生物多样性 ›› 2022, Vol. 30 ›› Issue (12): 22292. DOI: 10.17520/biods.2022292
所属专题: 土壤生物与土壤健康
孙佳欢1,2, 刘冬3, 朱家祺1,2, 张书宁1,2, 高梅香1,2,*()
收稿日期:
2022-05-27
接受日期:
2022-08-18
出版日期:
2022-12-20
发布日期:
2022-11-05
通讯作者:
*E-mail: gaomeixiang@nbu.edu.cn
基金资助:
Jiahuan Sun1,2, Dong Liu3, Jiaqi Zhu1,2, Shuning Zhang1,2, Meixiang Gao1,2,*()
Received:
2022-05-27
Accepted:
2022-08-18
Online:
2022-12-20
Published:
2022-11-05
Contact:
*E-mail: gaomeixiang@nbu.edu.cn
摘要:
以农田土壤动物长期监测样地为平台, 阐明土壤动物物种和功能多样性空间分布格局, 是揭示农田土壤动物多样性维持机制、提高农田土壤质量的重要基础。本试验于2020年10月, 对河南商丘农田土壤动物大型固定样地(9 ha)的210个采样点进行土壤样品野外采集和室内分离, 将土壤螨样品鉴定到种并测量其体长体宽数据, 以说明小麦-玉米轮作农田土壤螨多样性及其体长体宽的空间分布格局。结果表明: (1)共捕获成螨个体17,256头, 其中甲螨亚目为优势类群, 其个体数占总捕获量的94.67%; MGP分析表明样地甲螨群落属于P型, 说明受人为因素影响强烈; 生态位宽度和重叠度分析表明, 进化程度越高甲螨的生态位宽度越宽, 进化程度越相近甲螨之间的竞争越激烈。(2) Moran’s I分析显示, 在20-100 m的空间尺度上, 土壤螨群落、优势种的个体数和体长体宽多为显著正相关; 在220-300 m的空间尺度上, 部分为显著负的空间自相关。半方差函数结果表明, 甲螨群落物种数、个体数和体长体宽的空间变异主要受确定性过程影响, 中气门螨群落的空间变异由确定性和随机性过程共同影响。(3)土壤螨个体数与体长体宽存在显著弱的负相关关系, 这种关系普遍存在于土壤螨各群落与优势种中。本研究建议同时开展物种多样性和以体长体宽为代表的功能多样性空间格局研究, 对揭示土壤螨群落维持机制、保护土壤螨多样性具有重要意义。
孙佳欢, 刘冬, 朱家祺, 张书宁, 高梅香 (2022) 小麦-玉米轮作农田土壤螨多样性空间分布格局. 生物多样性, 30, 22292. DOI: 10.17520/biods.2022292.
Jiahuan Sun, Dong Liu, Jiaqi Zhu, Shuning Zhang, Meixiang Gao (2022) Spatial distribution pattern of soil mite community and body size in wheat- maize rotation farmland. Biodiversity Science, 30, 22292. DOI: 10.17520/biods.2022292.
图1 商丘农田土壤动物长期监测样地采样点示意图。图中空心圆为采样点; 实心点为样地内水井位置。
Fig. 1 Sampling point of long-term monitoring sample plot of farmland soil animals in Shangqiu, Henan. The hollow circle in the figure is the sampling point, the black spot is the location of the water well in the sample plot.
群落类型 Community type | 甲螨各群落百分比 Percentage of oribatid mite groups |
---|---|
M型 M type | M > 50% |
G型 G type | G > 50% |
P型 P type | P > 50% |
O型 O type | 20% < M < 50% & 20% < G < 50% & 20% < P < 50% |
MG型 MG type | M, G = 20%-50% & P < 20% |
GP型 GP type | G, P = 20%-50% & M < 20% |
MP型 MP type | M, P = 20%-50% & G < 20% |
表1 甲螨群落大类划分
Table 1 Classification of oribatid mite community
群落类型 Community type | 甲螨各群落百分比 Percentage of oribatid mite groups |
---|---|
M型 M type | M > 50% |
G型 G type | G > 50% |
P型 P type | P > 50% |
O型 O type | 20% < M < 50% & 20% < G < 50% & 20% < P < 50% |
MG型 MG type | M, G = 20%-50% & P < 20% |
GP型 GP type | G, P = 20%-50% & M < 20% |
MP型 MP type | M, P = 20%-50% & G < 20% |
中文名 Chinese species name | 拉丁名 Latin species name | 数量 Number | 占比 Proportion (%) | Raunkiaer频度 Raunkiaer frequency | 变异系数 Coefficient of variation |
---|---|---|---|---|---|
非凡点肋甲螨 | Punctoribates insignis | 2,520 | 14.60 | 0.84E | 1.424 |
缨菌甲螨爪哇亚种 | Scheloribates fimbriatus javensis | 4,021 | 23.30 | 0.86E | 1.701 |
截合若甲螨 | Zygoribatula truncata | 273 | 1.58 | 0.32B | 2.962 |
尼兰桂奥甲螨 | Lauroppia neerlandica | 3,653 | 21.17 | 0.81E | 1.635 |
阿纳懒甲螨 | Nothrus anauniensis | 343 | 1.99 | 0.28B | 2.419 |
土库曼罗甲螨 | Lohmannia turcmenica | 2 | 0.01 | 0.01A | 10.025 |
覆盖头甲螨 | Tectocepheus velatus | 397 | 2.30 | 0.53C | 1.629 |
圆上罗甲螨 | Epilohmannia ovata | 1,252 | 7.26 | 0.61D | 2.008 |
四川长单翼甲螨 | Protoribates sichuanensis | 948 | 5.49 | 0.49C | 1.992 |
头长单翼甲螨 | Protoribates capucinus | 2,922 | 16.93 | 0.81E | 1.838 |
斜孔全大翼甲螨 | Pergalumna altera | 1 | 0.01 | 0.00A | 14.213 |
姬端三甲螨 | Acrotritia ardua | 4 | 0.02 | 0.01A | 8.667 |
前气门未定种1 | Prostigmata sp. 1 | 4 | 0.02 | 0.02A | 7.053 |
前气门未定种2 | Prostigmata sp. 2 | 2 | 0.01 | 0.01A | 10.025 |
中气门未定种1 | Mesostigmata sp. 1 | 93 | 0.54 | 0.29B | 1.975 |
中气门未定种2 | Mesostigmata sp. 2 | 10 | 0.06 | 0.05A | 4.393 |
中气门未定种3 | Mesostigmata sp. 3 | 40 | 0.23 | 0.13A | 2.896 |
中气门未定种4 | Mesostigmata sp. 4 | 405 | 2.35 | 0.37B | 2.586 |
中气门未定种5 | Mesostigmata sp. 5 | 2 | 0.01 | 0.01A | 10.025 |
中气门未定种6 | Mesostigmata sp. 6 | 2 | 0.01 | 0.00A | 14.213 |
中气门未定种7 | Mesostigmata sp. 7 | 154 | 0.89 | 0.18A | 4.222 |
中气门未定种8 | Mesostigmata sp. 8 | 119 | 0.69 | 0.24B | 2.669 |
中气门未定种9 | Mesostigmata sp. 9 | 12 | 0.07 | 0.04A | 5.214 |
中气门未定种10 | Mesostigmata sp. 10 | 52 | 0.30 | 0.18A | 2.490 |
中气门未定种11 | Mesostigmata sp. 11 | 12 | 0.07 | 0.05A | 4.642 |
中气门未定种12 | Mesostigmata sp. 12 | 4 | 0.02 | 0.02A | 7.053 |
中气门未定种13 | Mesostigmata sp. 13 | 5 | 0.03 | 0.01A | 9.374 |
中气门未定种14 | Mesostigmata sp. 14 | 4 | 0.02 | 0.02A | 7.053 |
表2 土壤螨各物种名称、数量及其在大样地中的空间变异
Table 2 Species name and number of soil mite and spatial variation of each species in sample area
中文名 Chinese species name | 拉丁名 Latin species name | 数量 Number | 占比 Proportion (%) | Raunkiaer频度 Raunkiaer frequency | 变异系数 Coefficient of variation |
---|---|---|---|---|---|
非凡点肋甲螨 | Punctoribates insignis | 2,520 | 14.60 | 0.84E | 1.424 |
缨菌甲螨爪哇亚种 | Scheloribates fimbriatus javensis | 4,021 | 23.30 | 0.86E | 1.701 |
截合若甲螨 | Zygoribatula truncata | 273 | 1.58 | 0.32B | 2.962 |
尼兰桂奥甲螨 | Lauroppia neerlandica | 3,653 | 21.17 | 0.81E | 1.635 |
阿纳懒甲螨 | Nothrus anauniensis | 343 | 1.99 | 0.28B | 2.419 |
土库曼罗甲螨 | Lohmannia turcmenica | 2 | 0.01 | 0.01A | 10.025 |
覆盖头甲螨 | Tectocepheus velatus | 397 | 2.30 | 0.53C | 1.629 |
圆上罗甲螨 | Epilohmannia ovata | 1,252 | 7.26 | 0.61D | 2.008 |
四川长单翼甲螨 | Protoribates sichuanensis | 948 | 5.49 | 0.49C | 1.992 |
头长单翼甲螨 | Protoribates capucinus | 2,922 | 16.93 | 0.81E | 1.838 |
斜孔全大翼甲螨 | Pergalumna altera | 1 | 0.01 | 0.00A | 14.213 |
姬端三甲螨 | Acrotritia ardua | 4 | 0.02 | 0.01A | 8.667 |
前气门未定种1 | Prostigmata sp. 1 | 4 | 0.02 | 0.02A | 7.053 |
前气门未定种2 | Prostigmata sp. 2 | 2 | 0.01 | 0.01A | 10.025 |
中气门未定种1 | Mesostigmata sp. 1 | 93 | 0.54 | 0.29B | 1.975 |
中气门未定种2 | Mesostigmata sp. 2 | 10 | 0.06 | 0.05A | 4.393 |
中气门未定种3 | Mesostigmata sp. 3 | 40 | 0.23 | 0.13A | 2.896 |
中气门未定种4 | Mesostigmata sp. 4 | 405 | 2.35 | 0.37B | 2.586 |
中气门未定种5 | Mesostigmata sp. 5 | 2 | 0.01 | 0.01A | 10.025 |
中气门未定种6 | Mesostigmata sp. 6 | 2 | 0.01 | 0.00A | 14.213 |
中气门未定种7 | Mesostigmata sp. 7 | 154 | 0.89 | 0.18A | 4.222 |
中气门未定种8 | Mesostigmata sp. 8 | 119 | 0.69 | 0.24B | 2.669 |
中气门未定种9 | Mesostigmata sp. 9 | 12 | 0.07 | 0.04A | 5.214 |
中气门未定种10 | Mesostigmata sp. 10 | 52 | 0.30 | 0.18A | 2.490 |
中气门未定种11 | Mesostigmata sp. 11 | 12 | 0.07 | 0.05A | 4.642 |
中气门未定种12 | Mesostigmata sp. 12 | 4 | 0.02 | 0.02A | 7.053 |
中气门未定种13 | Mesostigmata sp. 13 | 5 | 0.03 | 0.01A | 9.374 |
中气门未定种14 | Mesostigmata sp. 14 | 4 | 0.02 | 0.02A | 7.053 |
甲螨大类 Oribatid mite group | 生态位宽度指数 Niche breadth index |
---|---|
M型甲螨 M type | 4.35 |
阿纳懒甲螨 Nothrus anauniensis | 3.66 |
圆上罗甲螨 Epilohmannia ovata | 4.15 |
G型甲螨 G type | 4.54 |
截合若甲螨 Zygoribatula truncata | 3.60 |
尼兰桂奥甲螨 Lauroppia neerlandica | 4.40 |
覆盖头甲螨 Tectocepheus velatus | 4.30 |
P型甲螨 P type | 4.74 |
非凡点肋甲螨 Punctoribates insignis | 4.60 |
缨菌甲螨爪哇亚种 Scheloribates fimbriatus javensis | 4.46 |
四川长单翼甲螨 Protoribates sichuanensis | 4.06 |
头长单翼甲螨 Protoribates capucinus | 4.52 |
表3 各大类(M、G、P型)土壤甲螨群落生态位宽度指数
Table 3 Niche breadth index of different oribatida types
甲螨大类 Oribatid mite group | 生态位宽度指数 Niche breadth index |
---|---|
M型甲螨 M type | 4.35 |
阿纳懒甲螨 Nothrus anauniensis | 3.66 |
圆上罗甲螨 Epilohmannia ovata | 4.15 |
G型甲螨 G type | 4.54 |
截合若甲螨 Zygoribatula truncata | 3.60 |
尼兰桂奥甲螨 Lauroppia neerlandica | 4.40 |
覆盖头甲螨 Tectocepheus velatus | 4.30 |
P型甲螨 P type | 4.74 |
非凡点肋甲螨 Punctoribates insignis | 4.60 |
缨菌甲螨爪哇亚种 Scheloribates fimbriatus javensis | 4.46 |
四川长单翼甲螨 Protoribates sichuanensis | 4.06 |
头长单翼甲螨 Protoribates capucinus | 4.52 |
sp1.ZS | sp2.ZS | sp3.ZS | sp4.ZS | sp6.ZS | sp8.ZS | sp10.ZS | sp11.ZS | sp12.ZS | |
---|---|---|---|---|---|---|---|---|---|
sp1.ZS | 1 | 0.672 | 0.199 | 0.527 | 0.256 | 0.622 | 0.255 | 0.272 | 0.365 |
sp2.ZS | 1 | 0.254 | 0.494 | 0.327 | 0.627 | 0.373 | 0.184 | 0.421 | |
sp3.ZS | 1 | 0.338 | 0.121 | 0.330 | 0.432 | 0.278 | 0.510 | ||
sp4.ZS | 1 | 0.345 | 0.568 | 0.485 | 0.240 | 0.510 | |||
sp6.ZS | 1 | 0.301 | 0.295 | 0.086 | 0.200 | ||||
sp8.ZS | 1 | 0.381 | 0.226 | 0.459 | |||||
sp10.ZS | 1 | 0.140 | 0.594 | ||||||
sp11.ZS | 1 | 0.287 | |||||||
sp12.ZS | 1 |
表4 土壤螨各优势种之间的生态位重叠指数。sp1: 非凡点肋甲螨; sp2: 缨菌甲螨爪哇亚种; sp3: 截合若甲螨; sp4: 尼兰桂奥甲螨; sp6: 阿纳懒甲螨; sp8: 覆盖头甲螨; sp10: 圆上罗甲螨; sp11: 四川长单翼甲螨; sp12: 头长单翼甲螨; ZS: 个体数。
Table 4 Niche overlap index between dominant mite species. sp1, Punctoribates insignis; sp2, Schelaribates fimbriatus javensis; sp3, Zygoribatula truncata; sp4, Lauroppia neerlandica; sp6, Nothrus anauniensis; sp8, Tectocepheus velatus; sp10, Epilohmannia ovata; sp11, Protoribates sichuanensis; sp12, Protoribates capucinus; ZS, Number of individuals.
sp1.ZS | sp2.ZS | sp3.ZS | sp4.ZS | sp6.ZS | sp8.ZS | sp10.ZS | sp11.ZS | sp12.ZS | |
---|---|---|---|---|---|---|---|---|---|
sp1.ZS | 1 | 0.672 | 0.199 | 0.527 | 0.256 | 0.622 | 0.255 | 0.272 | 0.365 |
sp2.ZS | 1 | 0.254 | 0.494 | 0.327 | 0.627 | 0.373 | 0.184 | 0.421 | |
sp3.ZS | 1 | 0.338 | 0.121 | 0.330 | 0.432 | 0.278 | 0.510 | ||
sp4.ZS | 1 | 0.345 | 0.568 | 0.485 | 0.240 | 0.510 | |||
sp6.ZS | 1 | 0.301 | 0.295 | 0.086 | 0.200 | ||||
sp8.ZS | 1 | 0.381 | 0.226 | 0.459 | |||||
sp10.ZS | 1 | 0.140 | 0.594 | ||||||
sp11.ZS | 1 | 0.287 | |||||||
sp12.ZS | 1 |
图3 样地内土壤螨各群落(a)和各优势种(b)的体长体宽。CM: 成螨总体; JM: 甲螨亚目; ZQ: 中气门螨亚目; C: 体长; K: 体宽; sp1: 非凡点肋甲螨; sp2: 缨菌甲螨爪哇亚种; sp4: 尼兰桂奥甲螨; sp12: 头长单翼甲螨。
Fig. 3 Body length and width of each community (a) and dominant species (b) of soil mite in the sample plot. CM, Adult mite population; JM, Oribatida; ZQ, Mesophylla; C, Body length; K, Body width; sp1, Punctoribates insignis; sp2, Schelaribates fimbriatus javensis; sp4, Lauropia neerlandica; sp12, Protorabites capucinus.
图4 物种数量与体长体宽的相关性分析。红框区域展示了土壤螨各群落及优势种个体数与其相对应的体长体宽的相关性。右侧的柱子表示各指标之间相关性系数的正负和强弱。CM: 成螨总体; JM: 甲螨亚目; ZQ: 中气门螨亚目; ZS: 个体数; W: 物种数; C: 体长; K: 体宽; M: M型甲螨; G: G型甲螨; P: P型甲螨; sp1: 非凡点肋甲螨; sp2: 缨菌甲螨爪哇亚种; sp4: 尼兰桂奥甲螨; sp12: 头长单翼甲螨。
Fig. 4 Correlation analysis between species number and body length and width. The red box area shows the correlation between the individual number of each community and dominant species of soil mites and their corresponding body length and width. The column on the right shows the positive and negative correlation coefficients and the strength of each index. CM, Adult mite population; JM, Oribatida; ZQ, Mesophylla; ZS, Number of individuals; W, Number of species; C, Body length; K, Body width; M, M type oribatida; G, G type oribatida; P, P type oribatida; sp1, Punctoribates insignis; sp2, Schelaribates fimbriatus javensis; sp4, Lauropia neerlandica; sp12, Protorabites capucinus.
CM_ZS | JM_ZS | ZS_ZS | |
---|---|---|---|
CM_C | -0.174* | -0.194** | 0.128 |
CM_K | -0.101 | -0.121 | 0.159* |
JM_C | -0.252** | -0.259** | -0.045 |
JM_K | -0.203** | -0.203** | -0.094 |
ZQ_C | -0.105 | -0.110 | 0.015 |
ZQ_K | -0.110 | -0.132 | 0.180* |
表5 各群落个体数与体长体宽的关系。ZS: 个体数, 其余标签注释见图3。* P < 0.05; ** P < 0.01。
Table 5 Relationship between individual number and body length and width of each community. ZS, Number of individuals. See Fig. 3 for remaining code note. * P < 0.05; ** P < 0.01.
CM_ZS | JM_ZS | ZS_ZS | |
---|---|---|---|
CM_C | -0.174* | -0.194** | 0.128 |
CM_K | -0.101 | -0.121 | 0.159* |
JM_C | -0.252** | -0.259** | -0.045 |
JM_K | -0.203** | -0.203** | -0.094 |
ZQ_C | -0.105 | -0.110 | 0.015 |
ZQ_K | -0.110 | -0.132 | 0.180* |
sp1.ZS | sp2.ZS | sp4.ZS | sp12.ZS | |
---|---|---|---|---|
sp1.K | -0.132 | -0.208** | -0.061 | -0.142 |
sp2.C | -0.306** | -0.312** | -0.130 | -0.039 |
sp2.K | -0.120 | -0.105 | -0.120 | 0.028 |
sp4.C | -0.213** | -0.199** | -0.039 | -0.127 |
sp4.K | -0.250** | -0.263** | -0.067 | -0.197* |
sp12.C | -0.230** | -0.330** | -0.074 | -0.071 |
sp12.K | -0.198** | -0.322** | -0.099 | -0.046 |
表6 各优势种个体数与体长体宽的关系。* P < 0.05; ** P < 0.01。标签注释见图4。
Table 6 Relationship between individual number and body length and width of each community. * P < 0.05; ** P < 0.01. See Fig. 4 for code note.
sp1.ZS | sp2.ZS | sp4.ZS | sp12.ZS | |
---|---|---|---|---|
sp1.K | -0.132 | -0.208** | -0.061 | -0.142 |
sp2.C | -0.306** | -0.312** | -0.130 | -0.039 |
sp2.K | -0.120 | -0.105 | -0.120 | 0.028 |
sp4.C | -0.213** | -0.199** | -0.039 | -0.127 |
sp4.K | -0.250** | -0.263** | -0.067 | -0.197* |
sp12.C | -0.230** | -0.330** | -0.074 | -0.071 |
sp12.K | -0.198** | -0.322** | -0.099 | -0.046 |
图5 土壤螨群落个体数量及体长的Moran’s I系数。* P < 0.05; ** P < 0.01。代码注释见图4。
Fig. 5 Moran’s I coefficient of individual number and body length of mite community. * P < 0.05; ** P < 0.01. See Fig. 4 for code notes.
图6 土壤螨优势种个体数量及体长的Moran’s I系数。* P < 0.05; ** P < 0.01。代码注释见图4。
Fig. 6 Moran’s I coefficient of individual number and body length of dominant species of mites. * P < 0.05; ** P < 0.01. See Fig. 4 for code notes.
类型 Type | 模型 Model | 块金值 Nugget (C0) | 基台值 Sill (C0 + C) | 变程 Range A0 (m) | 结构比 Structure ratio [C/(C0 + C)] |
---|---|---|---|---|---|
CM_C | ste | 0.00 | 0.01 | 13.00 | 1.00 |
CM_K | ste | 0.01 | 0.02 | 48.00 | 0.50 |
JM_C | ste | 0.00 | 0.01 | 13.00 | 1.00 |
JM_K | ste | 0.00 | 0.02 | 12.00 | 1.00 |
ZQ_C | ste | 0.02 | 0.02 | 242.00 | 0.00 |
ZQ_K | ste | 0.03 | 0.04 | 120.00 | 0.25 |
sp1.C | gau | 0.00 | 0.00 | 11.00 | 0.00 |
sp1.K | gau | 0.00 | 0.01 | 11.00 | 1.00 |
sp2.C | sph | 0.00 | 0.00 | 7.70 | 0.00 |
sp2.K | sph | 0.00 | 0.01 | 28.00 | 1.00 |
sp4.C | ste | 0.00 | 0.01 | 6.70 | 1.00 |
sp4.K | sph | 0.01 | 0.02 | 30.00 | 0.50 |
sp12.C | ste | 0.00 | 0.00 | 20.00 | 0.00 |
sp12.K | sph | 0.01 | 0.01 | 40.00 | 0.00 |
CM_ZS | ste | 0.20 | 1.10 | 24.00 | 0.82 |
JM_ZS | ste | 0.05 | 1.10 | 20.00 | 0.95 |
ZQ_ZS | ste | 0.76 | 1.10 | 137.00 | 0.31 |
sp1.ZS | gau | 0.00 | 1.40 | 16.00 | 1.00 |
sp2.ZS | ste | 0.18 | 1.70 | 30.00 | 0.89 |
sp4.ZS | sph | 0.40 | 2.00 | 31.00 | 0.80 |
sp12.ZS | ste | 0.45 | 1.60 | 29.00 | 0.72 |
CM_W | ste | 0.01 | 0.11 | 21.00 | 0.91 |
JM_W | ste | 0.00 | 0.07 | 22.00 | 1.00 |
ZQ_W | ste | 0.16 | 0.36 | 32.00 | 0.56 |
M_JM | ste | 0.00 | 1.50 | 51.00 | 1.00 |
G_JM | ste | 0.00 | 1.60 | 14.00 | 1.00 |
P_JM | ste | 0.00 | 2.20 | 25.00 | 1.00 |
M_C | ste | 0.00 | 0.04 | 12.00 | 1.00 |
M_K | ste | 0.00 | 0.05 | 15.00 | 1.00 |
G_C | ste | 0.00 | 0.01 | 9.60 | 1.00 |
G_K | ste | 0.00 | 0.02 | 14.00 | 1.00 |
P_C | sph | 0.01 | 0.01 | 19.00 | 0.00 |
P_K | gau | 0.01 | 0.01 | 11.00 | 0.00 |
表7 各群落和优势种半方差函数理论模型和空间异质性参数(代码注释见图4)。sph、gau和ste分别为球状模型、高斯模型和Stein’s parameterization模型。
Table 7 Theoretical models of semi-variance functions and spatial heterogeneity parameters for each community and dominant species (see Fig. 4 for code notes). sph, Spherical model; gau, Gaussian model; ste, Stein’s parameterization model.
类型 Type | 模型 Model | 块金值 Nugget (C0) | 基台值 Sill (C0 + C) | 变程 Range A0 (m) | 结构比 Structure ratio [C/(C0 + C)] |
---|---|---|---|---|---|
CM_C | ste | 0.00 | 0.01 | 13.00 | 1.00 |
CM_K | ste | 0.01 | 0.02 | 48.00 | 0.50 |
JM_C | ste | 0.00 | 0.01 | 13.00 | 1.00 |
JM_K | ste | 0.00 | 0.02 | 12.00 | 1.00 |
ZQ_C | ste | 0.02 | 0.02 | 242.00 | 0.00 |
ZQ_K | ste | 0.03 | 0.04 | 120.00 | 0.25 |
sp1.C | gau | 0.00 | 0.00 | 11.00 | 0.00 |
sp1.K | gau | 0.00 | 0.01 | 11.00 | 1.00 |
sp2.C | sph | 0.00 | 0.00 | 7.70 | 0.00 |
sp2.K | sph | 0.00 | 0.01 | 28.00 | 1.00 |
sp4.C | ste | 0.00 | 0.01 | 6.70 | 1.00 |
sp4.K | sph | 0.01 | 0.02 | 30.00 | 0.50 |
sp12.C | ste | 0.00 | 0.00 | 20.00 | 0.00 |
sp12.K | sph | 0.01 | 0.01 | 40.00 | 0.00 |
CM_ZS | ste | 0.20 | 1.10 | 24.00 | 0.82 |
JM_ZS | ste | 0.05 | 1.10 | 20.00 | 0.95 |
ZQ_ZS | ste | 0.76 | 1.10 | 137.00 | 0.31 |
sp1.ZS | gau | 0.00 | 1.40 | 16.00 | 1.00 |
sp2.ZS | ste | 0.18 | 1.70 | 30.00 | 0.89 |
sp4.ZS | sph | 0.40 | 2.00 | 31.00 | 0.80 |
sp12.ZS | ste | 0.45 | 1.60 | 29.00 | 0.72 |
CM_W | ste | 0.01 | 0.11 | 21.00 | 0.91 |
JM_W | ste | 0.00 | 0.07 | 22.00 | 1.00 |
ZQ_W | ste | 0.16 | 0.36 | 32.00 | 0.56 |
M_JM | ste | 0.00 | 1.50 | 51.00 | 1.00 |
G_JM | ste | 0.00 | 1.60 | 14.00 | 1.00 |
P_JM | ste | 0.00 | 2.20 | 25.00 | 1.00 |
M_C | ste | 0.00 | 0.04 | 12.00 | 1.00 |
M_K | ste | 0.00 | 0.05 | 15.00 | 1.00 |
G_C | ste | 0.00 | 0.01 | 9.60 | 1.00 |
G_K | ste | 0.00 | 0.02 | 14.00 | 1.00 |
P_C | sph | 0.01 | 0.01 | 19.00 | 0.00 |
P_K | gau | 0.01 | 0.01 | 11.00 | 0.00 |
[1] | Aoki J (1983) Analysis of oribatid communities by relative abundance in the species and individual numbers of the three major groups (MGP-analysis). Bulletin Institute of Environmental Science & Technology, Yokohama National University, 10, 171-176. |
[2] |
Aupic-Samain A, Baldy V, Lecareux C, Fernandez C, Santonja M (2019) Tree litter identity and predator density control prey and predator demographic parameters in a Mediterranean litter-based multi-trophic system. Pedobiologia, 73, 1-9.
DOI |
[3] | Blackburn TM, Gaston KJ (1999) The relationship between animal abundance and body size: A review of the mechanisms. Advances in Ecological Research, 28, 181-210. |
[4] |
Brückner A, Heethoff M, Norton RA, Wehner K (2018) Body size structure of oribatid mite communities in different microhabitats. International Journal of Acarology, 44, 367-373.
DOI URL |
[5] |
Caruso T, Taormina M, Migliorini M (2012) Relative role of deterministic and stochastic determinants of soil animal community: A spatially explicit analysis of oribatid mites. Journal of Animal Ecology, 81, 214-221.
DOI PMID |
[6] |
Dolédec S, Chessel D, Gimaret-Carpentier C (2000) Niche separation in community analysis: A new method. Ecology, 81, 2914-2927.
DOI URL |
[7] | Dong CX, Gao MX, Guo CW, Lin L, Wu DH, Zhang LM (2017) The underlying processes of a soil mite metacommunity on a small scale. PLoS ONE, 12, e0176828. |
[8] |
Entling W, Schmidt-Entling MH, Bacher S, Brandl R, Nentwig W (2010) Body size-climate relationships of European spiders. Journal of Biogeography, 37, 477-485.
DOI URL |
[9] | Fang MC, Zhu XM, Du Y, Zhang L, Lin LH (2019) Macroecological patterns of climatic niche breadth variation in lacertid lizards. Asian Herpetological Research, 10(1), 41-47. |
[10] | Feng XJ, Mi XC, Xiao ZS, Cao L, Wu H, Ma KP (2019) Overview of Chinese biodiversity observation network (Sino BON). Bulletin of Chinese Academy of Sciences, 34, 1389-1398. (in Chinese with English abstract) |
[ 冯晓娟, 米湘成, 肖治术, 曹垒, 吴慧, 马克平 (2019) 中国生物多样性监测与研究网络建设及进展. 中国科学院院刊, 34, 1389-1398.] | |
[11] |
Fischer BM, Schatz H (2013) Biodiversity of oribatid mites (Acari: Oribatida) along an altitudinal gradient in the central Alps. Zootaxa, 3626, 429-454.
PMID |
[12] | Gao MX, He P, Liu D, Guo CW, Zhang XP, Li JK (2014a) Multi-scale spatial autocorrelation of soil mite community in a temperate deciduous broad-leaved forest, Northeast China. Chinese Journal of Soil Science, 45, 1104-1112. (in Chinese with English abstract) |
[ 高梅香, 何萍, 刘冬, 郭传伟, 张雪萍, 李景科 (2014a) 温带落叶阔叶林土壤螨群落多尺度空间自相关性. 土壤通报, 45, 1104-1112.] | |
[13] | Gao MX, Liu D, Wu DH, Zhang XP (2014b) Spatial autocorrelation of aboveground and belowground mite communities in farmland of the Sanjiang Plain. Acta Pedologica Sinica, 51, 1342-1350. (in Chinese with English abstract) |
[ 高梅香, 刘冬, 吴东辉, 张雪萍 (2014b) 三江平原农田地表和地下土壤螨群落空间自相关性研究. 土壤学报, 51, 1342-1350.] | |
[14] | Gao MX, Sun X, Wu DH, Zhang XP (2014c) Spatial autocorrelation at multi-scale of soil collembolan community in farmland of the Sanjiang Plain, Northeast China. Acta Ecologica Sinica, 34, 4980-4990. (in Chinese with English abstract) |
[ 高梅香, 孙新, 吴东辉, 张雪萍 (2014c) 三江平原农田土壤跳虫多尺度空间自相关性. 生态学报, 34, 4980-4990.] | |
[15] | Gao MX, Liu D, Zhang XP, Wu DH (2016) Spatial relationships between the abundance of aboveground and belowground soil mite communities, and environmental factors in a farmland on the Sanjiang Plain, China. Acta Ecologica Sinica, 36, 1782-1792. (in Chinese with English abstract) |
[ 高梅香, 刘冬, 张雪萍, 吴东辉 (2016) 三江平原农田地表和地下土壤螨类丰富度与环境因子的空间关联性. 生态学报, 36, 1782-1792.] | |
[16] |
Gao MX, Cheng SS, Ni JP, Lin L, Lu TY, Wu DH (2017) Negative spatial and coexistence patterns and species associations are uncommon for carrion beetles (Coleoptera: Silphidae) at a small scale. European Journal of Soil Biology, 83, 52-57.
DOI URL |
[17] |
Gao MX, Lin L, Chang L, Sun X, Liu D, Wu DH (2018) Spatial patterns and assembly rules in soil fauna communities: A review. Biodiversity Science, 26, 1034-1050. (in Chinese with English abstract)
DOI |
[ 高梅香, 林琳, 常亮, 孙新, 刘冬, 吴东辉 (2018) 土壤动物群落空间格局和构建机制研究进展. 生物多样性, 26, 1034-1050.]
DOI |
|
[18] |
Gao MX, Sun X, Qiao ZH, Hou HY, Lu TY, Wu DH, Jin GZ (2018) Distinct patterns suggest that assembly processes differ for dominant arthropods in above-ground and below-ground ecosystems. Pedobiologia, 69, 17-28.
DOI URL |
[19] |
Gao MX, Qiao ZH, Hou HY, Jin GZ, Wu DH (2020) Factors that affect the assembly of ground-dwelling beetles at small scales in primary mixed broadleaved-Korean pine forests in north-east China. Soil Ecology Letters, 2, 47-60.
DOI |
[20] | Gao MX, Liu QL, Zhu JQ, Zhao BY, Du J, Wu DH (2022) Implementation protocol of scientific investigation and monitoring for permanent plots of agricultural soil animal in China. Biodiversity Science, 30, 101-115. (in Chinese with English abstract) |
[ 高梅香, 刘启龙, 朱家祺, 赵博宇, 杜嘉, 吴东辉 (2022) 中国农田土壤动物长期监测样地科学调查监测的实施方法. 生物多样性, 30, 101-115.] | |
[21] |
Geisen S, Wall DH,van der Putten WH (2019) Challenges and opportunities for soil biodiversity in the Anthropocene. Current Biology, 29, 1036-1044.
DOI PMID |
[22] | Griffith DA (2003) Spatial autocorrelation and spatial filtering: Gaining understanding through theory and scientific visualization. Journal of Regional Science, 44, 633-635. |
[23] |
Hasegawa M (2001) The relationship between the organic matter composition of a forest floor and the structure of a soil arthropod community. European Journal of Soil Biology, 37, 281-284.
DOI URL |
[24] |
Hernández P, Fernández R, Novo M, Trigo D, Díaz Cosín DJ(2007) Geostatistical and multivariate analysis of the horizontal distribution of an earthworm community in El Molar (Madrid, Spain). Pedobiologia, 51, 13-21.
DOI URL |
[25] | Hu YY, Zhu JY, Yan L, Cao Y, Gao MX, Lu TY (2018) Analysis of the dynamic spatial pattern of adult Coleoptera communities at fine scale in a temperate deciduous broad-leaved forest. Acta Ecologica Sinica, 38, 1841-1851. (in Chinese with English abstract) |
[ 胡媛媛, 朱纪元, 闫龙, 曹阳, 高梅香, 卢廷玉 (2018) 温带落叶阔叶林地表鞘翅目成虫小尺度空间格局动态分析. 生态学报, 38, 1841-1851.] | |
[26] |
Ingimarsdóttir M, Caruso T, Ripa J, Magnúsdóttir ÓB, Migliorini M, Hedlund K (2012) Primary assembly of soil communities: Disentangling the effect of dispersal and local environment. Oecologia, 170, 745-754.
DOI PMID |
[27] |
Jiménez JJ, Decaëns T, Amézquita E, Rao I, Thomas RJ, Lavelle P (2011) Short-range spatial variability of soil physico-chemical variables related to earthworm clustering in a neotropical gallery forest. Soil Biology and Biochemistry, 43, 1071-1080.
DOI URL |
[28] | Krantz GW, Walter DE (2009) A Manual of Acarology, 3rd edn. Texas Tech University Press, Lubbock, Texas. |
[29] | Lawton JH (1990) Species richness and population dynamics of animal assemblages. Patterns in body size: Abundance space. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences, 330, 283-291. |
[30] |
Lin L, Gao MX, Liu D, Zhang XP, Wu HT, Wu DH (2014) Co-occurrence patterns of above-ground and below-ground mite communities in farmland of Sanjiang Plain, Northeast China. Chinese Geographical Science, 24, 339-347.
DOI URL |
[31] |
Lin LH, Zhu XM, Du Y, Fang MC, Ji X (2018) Global, regional, and cladistic patterns of variation in climatic niche breadths in terrestrial elapid snakes. Current Zoology, 65, 1-9.
DOI URL |
[32] | Liu D (2021) Biodiversity in Jilin Province•Fauna•Suborder Oribatida Volume (Arachnida: Acari). Jilin Education Publishing House, Changchun. (in Chinese) |
[ 刘冬 (2021) 吉林省生物多样性•动物志•甲螨亚目. 吉林教育出版社, 长春.] | |
[33] | Liu J, Gao MX, Liu JW, Guo YX, Liu D, Zhu XY, Wu DH(2018) Spatial distribution patterns of soil mite communities and their relationships with edaphic factors in a 30-year tillage cornfield in Northeast China. PLoS ONE, 13, e0199093. |
[34] |
Liu J, Gao MX, Ma YL, Sun X, Zhu XY, Adl S, Wu DH (2019) Spatial and environmental factors are minor structuring forces in a soil Collembola metacommunity in a maize agroecosystem. Pedobiologia, 76, 150572.
DOI URL |
[35] |
Liu J, Gao MX, Wu DH (2017) Characteristics of ground-dwelling soil macro-arthropod communities in a biodiversity monitoring plot of black soil cropland, northeastern China. Chinese Journal of Applied Ecology, 28, 3965-3975. (in Chinese with English abstract)
DOI |
[ 刘洁, 高梅香, 吴东辉 (2017) 基于黑土农田生物多样性监测样地的地表大型节肢动物群落特征. 应用生态学报, 28, 3965-3975.]
DOI |
|
[36] |
Mori AS, Ota AT, Fujii S, Seino T, Kabeya D, Okamoto T, Ito MT, Kaneko N, Hasegawa M (2015) Concordance and discordance between taxonomic and functional homogenization: Responses of soil mite assemblages to forest conversion. Oecologia, 179, 527-535.
DOI PMID |
[37] |
Pianka ER (1973) The structure of lizard communities. Annual Review of Ecology and Systematics, 4, 53-74.
DOI URL |
[38] |
Procheş Ş, Warren M, McGeoch MA, Marshall DJ (2010) Spatial scaling and transition in pneumatophore arthropod communities. Ecography, 33, 128-136.
DOI URL |
[39] | Qiao ZH, Hou HY, Gao MX, Lu TY, Jin GZ, Wu DH (2019) Spatial heterogeneity of ground-dwelling Staphylinidae community in a broadleaved and Korean pine forest in Liangshui Nature Reserve, Northeast China. Chinese Journal of Ecology, 38, 500-512. (in Chinese with English abstract) |
[ 乔志宏, 侯宏宇, 高梅香, 卢廷玉, 金光泽, 吴东辉 (2019) 小兴安岭凉水阔叶红松林地表隐翅虫群落空间异质性. 生态学杂志, 38, 500-512.] | |
[40] | Raunkiaer C, Gilbert-Carter H, Fausbøll A, Tansley AG (1934) The Life Forms of Plants and Statistical Plant Geography. The Clarendon Press, Oxford. |
[41] |
Shannon CE (1948) A mathematical theory of communication. The Bell System Technical Journal, 27, 379-423.
DOI URL |
[42] |
Si XF, Pimm S, Russell G, Ding P (2014) Turnover of breeding bird communities on islands in an inundated lake. Journal of Biogeography, 41, 2283-2292.
DOI URL |
[43] |
Stroik LK (2014) Dietary competition in an extant mammalian guild: Application of a quantitative method to evaluate reconstructed niche overlap in paleocommunities. International Journal of Primatology, 35, 1222-1252.
DOI URL |
[44] | Tong FC, Wu ZH, Lin RX, Wu XJ, Deng HF, Yuan QY, Luan JW, Xiao YH (2022) Effects of Phyllostachys edulis expansion on soil oribatid mite community structure. Journal of Northeast Forestry University, 50(2), 59-64. (in Chinese with English abstract) |
[ 佟富春, 吴智华, 林瑞雪, 吴晓君, 邓惠方, 袁千允, 栾军伟, 肖以华 (2022) 毛竹扩张对土壤甲螨群落结构的影响. 东北林业大学学报, 50(2), 59-64.] | |
[45] |
Ulrich W (2007) Body weight distributions of central European Coleoptera. European Journal of Entomology, 104, 769-776.
DOI URL |
[46] |
Wang F, Chen BZ, Chen J, Zhang HF, Guo LF (2022) Comparative study of DLM and CLM5 model simulations at winter wheat-summer maize rotation stations in the North China Plain. Progress in Geography, 41, 289-303. (in Chinese with English abstract)
DOI |
[ 王菲, 陈报章, 陈婧, 张慧芳, 郭立峰 (2022) 华北平原冬小麦-夏玉米轮作区DLM与CLM5模型模拟对比研究. 地理科学进展, 41, 289-303.]
DOI |
|
[47] | Wang YT, Zhang Y, Du YF, Wang X, Zhao TQ, Gu C, Chen WJ, Zhao ML (2017) Spatial heterogeneity of soil moisture in Stipa breviflora grasslands under different stocking rates. Pratacultural Science, 34, 1159-1167. (in Chinese with English abstract) |
[ 王亚婷, 张宇, 杜宇凡, 王玺, 赵天启, 古琛, 陈万杰, 赵萌莉 (2017) 不同载畜率下短花针茅草原土壤水分空间异质性的分析. 草业科学, 34, 1159-1167.] | |
[48] | Wang ZJ, Li DM, Shang HW, Cheng JA (2002) Theories and methods of geostatistics and their application in insect ecology. Entomological Knowledge, 39, 405-411. (in Chinese with English abstract) |
[ 王正军, 李典谟, 商晗武, 程家安 (2002) 地质统计学理论与方法及其在昆虫生态学中的应用. 昆虫知识, 39, 405-411.] | |
[49] | Xiao MM, Zhang HJ, Zhao F, Liu JH, Li R, Chen W, Xie XS (2021) Diversity analysis of rhizosphere microbial in wheat/maize rotation field. Microbiology China, 48, 4612-4623. (in Chinese with English abstract) |
[ 肖苗苗, 张红娟, 赵芳, 刘杰辉, 李蓉, 陈伟, 谢咸升 (2021) 小麦/玉米轮作田根际微生物多样性分析. 微生物学通报, 48, 4612-4623.] | |
[50] | Xie ZJ, Chang L, Stefan S, Wu DH, Sun X (2022) Taxonomic and functional diversity of Collembola in litter and soil along an altitudinal gradient at Changbai Mountain, China. Acta Ecologica Sinica, 42, 3471-3481. (in Chinese with English abstract) |
[ 谢致敬, 常亮, Stefan S, 吴东辉, 孙新 (2022) 长白山森林生态系统凋落物层和土壤层跳虫物种多样性和功能多样性对海拔梯度的响应. 生态学报, 42, 3471-3481.] | |
[51] | Xu GL, Kuster TM, Günthardt-Goerg MS, Dobbertin M, Li MH (2012) Seasonal exposure to drought and air warming affects soil Collembola and mites. PLoS ONE, 7, e43102. |
[52] | Yin WY, Hu SH, Shen YF, Ning YZ, Sun XD, Wu JH, Zhuge Y, Zhang YM, Wang M, Chen JY, Xu CG, Liang YL, Wang HZ, Yang T, Chen DN, Zhang GQ, Song DX, Chen J, Liang LR, Hu CY, Wang HF, Zhang CZ, Kuang PR, Chen GX, Zhao LJ, Xie RD, Zhang J, Liu XW, Han MZ, Bi DY, Xiao NN, Yang DR (1998) Pictorical Keys to Soil Animals of China. Science Press, Beijing. (in Chinese) |
[ 尹文英, 胡圣豪, 沈韫芬, 宁应之, 孙希达, 吴纪华, 诸葛燕, 张云美, 王敏, 陈建英, 徐成钢, 梁彦龄, 王洪铸, 杨潼, 陈德牛, 张国庆, 宋大祥, 陈军, 梁来荣, 胡成业, 王慧芙, 张崇州, 匡溥人, 陈国孝, 赵立军, 谢荣栋, 张骏, 刘宪伟, 韩美贞, 毕道英, 肖宁年, 杨大荣 (1998) 中国土壤动物检索图鉴. 科学出版社, 北京.] | |
[53] | Yin XQ, Wang HX, Zhou DW (2003) Characteristics of soil animals’ communities in different agricultural ecosystem in the Songnen Grassland of China. Acta Ecologica Sinica, 23, 1071-1078. (in Chinese with English abstract) |
[ 殷秀琴, 王海霞, 周道玮 (2003) 松嫩草原区不同农业生态系统土壤动物群落特征. 生态学报, 23, 1071-1078.] | |
[54] |
Yonker CM, Schimel DS, Paroussis E, Heil RD (1988) Patterns of organic carbon accumulation in a semiarid shortgrass steppe, Colorado. Soil Science Society of America Journal, 52, 478-483.
DOI URL |
[55] | Zhu JY, Li JK, Gao MX, Hu YY, Zhang XP (2017) Spatially heterogeneous dynamics of adult Coleoptera communities at a small scale in a Pinus koraiensis plantation on Maoer Mountain. Acta Ecologica Sinica, 37, 1975-1986. (in Chinese with English abstract) |
[ 朱纪元, 李景科, 高梅香, 胡媛媛, 张雪萍 (2017) 帽儿山红松人工林鞘翅目成虫群落小尺度空间异质性变化特征. 生态学报, 37, 1975-1986.] |
[1] | 姜熠辉, 刘岳, 曾旭, 林喆滢, 王楠, 彭吉豪, 曹玲, 曾聪. 东海六个国家级海洋保护区鱼类多样性和连通性[J]. 生物多样性, 2024, 32(6): 24128-. |
[2] | 田瑜, 李俊生. 《昆明-蒙特利尔全球生物多样性框架》“3030”目标的内涵及实现路径分析[J]. 生物多样性, 2024, 32(6): 24086-. |
[3] | 连佳丽, 陈婧, 杨雪琴, 赵莹, 罗叙, 韩翠, 赵雅欣, 李建平. 荒漠草原植物多样性和微生物多样性对降水变化的响应[J]. 生物多样性, 2024, 32(6): 24044-. |
[4] | 王腾, 李纯厚, 王广华, 赵金发, 石娟, 谢宏宇, 刘永, 刘玉. 西沙群岛七连屿珊瑚礁鱼类的物种组成与演替[J]. 生物多样性, 2024, 32(6): 23481-. |
[5] | 宋芬, 周芸芸, 黄太福, 杨存存, 于桂清, 田书荣, 向左甫. 基于红外相机技术的林麝行为PAE编码与多样性[J]. 生物多样性, 2024, 32(6): 24042-. |
[6] | 马碧玉. 印度《生物多样性法》修订述要及对我国完善生物多样性保护法制的启示[J]. 生物多样性, 2024, 32(5): 23412-. |
[7] | 蔡颖莉, 朱洪革, 李家欣. 中国生物多样性保护政策演进、主要措施与发展趋势[J]. 生物多样性, 2024, 32(5): 23386-. |
[8] | 邝起宇, 胡亮. 广东东海岛与硇洲岛海域底栖贝类物种多样性及其地理分布[J]. 生物多样性, 2024, 32(5): 24065-. |
[9] | 艾妍雨, 胡海霞, 沈婷, 莫雨轩, 杞金华, 宋亮. 附生维管植物多样性及其与宿主特征的相关性: 以哀牢山中山湿性常绿阔叶林为例[J]. 生物多样性, 2024, 32(5): 24072-. |
[10] | 姚祝, 魏雪, 马金豪, 任晓, 王玉英, 胡雷, 吴鹏飞. 气候暖湿化对高寒草甸土壤线虫群落的短期影响[J]. 生物多样性, 2024, 32(5): 23483-. |
[11] | 赵勇强, 阎玺羽, 谢加琪, 侯梦婷, 陈丹梅, 臧丽鹏, 刘庆福, 隋明浈, 张广奇. 退化喀斯特森林自然恢复中不同生活史阶段木本植物物种多样性与群落构建[J]. 生物多样性, 2024, 32(5): 23462-. |
[12] | 鄢德奎. 中国生物多样性保护政策的共同要素、不足和优化建议[J]. 生物多样性, 2024, 32(5): 23293-. |
[13] | 赵富伟, 李颖硕, 陈慧. 新时期我国生物多样性法制建设思考[J]. 生物多样性, 2024, 32(5): 24027-. |
[14] | 徐伟强, 苏强. 分形模型与一般性物种多度分布关系的检验解析:以贝类和昆虫群落为例[J]. 生物多样性, 2024, 32(4): 23410-. |
[15] | 郑梦瑶, 李媛, 王雪蓉, 张越, 贾彤. 芦芽山不同植被类型土壤原生动物群落构建机制[J]. 生物多样性, 2024, 32(4): 23419-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn