生物多样性 ›› 2021, Vol. 29 ›› Issue (6): 759-769. DOI: 10.17520/biods.2020268
所属专题: 传粉生物学; 昆虫多样性与生态功能
施雨含1,2, 任宗昕1, 王维嘉1,2, 徐鑫1,2, 刘杰1, 赵延会1, 王红1,*()
收稿日期:
2020-07-03
接受日期:
2020-08-26
出版日期:
2021-06-20
发布日期:
2020-09-20
通讯作者:
王红
作者简介:
* E-mail: wanghong@mail.kib.ac.cn基金资助:
Yuhan Shi1,2, Zongxin Ren1, Weijia Wang1,2, Xin Xu1,2, Jie Liu1, Yanhui Zhao1, Hong Wang1,*()
Received:
2020-07-03
Accepted:
2020-08-26
Online:
2021-06-20
Published:
2020-09-20
Contact:
Hong Wang
摘要:
依赖于动物传粉获得繁殖成功的植物的分布与其传粉动物的地理分布有着密切联系。预测未来气候变化对植物及其传粉动物地理分布的影响对生物多样性保护具有重要意义。本文通过对中国-喜马拉雅3种黄耆属(Astragalus)植物, 即弯齿黄耆(A. camptodontus)、黑毛黄耆(A. pullus)和笔直黄耆(A. strictus), 及其传粉熊蜂(Bombus)的野外调查, 以及收集来源于数据库的黄耆和熊蜂的543个物种分布点和13个环境因子数据, 结合物种可能出现的完全扩散、不扩散和仅熊蜂扩散3种迁移模式, 利用MaxEnt模型模拟了3种黄耆属植物与2种传粉熊蜂即橘尾熊蜂(Bombus friseanus)和红束熊蜂(B. rufofasciatus)在历史阶段(1970-2000年)和2100年两种温室气体浓度情景(ssp245和ssp585)下的适宜分布区变化。结果表明: 3种黄耆属植物均主要依赖于熊蜂传粉, 黄耆与其传粉熊蜂的主要适宜分布区为中国-喜马拉雅地区, 到2100年它们的分布区呈现向西北方向扩张的趋势, 而在东南部的分布区减少。当模型中考虑与传粉熊蜂的互作后, 3种黄耆属植物的潜在地理分布范围减少了15.83%-83.98%。在温室气体中低浓度情景(ssp245)下, 3种黄耆属植物与其传粉熊蜂的空间匹配增加, 而在高浓度情景(ssp585)下弯齿黄耆、黑毛黄耆与橘尾熊蜂的空间匹配降低; 如果物种不扩散或仅熊蜂扩散, 笔直黄耆与红束熊蜂的空间匹配降低。气候变化和物种的扩散能力可能引起黄耆与其传粉熊蜂出现空间不匹配。同时, 模型预测显示影响黄耆和熊蜂分布的环境因子不同, 但海拔是最主要的环境因子。由于与传粉者的相互作用对许多植物物种的生命周期具有重要意义, 因而本研究可以更好地理解气候变化对植物与其传粉者空间分布的潜在影响, 特别是对那些地理范围受限制的植物。
施雨含, 任宗昕, 王维嘉, 徐鑫, 刘杰, 赵延会, 王红 (2021) 中国-喜马拉雅三种黄耆属植物与其传粉熊蜂的空间分布预测. 生物多样性, 29, 759-769. DOI: 10.17520/biods.2020268.
Yuhan Shi, Zongxin Ren, Weijia Wang, Xin Xu, Jie Liu, Yanhui Zhao, Hong Wang (2021) Predicting the spatial distribution of three Astragalusspecies and their pollinating bumblebees in the Sino-Himalayas. Biodiversity Science, 29, 759-769. DOI: 10.17520/biods.2020268.
物种 Species | AUC ± SD | TSS ± SD | 阈值 Cloglog threshold (TH ± SD) |
---|---|---|---|
弯齿黄耆 Astragalus camptodontus | 0.996 ± 0.001 | 0.93 ± 0.02 | 0.37 ± 0.16 |
黑毛黄耆 Astragalus pullus | 0.992 ± 0.001 | 0.91 ± 0.02 | 0.33 ± 0.11 |
笔直黄耆 Astragalus strictus | 0.960 ± 0.003 | 0.85 ± 0.01 | 0.34 ± 0.03 |
橘尾熊蜂 Bombus friseanus | 0.991 ± 0.001 | 0.88 ± 0.01 | 0.39 ± 0.07 |
红束熊蜂 Bombus rufofasciatus | 0.985 ± 0.002 | 0.87 ± 0.01 | 0.32 ± 0.06 |
表1 MaxEnt模型结果的受试者工作特征曲线下面积AUC值、真实技巧统计值TSS值和cloglog阈值(TH)
Table1 Area under the receiver operating characteristic curve (AUC), true skill statistic (TSS) and cloglog threshold (TH) of MaxEnt
物种 Species | AUC ± SD | TSS ± SD | 阈值 Cloglog threshold (TH ± SD) |
---|---|---|---|
弯齿黄耆 Astragalus camptodontus | 0.996 ± 0.001 | 0.93 ± 0.02 | 0.37 ± 0.16 |
黑毛黄耆 Astragalus pullus | 0.992 ± 0.001 | 0.91 ± 0.02 | 0.33 ± 0.11 |
笔直黄耆 Astragalus strictus | 0.960 ± 0.003 | 0.85 ± 0.01 | 0.34 ± 0.03 |
橘尾熊蜂 Bombus friseanus | 0.991 ± 0.001 | 0.88 ± 0.01 | 0.39 ± 0.07 |
红束熊蜂 Bombus rufofasciatus | 0.985 ± 0.002 | 0.87 ± 0.01 | 0.32 ± 0.06 |
图2 3种黄耆属植物与其传粉熊蜂在历史阶段(1970-2000年)的适宜分布区和在2100 (2081-2100年)两种情景(ssp245和ssp585)下的分布变化
Fig. 2 Suitable distribution of three Astragalus species and their pollinating bumblebees at near current (1970-2000) and spatial change at 2100 (2081-2100) two scenarios (ssp245 and ssp585)
图3 3种黄耆属植物与其传粉熊蜂在历史阶段(1970-2000年)和在2100 (2081-2100年)两种情景(ssp245和ssp585)下的空间匹配变化。图中黑色部分表示在黄耆分布的区域其传粉者也存在的区域, 灰色部分表示仅黄耆分布的区域。
Fig. 3 Change of spatial match of three Astragalusspecies and their pollinating bumblebees at near current (1970-2000) and at 2100 (2081-2100) two scenarios (ssp245 and ssp585). The black part indicates the area where the pollinator also exists in the plant distributions and the grey part indicates the area where only plants are distributed.
物种 Species (Astragalus × pollinators) | 空间匹配范围SMR (×105km2) | SMR变化百分比 Percentage change in spatially matched range (%) | |||||
---|---|---|---|---|---|---|---|
完全扩散 Full dispersal | 不扩散 No dispersal | 仅熊蜂扩散 OnlyBombusdispersal | |||||
历史阶段 Near current | ssp245 | ssp585 | ssp245 | ssp585 | ssp245 | ssp585 | |
弯齿黄耆 ×橘尾熊蜂 Astragalus camptodontus ×Bombus friseanus | 1.92 | 74.61 | 114.70 | -12.09 | -25.94 | -11.53 | -24.56 |
黑毛黄耆 ×橘尾熊蜂 Astragalus pullus × Bombus friseanus | 2.96 | 29.70 | 65.46 | -7.69 | -0.99 | 4.81 | 5.22 |
笔直黄耆 ×橘尾熊蜂 Astragalus strictus × Bombus friseanus | 3.28 | 32.98 | 53.50 | -1.07 | -3.77 | 225.57 | 294.51 |
笔直黄耆 ×红束熊蜂 Astragalus strictus × Bombus rufofasciatus | 6.65 | 63.91 | 112.18 | -7.82 | -8.32 | -35.54 | -25.80 |
表2 在未来气候变化情景下3种黄耆属植物与其传粉熊蜂的空间匹配范围(SMR)变化百分比。第一列值表示在历史气候情景下(1970-2000年) 3种黄耆属植物与其传粉熊蜂的SMR。
Table 2 Percentage change in spatially matched range of three Astragalusspecies and their pollinating bumblebees in the future climate change scenario. First column values indicate the spatially matched range of three Astragalus species and their pollinating bumblebees at near current (1970-2000).
物种 Species (Astragalus × pollinators) | 空间匹配范围SMR (×105km2) | SMR变化百分比 Percentage change in spatially matched range (%) | |||||
---|---|---|---|---|---|---|---|
完全扩散 Full dispersal | 不扩散 No dispersal | 仅熊蜂扩散 OnlyBombusdispersal | |||||
历史阶段 Near current | ssp245 | ssp585 | ssp245 | ssp585 | ssp245 | ssp585 | |
弯齿黄耆 ×橘尾熊蜂 Astragalus camptodontus ×Bombus friseanus | 1.92 | 74.61 | 114.70 | -12.09 | -25.94 | -11.53 | -24.56 |
黑毛黄耆 ×橘尾熊蜂 Astragalus pullus × Bombus friseanus | 2.96 | 29.70 | 65.46 | -7.69 | -0.99 | 4.81 | 5.22 |
笔直黄耆 ×橘尾熊蜂 Astragalus strictus × Bombus friseanus | 3.28 | 32.98 | 53.50 | -1.07 | -3.77 | 225.57 | 294.51 |
笔直黄耆 ×红束熊蜂 Astragalus strictus × Bombus rufofasciatus | 6.65 | 63.91 | 112.18 | -7.82 | -8.32 | -35.54 | -25.80 |
物种 Species (Astragalus × pollinators) | 空间匹配 Spatial match (%) | 空间匹配变化百分比 Percentage change in spatial match (%) | |||||
---|---|---|---|---|---|---|---|
完全扩散 Full dispersal | 不扩散 No dispersal | 仅熊蜂扩散 OnlyBombusdispersal | |||||
历史阶段 Near current | ssp245 | ssp585 | ssp245 | ssp585 | ssp245 | ssp585 | |
弯齿黄耆 ×橘尾熊蜂 Astragalus camptodontus × Bombus friseanus | 78.76 | 6.93 | -0.03 | 4.52 | 8.26 | 5.19 | 10.27 |
黑毛黄耆 ×橘尾熊蜂 Astragalus pullus × Bombus friseanus | 57.22 | 13.28 | -11.79 | 8.44 | 6.03 | 23.12 | 23.82 |
笔直黄耆 ×橘尾熊蜂 Astragalus strictus × Bombus friseanus | 16.03 | 0.47 | 0.55 | 3.13 | -1.94 | 239.36 | 301.99 |
笔直黄耆 ×红束熊蜂 Astragalus strictus × Bombus rufofasciatus | 32.51 | 23.83 | 45.80 | -7.82 | -30.74 | -32.81 | -24.39 |
表3 在未来气候变化情景下3种黄耆属植物与其传粉熊蜂的空间匹配变化百分比。第一列值表示在历史气候情景下(1970-2000年)与其传粉熊蜂共同分布的黄耆属植物的范围所占的百分比, 即空间匹配(%)。
Table 3 Percentage change in spatial match of three Astragalusspecies and their pollinating bumblebees in the future climate change scenario. First column values indicate the percentage of the range of each Astragalus species that is shared with its pollinating bumblebees at near current (1970-2000), that is spatial match (%).
物种 Species (Astragalus × pollinators) | 空间匹配 Spatial match (%) | 空间匹配变化百分比 Percentage change in spatial match (%) | |||||
---|---|---|---|---|---|---|---|
完全扩散 Full dispersal | 不扩散 No dispersal | 仅熊蜂扩散 OnlyBombusdispersal | |||||
历史阶段 Near current | ssp245 | ssp585 | ssp245 | ssp585 | ssp245 | ssp585 | |
弯齿黄耆 ×橘尾熊蜂 Astragalus camptodontus × Bombus friseanus | 78.76 | 6.93 | -0.03 | 4.52 | 8.26 | 5.19 | 10.27 |
黑毛黄耆 ×橘尾熊蜂 Astragalus pullus × Bombus friseanus | 57.22 | 13.28 | -11.79 | 8.44 | 6.03 | 23.12 | 23.82 |
笔直黄耆 ×橘尾熊蜂 Astragalus strictus × Bombus friseanus | 16.03 | 0.47 | 0.55 | 3.13 | -1.94 | 239.36 | 301.99 |
笔直黄耆 ×红束熊蜂 Astragalus strictus × Bombus rufofasciatus | 32.51 | 23.83 | 45.80 | -7.82 | -30.74 | -32.81 | -24.39 |
图4 3种黄耆属植物在历史阶段(1970-2000年)和在2100 (2081-2100年)两种情景(ssp245和ssp585)下的地理范围及考虑传粉熊蜂时的地理范围(×105 km2)。
Fig. 4 Range size (×105 km2) of three Astragalusspecies and considering the geographical distribution of pollinating bumblebees at near current (1970-2000) and at 2100 (2081-2100) two scenarios (ssp245 and ssp585).
[1] |
Allouche O, Tsoar A, Kadmon R (2006) Assessing the accuracy of species distribution models: Prevalence, Kappa and the true skill statistic (TSS). Journal of Applied Ecology, 43,1223-1232.
DOI URL |
[2] |
Bingham RA, Orthner AR (1998) Efficient pollination of alpine plants. Nature, 391,238-239.
DOI URL |
[3] |
Burkle LA, Alarcón R (2011) The future of plant-pollinator diversity: Understanding interaction networks across time, space, and global change. American Journal of Botany, 98,528-538.
DOI PMID |
[4] |
Byers DL (2017) Studying plant-pollinator interactions in a changing climate: A review of approaches. Applications in Plant Sciences, 5,1700012.
DOI URL |
[5] |
Clement SL, Griswold TL, Rust RW, Hellier BC, Stout DM (2006) Bee associates of flowering Astragalus and Onobrychis genebank accessions at a Snake River site in eastern Washington . Journal of the Kansas Entomological Society, 79,254-260.
DOI URL |
[6] |
Dodd ME, Silvertown J, Chase MW (1999) Phylogenetic analysis of trait evolution and species diversity variation among angiosperm families. Evolution, 53,732-744.
DOI URL |
[7] | Duffy KJ, Johnson SD (2017) Specialized mutualisms may constrain the geographical distribution of flowering plants. Proceedings of the Royal Society B: Biological Sciences, 284,20171841. |
[8] |
Gorostiague P, Sajama J, Ortega-Baes P (2018) Will climate change cause spatial mismatch between plants and their pollinators? A test using Andean cactus species. Biological Conservation, 226,247-255.
DOI URL |
[9] |
Green TW, Bohart GE (1975) The pollination ecology of Astragalus cibarius and Astragalus utahensis (Leguminosae). American Journal of Botany, 62,379-386.
DOI URL |
[10] |
He MX, Chen LX, Luo G, Gu XD, Wang G, Ran JH (2018) Suitable habitat prediction and overlap analysis of two sympatric species, giant panda ( Ailuropoda melanoleuca) and Asiatic black bear ( Ursus thibetanus) in Liangshan Mountains . Biodiversity Science, 26,1180-1189. (in Chinese with English abstract)
DOI URL |
和梅香, 陈俪心, 罗概, 古晓东, 王戈, 冉江洪 (2018) 凉山山系大熊猫和黑熊适宜生境预测及重叠分析. 生物多样性, 26,1180-1189.]
DOI |
|
[11] |
He X, Burgess KS, Gao LM, Li DZ (2019a) Distributional responses to climate change for alpine species of Cyananthus and Primula endemic to the Himalaya-Hengduan Mountains . Plant Diversity, 41,26-32.
DOI URL |
[12] |
He X, Burgess KS, Yang XF, Ahrends A, Gao LM, Li DZ (2019b) Upward elevation and northwest range shifts for alpine Meconopsis species in the Himalaya-Hengduan Mountains region . Ecology and Evolution, 9,4055-4064.
DOI URL |
[13] |
Hughes AC (2017) Mapping priorities for conservation in Southeast Asia. Biological Conservation, 209,395-405.
DOI URL |
[14] | Johnson DM, Büntgen U, Frank DC, Kausrud K, Haynes KJ, Liebhold AM, Esper J, Stenseth NC (2010) Climatic warming disrupts recurrent alpine insect outbreaks. Proceedings of the National Academy of Sciences, USA, 107,20576-20581. |
[15] |
Karron JD (1987) The pollination ecology of co-occuring geographically restricted and widespread species of Astragalus (Fabaceae). Biological Conservation, 39,179-193.
DOI URL |
[16] | Kelly AE, Goulden ML (2008) Rapid shifts in plant distribution with recent climate change. Proceedings of the National Academy of Sciences, USA, 105,11823-11826. |
[17] |
Lenoir J, Gégout JC, Marquet PAde Ruffray P, Brisse H (2008) A significant upward shift in plant species optimum elevation during the 20th century. Science, 320,1768-1771.
DOI URL |
[18] | Li LH, Liu HY, Lin ZS, Jia JH, Liu X (2017) Identifying priority areas for monitoring the invasion of Solidago canadensis based on MaxEnt and Zonation . Acta Ecologica Sinica, 37,3124-3132. (in Chinese with English abstract) |
李丽鹤, 刘会玉, 林振山, 贾俊鹤, 刘翔 (2017) 基于MaxEnt和Zonation的加拿大一枝黄花入侵重点监控区确定. 生态学报, 37,3124-3132.] | |
[19] |
Li YC, Li MY, Li C, Liu ZZ (2020) Optimized MaxEnt model predictions of climate change impacts on the suitable distribution of Cunninghamia lanceolata in China . Forests, 11,302.
DOI URL |
[20] |
Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution, and Systematics, 37,637-669.
DOI URL |
[21] |
Pearce JL, Boyce MS (2006) Modelling distribution and abundance with presence-only data. Journal of Applied Ecology, 43,405-412.
DOI URL |
[22] |
Radosavljevic A, Anderson RP (2014) Making better MaxEnt models of species distributions: Complexity, overfitting and evaluation. Journal of Biogeography, 41,629-643.
DOI URL |
[23] |
Raes N, Roos MC, Slik JWF, van Loon EE, ter Steege H (2009) Botanical richness and endemicity patterns of Borneo derived from species distribution models. Ecography, 32,180-192.
DOI URL |
[24] |
Richards KW (1987) Diversity, density, efficiency, and effectiveness of pollinators of Cicer milkvetch, Astragalus cicer L . Canadian Journal of Zoology, 65,2168-2176.
DOI URL |
[25] |
Shi XY, Shi XG, Hu Q, Guan TP, Fu Q, Zhang J, Yao M, Li S (2019) Evaluating the potential habitat overlap and predation risk between snow leopards and free-range yaks in the Qionglai Mountains, Sichuan. Biodiversity Science, 27,951-959. (in Chinese with English abstract)
DOI URL |
史晓昀, 施小刚, 胡强, 官天培, 付强, 张剑, 姚蒙, 李晟 (2019) 四川邛崃山脉雪豹与散放牦牛潜在分布重叠与捕食风险评估. 生物多样性, 27,951-959.]
DOI |
|
[26] |
Sosa-Pivatto M, Cosacov A, Baranzelli MC, Iglesias MR, Espíndola A, Sérsic AN (2017) Do 120,000 years of plant-pollinator interactions predict floral phenotype divergence in Calceolaria polyrhiza? A reconstruction using species distribution models . Arthropod-Plant Interactions, 11,351-361.
DOI URL |
[27] | Sun Y, Qin DH, Liu HB (2012) Introduction to treatment of uncertainties for IPCC Fifth Assessment Report. Climate Change Research, 8,150-153. (in Chinese) |
孙颖, 秦大河, 刘洪滨 (2012) IPCC第五次评估报告不确定性处理方法的介绍. 气候变化研究进展, 8,150-153.] | |
[28] |
Tanner DA, Clark C, Pitts JP (2013) Pollination biology of Astragalus phoenix (Fabaceae) with notes on the natural history of its pollinator, Anthophora porterae (Hymenoptera: Apidae) . Western North American Naturalist, 73,373-381.
DOI URL |
[29] |
Tsiftsis S, Djordjević V (2020) Modelling sexually deceptive orchid species distributions under future climates: The importance of plant-pollinator interactions. Scientific Reports, 10,10623.
DOI PMID |
[30] |
Wang YS, Xie BY, Wan FH, Xiao QM, Dai LY (2007) Application of ROC curve analysis in evaluating the performance of alien species' potential distribution models. Biodiversity Science, 15,365-372. (in Chinese with English abstract)
DOI URL |
王运生, 谢丙炎, 万方浩, 肖启明, 戴良英 (2007) ROC曲线分析在评价入侵物种分布模型中的应用. 生物多样性, 15,365-372.]
DOI |
|
[31] | Williams PH, Huang JX, An JD (2017) Bear wasps of the Middle Kingdom: A decade of discovering China's bumblebees. Antenna, 41,21-24. |
[32] |
Williams PH, Tang Y, Yao J, Cameron S (2009) The bumblebees of Sichuan (Hymenoptera: Apidae, Bombini) . Systematics and Biodiversity, 7,101-189.
DOI URL |
[33] | Xin XG, Wu TW, Zhang J, Zhang F, Li WP, Zhang YW, Lu YX, Fang YJ, Jie WH, Zhang L, Dong M, Shi XL, Li JL, Chu M, Liu QX, Yan JH (2019) Introduction of BCC models and its participation in CMIP6. Climate Change Research, 15,533-539. (in Chinese with English abstract) |
辛晓歌, 吴统文, 张洁, 张芳, 李伟平, 张艳武, 路屹雄, 房永杰, 颉卫华, 张莉, 董敏, 史学丽, 李江龙, 储敏, 刘茜霞, 颜京辉 (2019) BCC模式及其开展的CMIP6试验介绍. 气候变化研究进展, 15,533-539.] | |
[34] |
Zhang L, Jing ZN, Li ZY, Liu Y, Fang SZ (2019) Predictive modeling of suitable habitats for Cinnamomum camphora (L.) Presl using MaxEnt model under climate change in China . International Journal of Environmental Research and Public Health, 16,3185.
DOI URL |
[35] |
Zhang XL, Li YC, Wang YY, Cai HY, Zeng H, Wang ZH (2019) Influence of future climate change in suitable habitats of tea in different countries. Biodiversity Science, 27,595-606. (in Chinese with English abstract)
DOI URL |
张晓玲, 李亦超, 王芸芸, 蔡宏宇, 曾辉, 王志恒 (2019) 未来气候变化对不同国家茶适宜分布区的影响. 生物多样性, 27,595-606.]
DOI |
|
[36] | Zhang XQ (2018) Geographical Distribution and Climatic Suitability of Typical Eco-economical Tree Species in the Dryland of Northwest China. PhD dissertation, Research Center for Eco-Environments and Soils and Water Conservation, Chinese Academy of Sciences & Ministry of Education, Xi'an, (in Chinese with English abstract) |
张晓芹 (2018) 西北旱区典型生态经济树种地理分布与气候适宜性研究. 博士学位论文.] | |
[37] |
Zhang XQ, Li GQ, Du S (2018) Predicting the influence of future climate change on the suitable distribution areas of Elaeagnus angustifolia. Chinese Journal of Applied Ecology, 29,3213-3220. (in Chinese with English abstract)
DOI PMID |
张晓芹, 李国庆, 杜盛 (2018) 未来气候变化对沙枣适宜分布区的影响预测. 应用生态学报, 29,3213-3220.]
PMID |
[1] | 舒为杰, 何花, 曾罗, 谷志容, 谭敦炎, 杨晓琛. 雌雄异株物种一把伞南星雌雄株空间分布及性别二态性[J]. 生物多样性, 2024, 32(6): 24084-. |
[2] | 吴琪, 张晓青, 杨雨婷, 周艺博, 马毅, 许大明, 斯幸峰, 王健. 浙江钱江源-百山祖国家公园庆元片区叶附生苔多样性及其时空变化[J]. 生物多样性, 2024, 32(4): 24010-. |
[3] | 曹可欣, 王敬雯, 郑国, 武鹏峰, 李英滨, 崔淑艳. 降水格局改变及氮沉降对北方典型草原土壤线虫多样性的影响[J]. 生物多样性, 2024, 32(3): 23491-. |
[4] | 张雅丽, 张丙昌, 赵康, 李凯凯, 刘燕晋. 毛乌素沙地不同类型生物结皮细菌群落差异及其驱动因子[J]. 生物多样性, 2023, 31(8): 23027-. |
[5] | 董廷玮, 黄美玲, 韦旭, 马硕, 岳衢, 刘文丽, 郑佳鑫, 王刚, 马蕊, 丁由中, 薄顺奇, 王正寰. 上海地区金线侧褶蛙种群的潜在空间分布格局及其景观连通性[J]. 生物多样性, 2023, 31(8): 22692-. |
[6] | 刘伟, 王濡格, 范天巧, 娜依曼·阿不都力江, 宋新航, 肖书平, 郭宁, 帅凌鹰. 福建省明溪县黑冠鹃隼生境适宜性[J]. 生物多样性, 2023, 31(7): 22660-. |
[7] | 冯莉. 国际法视野下生物多样性和气候变化的协同治理[J]. 生物多样性, 2023, 31(7): 23110-. |
[8] | 杨俊毅, 关潇, 李俊生, 刘晶晶, 郝颢晶, 王槐睿. 乌江流域生物多样性与生态系统服务的空间格局及相互关系[J]. 生物多样性, 2023, 31(7): 23061-. |
[9] | 鲍虞园, 李银康, 林吴颖, 周志琴, 肖晓波, 颉晓勇. 中国南海北部近海鲎资源调查及北部湾潮间带中华鲎幼鲎潜在栖息地评估[J]. 生物多样性, 2023, 31(5): 22407-. |
[10] | 邓昶, 郝杰威, 高德, 任明迅, 张莉娜. 海南受威胁苔藓植物适生热点区域识别与保护[J]. 生物多样性, 2023, 31(4): 22580-. |
[11] | 姚雪, 陈星, 戴尊, 宋坤, 邢诗晨, 曹宏彧, 邹璐, 王健. 采集策略对叶附生苔类植物发现概率及物种多样性的重要性[J]. 生物多样性, 2023, 31(4): 22685-. |
[12] | 邵雯雯, 范国祯, 何知舟, 宋志平. 多地同质园实验揭示普通野生稻的表型可塑性与本地适应性[J]. 生物多样性, 2023, 31(3): 22311-. |
[13] | 桑佳文, 宋创业, 贾宁霞, 贾元, 刘长成, 乔鲜果, 张琳, 袁伟影, 吴冬秀, 李凌浩, 郭柯. 青藏高原植被调查与制图评估[J]. 生物多样性, 2023, 31(3): 22430-. |
[14] | 姚仁秀, 陈燕, 吕晓琴, 王江湖, 杨付军, 王晓月. 海拔及环境因子影响杜鹃属植物的表型特征和化学性状[J]. 生物多样性, 2023, 31(2): 22259-. |
[15] | 王金洲, 徐靖. “基于自然的解决方案”应对生物多样性丧失和气候变化: 进展、挑战和建议[J]. 生物多样性, 2023, 31(2): 22496-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn