang K, Koen S, Li XZ, Liu QX, van de Koppel J (2021) Fairy circles reveal the resilience of self-organized salt marshes. Science Advances, 7, abe1100. |
[1] | 吴乐婕, 刘泽康, 田星, 张群, 李博, 吴纪华. 海三棱藨草基因型多样性对种群营养生长和繁殖策略的影响[J]. 生物多样性, 2024, 32(4): 23478-. |
[2] | 叶楠, 侯贝贝, 王超, 王瑞武, 宋建潇. 微生物相互作用中的空间自组织[J]. 生物多样性, 2022, 30(5): 21458-. |
[3] | 任淯, 陶胜利, 胡天宇, 杨海涛, 关宏灿, 苏艳军, 程凯, 陈梦玺, 万华伟, 郭庆华. 中国生物多样性核心监测指标遥感产品体系构建与思考[J]. 生物多样性, 2022, 30(10): 22530-. |
[4] | 张健, 孔宏智, 黄晓磊, 傅声雷, 郭良栋, 郭庆华, 雷富民, 吕植, 周玉荣, 马克平. 中国生物多样性研究的30个核心问题[J]. 生物多样性, 2022, 30(10): 22609-. |
[5] | 宋文宇, 李学友, 王洪娇, 陈中正, 何水旺, 蒋学龙. 三江并流区树线生境小型兽类多样性多维度评价及其保护启示[J]. 生物多样性, 2021, 29(9): 1215-1228. |
[6] | 吴初平, 韩文娟, 江波, 刘博文, 袁位高, 沈爱华, 黄玉洁, 朱锦茹. 浙江定海次生林内物种丰富度与生物量和生产力关系的环境依赖性[J]. 生物多样性, 2018, 26(6): 545-553. |
[7] | 张中华, 周华坤, 赵新全, 姚步青, 马真, 董全民, 张振华, 王文颖, 杨元武. 青藏高原高寒草地生物多样性与生态系统功能的关系[J]. 生物多样性, 2018, 26(2): 111-129. |
[8] | 欧阳明, 杨清培, 陈昕, 杨光耀, 施建敏, 方向民. 毛竹扩张对次生常绿阔叶林物种组成、结构与多样性的影响[J]. 生物多样性, 2016, 24(6): 649-657. |
[9] | 李香真, 郭良栋, 李家宝, 姚敏杰. 中国土壤微生物多样性监测的现状和思考[J]. 生物多样性, 2016, 24(11): 1240-1248. |
[10] | 徐炜, 马志远, 井新, 贺金生. 生物多样性与生态系统多功能性: 进展与展望[J]. 生物多样性, 2016, 24(1): 55-. |
[11] | 徐炜, 井新, 马志远, 贺金生. 生态系统多功能性的测度方法[J]. 生物多样性, 2016, 24(1): 72-84. |
[12] | 潘声旺, 胡明成, 罗竞红, 吴云霄. 绿化植物的生活型对边坡植被物种多样性及护坡性能的影响[J]. 生物多样性, 2015, 23(3): 341-350. |
[13] | 路兴慧, 臧润国, 丁易, 黄继红, 杨秀森, 周亚东. 抚育措施对热带次生林群落植物功能性状和功能多样性的影响[J]. 生物多样性, 2015, 23(1): 79-88. |
[14] | 童跃伟, 项文化, 王正文, Walter Durka, Markus Fischer. 地形、邻株植物及自身大小对红楠幼树生长与存活的影响[J]. 生物多样性, 2013, 21(3): 269-277. |
[15] | 傅声雷. 土壤生物多样性的研究概况与发展趋势[J]. 生物多样性, 2007, 15(2): 109-115. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn