生物多样性

• • 上一篇    下一篇

基于MaxEnt模型预测海南岛重点管理外来入侵植物适生区及其入侵风险

吉晟男1,2, 韩佳蓉3, 任月恒1, 穆晓东2, 朱彦鹏1*   

  1. 1. 环境基准与风险评估国家重点实验室,中国环境科学研究院,北京 100012 2. (海南省环境科学研究院,海口 570100) 3. 首都师范大学生命科学学院,北京 100048
  • 收稿日期:2025-01-22 修回日期:2025-04-10 接受日期:2025-06-30
  • 通讯作者: 朱彦鹏

Prediction of Suitable Habitats and Risk Assessment for Key Invasive Alien Plant Species on Hainan Island Based on the MaxEnt Model

Shengnan Ji1,2, Jiarong Han3, Yueheng Ren1, Xiaodong Mu2, Yanpeng Zhu1*   

  1. 1 State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 

    2 Hainan Research Academy of Environmental Sciences, Haikou 570100 

    3 College of Life Sciences, Capital Normal University, Beijing 100048, China

  • Received:2025-01-22 Revised:2025-04-10 Accepted:2025-06-30
  • Contact: Yanpeng Zhu

摘要: 外来入侵植物对生态系统、生物多样性和人类社会构成了严重威胁。海南岛作为我国生物多样性最丰富的地区之一,面临着外来入侵植物的潜在危害。为评估重点管理外来入侵物种在海南岛的潜在适生区及其入侵风险,本研究基于农业农村部等六部委最新发布的《重点管理外来入侵物种名录》中33种入侵植物,利用最大熵模型(MaxEnt)与地理信息系统(GIS)技术,对物种分布数据和环境因子进行综合了分析。结果显示,共有25种入侵植物在海南岛具有不同程度的适生区,其中假高粱(Sorghum halepense)、飞机草(Chromolaena odorata)、刺苋(Amaranthus spinosus)和马缨丹(Lantana camara) 4个物种的适生区面积占海南岛总面积的50%以上,风险等级最高。入侵热点主要集中在东北部低海拔平原和部分沿海区域,人类活动强度、温度季节性、平均昼夜温差和最热季降水量是影响其分布的主要因素。结合结果分析,本研究建议加强对高风险区域和高风险物种的精准监测和综合防控,同时将社会环境因素及生物互作机制纳入后续研究,以进一步提升预警能力并制定科学高效的防控策略。

关键词: 海南岛, 外来入侵植物, 最大熵模型(MaxEnt), 潜在适生区, 风险分析

Abstract

Aims: Invasive alien plants (IAPs) pose serious threats to ecosystems, biodiversity, and human well-being. Hainan Island, as one of China’s most biodiverse regions, confronts mounting risks of invasion by alien plant species. This study targeted 33 invasive species identified in the newly released Key Management List of Invasive Alien Species (issued jointly by six ministries and commissions, including the Ministry of Agriculture and Rural Affairs), aiming to evaluate their potential suitable habitats and invasion risks on Hainan Island. 

Method: We first aggregated occurrence records and environmental variables from multiple databases for the 33 listed invasive plant species. Using the Maximum Entropy (MaxEnt) model in conjunction with Geographic Information System (GIS) techniques, we modeled each species’ potential spatial distribution under current climatic conditions. Subsequently, we overlaid species-specific distribution maps to identify invasion hotspots and assessed the relative importance of environmental factors contributing to habitat suitability. 

Results: Among the 33 investigated species, 25 were predicted to possess suitable habitats on Hainan Island, which varied in geographical extent. Notably, four species—Sorghum halepense, Chromolaena odorata, Amaranthus spinosus, and Lantana camara—exhibited high-risk distributions covering more than 50% of the island’s total land area. Invasion hotspots were concentrated primarily in low-elevation plains in the northeastern region and several coastal zones. Key environmental drivers included human activity intensity, temperature seasonality, mean diurnal temperature range, and precipitation of the warmest quarter. These findings reflect the urgent need for comprehensive prevention and control measures, particularly in vulnerable areas. 

Conclusion: Our results underscore the importance of prioritizing high-risk species and high-risk regions for targeted monitoring and integrated management on Hainan Island. Effective strategies should include not only conventional control approaches but also incorporate socio-environmental factors and biotic interaction mechanisms in subsequent research. By enhancing early warning systems and applying science-based interventions, stakeholders can better curb the spread of invasive alien plants and safeguard the island’s rich biodiversity.

Key words: Hainan Island, invasive alien plants, MaxEnt model, potential suitable habitat, risk analysis