生物多样性 ›› 2024, Vol. 32 ›› Issue (8): 24141. DOI: 10.17520/biods.2024141 cstr: 32101.14.biods.2024141
吴琼,#, 赵梓羲,#, 孙桃柱, 赵雨梦(), 于丛, 祝芹*()(), 李忠秋()
收稿日期:
2024-04-12
接受日期:
2024-08-14
出版日期:
2024-08-20
发布日期:
2024-08-30
通讯作者:
*E-mail: qinzhu@nju.edu.cn
作者简介:
#共同第一作者
基金资助:
Qiong Wu,#, Zixi Zhao,#, Taozhu Sun, Yumeng Zhao(), Cong Yu, Qin Zhu*()(), Zhongqiu Li()
Received:
2024-04-12
Accepted:
2024-08-14
Online:
2024-08-20
Published:
2024-08-30
Contact:
*E-mail: qinzhu@nju.edu.cn
About author:
#Co-first authors
Supported by:
摘要:
随着道路网络的快速扩张, 交通发展和生态保护的矛盾日益严重, 并逐渐受到生态学家的关注。道路网络的扩张导致动物栖息地破碎化和种群间的交流减少, 严重威胁生物多样性; 而道路交通所造成的动物道路死亡(即路杀), 是道路对动物最直接且最重要的影响。本研究以华东地区的特大城市南京市为例, 于2020年11月至2021年10月, 采用样线法对其不同行政等级道路的动物路杀情况进行调查, 使用回归分析探究路杀事件的发生概率, 并建立动物路杀探究模型, 以进一步明确道路及其周边环境因素对动物路杀发生概率的影响。结果表明: (1)调查期间共记录到21种293只路杀动物。其中兽类136只, 占比46.42%, 以猫(Felis catus)和狗(Canis lupus familiaris)最为常见; 鸟类143只, 占比48.81%, 以乌鸫(Turdus mandarinus)和麻雀(Passer montanus)最为常见。(2)自然景观特征中的耕地(旱作农田及灌溉农田)及建筑(建筑物及构筑物)的面积占比影响路杀事件的发生几率。道路周围250 m范围内, 耕地和建筑的面积占比与动物路杀的发生概率呈显著负相关关系: 其中, 随耕地面积占比的增加, 鸟类的路杀发生概率降低, 而兽类的路杀发生概率升高。(3)道路特征影响动物路杀事件的发生几率: 当道路中有隔离带时, 路杀事件的几率增加。(4)线性特征(到最近河流距离、到最近高架桥距离、到最近主干道距离)影响鸟类路杀的发生概率: 离河流越远, 鸟类相关的路杀事件越少; 而离高架桥及主干道越远, 鸟类相关的路杀事件则越多。本研究明确了南京市动物路杀的自然景观和道路特征影响因素, 相关结果可为区域内路网优化、道路升级改造、生态廊道建设和管护等提供实践性的科学依据。
吴琼, 赵梓羲, 孙桃柱, 赵雨梦, 于丛, 祝芹, 李忠秋 (2024) 城市道路特征及自然景观对动物路杀的影响: 以南京为例. 生物多样性, 32, 24141. DOI: 10.17520/biods.2024141.
Qiong Wu, Zixi Zhao, Taozhu Sun, Yumeng Zhao, Cong Yu, Qin Zhu, Zhongqiu Li (2024) Impact of urban road characteristics and natural landscapes on animal vehicle collisions: A case study in Nanjing. Biodiversity Science, 32, 24141. DOI: 10.17520/biods.2024141.
图1 江苏省南京市动物路杀事件调查样线及景观类型分布图。G1‒G3为国道; S1‒S3为省道; X1-X3为县道。
Fig. 1 The animals roadkill survey transects and landscape distribution map of Nanjing City, Jiangsu Province. National roads are indicated as G1, G2 and G3; S1, S2 and S3 represent for provincial road while X1, X2 and X3 represent for county road.
响应变量 Response variable | 自变量类别 Independent variable category | 所选模型 Selected model |
---|---|---|
每个取样单元内动物/鸟类/兽类路杀事件数量 Number of animal/bird/mammal roadkill incidents in each sampling unit | 自然景观 Natural landscape | 250 m缓冲区内耕地面积占比 + 250 m缓冲区内建筑面积占比 + 250 m缓冲区内林地面积占比 + 500 m缓冲区内草地面积占比 + 1,000 m缓冲区内草地面积占比 + 1,000 m缓冲区内林地面积占比+ 1,000 m缓冲区内耕地面积占比+ 1,000 m缓冲区内建筑面积占比 + (1 | 取样单元所在调查样线) P_farm250 + P_build250 + P_forest250 + P_grass500 + P_grass1000 + P_forest1000 + P_farm1000 + P_build1000 + (1 | ID) |
道路特征 Road features | 海拔高度 + 道路曲折度+ 取样单元道路长度 + 车道数目 + 道路最高限速 + 道路隔离带 + 道路类型+ (1 | 取样单元所在调查样线) Ele + Sinu + Length + Lane + Speed + Iso + Roadtype + (1 | ID) | |
线性特征 Linear features | 到最近河流(线状水体)的距离 + 到最近湖泊湿地(面状水体)的距离 + 到最近高架桥的距离 + 到最近城市次干道的距离 + 到最近城市主干道的距离 + 到最近道路的距离+ (1 | 取样单元所在调查样线) D_river + D_lake + D_trunk + D_subarte + D_arte + D_road + (1 | ID) |
表1 南京市动物路杀事件的回归模型信息表
Table 1 Regression models of animal vehicle collisions in Nanjing City
响应变量 Response variable | 自变量类别 Independent variable category | 所选模型 Selected model |
---|---|---|
每个取样单元内动物/鸟类/兽类路杀事件数量 Number of animal/bird/mammal roadkill incidents in each sampling unit | 自然景观 Natural landscape | 250 m缓冲区内耕地面积占比 + 250 m缓冲区内建筑面积占比 + 250 m缓冲区内林地面积占比 + 500 m缓冲区内草地面积占比 + 1,000 m缓冲区内草地面积占比 + 1,000 m缓冲区内林地面积占比+ 1,000 m缓冲区内耕地面积占比+ 1,000 m缓冲区内建筑面积占比 + (1 | 取样单元所在调查样线) P_farm250 + P_build250 + P_forest250 + P_grass500 + P_grass1000 + P_forest1000 + P_farm1000 + P_build1000 + (1 | ID) |
道路特征 Road features | 海拔高度 + 道路曲折度+ 取样单元道路长度 + 车道数目 + 道路最高限速 + 道路隔离带 + 道路类型+ (1 | 取样单元所在调查样线) Ele + Sinu + Length + Lane + Speed + Iso + Roadtype + (1 | ID) | |
线性特征 Linear features | 到最近河流(线状水体)的距离 + 到最近湖泊湿地(面状水体)的距离 + 到最近高架桥的距离 + 到最近城市次干道的距离 + 到最近城市主干道的距离 + 到最近道路的距离+ (1 | 取样单元所在调查样线) D_river + D_lake + D_trunk + D_subarte + D_arte + D_road + (1 | ID) |
图2 2020‒2021年南京市取样道路上路杀动物路杀种类及数量。无法确定路杀鸟类为何物种, 仅能确定其所属纲时则记录为鸟纲(不包含已鉴定到种的路杀记录); 无法确定路杀兽类为何物种, 仅能确定其所属纲时则记录为哺乳纲(不包含已鉴定到种的路杀记录); 无法确定路杀动物为何物种及其所属纲时则记录为未知物种。
Fig. 2 Types and quantities of animal vehicle collisions on sampling roads in Nanjing City, Jiangsu Province in 2020-2021. Aves, The roadkill birds could only identify them to the class level; Mammal, The roadkill mammals could only identify them to the class level; Unknow, The species of roadkill animals unable to determine the class level.
因变量 Dependent variable | 所选模型 Selected model | 自然景观变量的AIC AIC of natural landscape variables | 道路特征变量的AIC AIC of road features variables | 线性特征变量的AIC AIC of linear features variables |
---|---|---|---|---|
动物路杀事件 Animal vehicle collisions | 负二项式模型 Negative binomial model | 1,107.89 | 1,120.00 | 1,100.22 |
广义线性混合模型 Generalized linear mixed model | 1,194.70 | 1,227.10 | 1,162.42 | |
零膨胀负二项式模型 Zero expansion negative binomial model | 1,110.33 | 1,120.01 | 1,092.97 | |
鸟类路杀事件 Bird vehicle collisions | 负二项式模型 Negative binomial model | 693.23 | 717.34 | 690.89 |
广义线性混合模型 Generalized linear mixed model | 723.70 | 762.30 | 717.96 | |
零膨胀负二项式模型 Zero expansion negative binomial model | 703.63 | 717.37 | 694.33 | |
兽类路杀事件 Mammal vehicle collisions | 负二项式模型 Negative binomial model | 791.21 | 789.37 | 787.95 |
广义线性混合模型 Generalized linear mixed model | 848.50 | 843.60 | 827.92 | |
零膨胀负二项式模型 Zero expansion negative binomial model | 794.04 | 789.40 | 780.92 |
表2 基于Akaike信息准则(AIC)值的自然景观、道路特征、线性特征变量的模型选择结果
Table 2 Model selection results of natural landscape, road features, and linear features variables based on Akaike information criterion (AIC)
因变量 Dependent variable | 所选模型 Selected model | 自然景观变量的AIC AIC of natural landscape variables | 道路特征变量的AIC AIC of road features variables | 线性特征变量的AIC AIC of linear features variables |
---|---|---|---|---|
动物路杀事件 Animal vehicle collisions | 负二项式模型 Negative binomial model | 1,107.89 | 1,120.00 | 1,100.22 |
广义线性混合模型 Generalized linear mixed model | 1,194.70 | 1,227.10 | 1,162.42 | |
零膨胀负二项式模型 Zero expansion negative binomial model | 1,110.33 | 1,120.01 | 1,092.97 | |
鸟类路杀事件 Bird vehicle collisions | 负二项式模型 Negative binomial model | 693.23 | 717.34 | 690.89 |
广义线性混合模型 Generalized linear mixed model | 723.70 | 762.30 | 717.96 | |
零膨胀负二项式模型 Zero expansion negative binomial model | 703.63 | 717.37 | 694.33 | |
兽类路杀事件 Mammal vehicle collisions | 负二项式模型 Negative binomial model | 791.21 | 789.37 | 787.95 |
广义线性混合模型 Generalized linear mixed model | 848.50 | 843.60 | 827.92 | |
零膨胀负二项式模型 Zero expansion negative binomial model | 794.04 | 789.40 | 780.92 |
因变量 Dependent variable | 解释变量 Explanatory variable | 参数估计 Parameter estimation | 标准误 Standard error | P值 P value |
---|---|---|---|---|
动物路杀事件 Animal vehicle collisions | 截距 Intercept | ‒0.203 | 0.138 | 0.141 |
P_farm250 | ‒0.240 | 0.082 | 0.003** | |
P_build250 | ‒0.219 | 0.063 | < 0.001*** | |
P_farm1000 | 0.236 | 0.052 | < 0.001*** | |
Iso1 | 0.223 | 0.154 | 1.452 | |
鸟类路杀事件 Bird vehicle collisions | 截距 Intercept | ‒1.560 | 0.252 | < 0.001*** |
P_build250 | ‒0.303 | 0.100 | 0.002** | |
P_farm1000 | 0.272 | 0.087 | 0.002** | |
Iso1 | 0.547 | 0.227 | 0.016* | |
D_river | ‒0.545 | 0.144 | < 0.001*** | |
D_trunk | 0.285 | 0.143 | 0.046* | |
D_arte | 0.462 | 0.094 | < 0.001*** | |
兽类路杀事件 Mammal vehicle collisions | 截距 Intercept | ‒0.832 | 0.163 | < 0.001*** |
P_farm250 | ‒0.201 | 0.103 | 0.051 |
表3 南京市陆生脊椎动物路杀事件汇总回归模型结果
Table 3 Results of the summary regression model for roadkill incidents of terrestrial vertebrates in Nanjing City
因变量 Dependent variable | 解释变量 Explanatory variable | 参数估计 Parameter estimation | 标准误 Standard error | P值 P value |
---|---|---|---|---|
动物路杀事件 Animal vehicle collisions | 截距 Intercept | ‒0.203 | 0.138 | 0.141 |
P_farm250 | ‒0.240 | 0.082 | 0.003** | |
P_build250 | ‒0.219 | 0.063 | < 0.001*** | |
P_farm1000 | 0.236 | 0.052 | < 0.001*** | |
Iso1 | 0.223 | 0.154 | 1.452 | |
鸟类路杀事件 Bird vehicle collisions | 截距 Intercept | ‒1.560 | 0.252 | < 0.001*** |
P_build250 | ‒0.303 | 0.100 | 0.002** | |
P_farm1000 | 0.272 | 0.087 | 0.002** | |
Iso1 | 0.547 | 0.227 | 0.016* | |
D_river | ‒0.545 | 0.144 | < 0.001*** | |
D_trunk | 0.285 | 0.143 | 0.046* | |
D_arte | 0.462 | 0.094 | < 0.001*** | |
兽类路杀事件 Mammal vehicle collisions | 截距 Intercept | ‒0.832 | 0.163 | < 0.001*** |
P_farm250 | ‒0.201 | 0.103 | 0.051 |
[1] | Ascensão F, Kindel A, Teixeira FZ, Barrientos R, D’Amico M, Borda-de-Água L, Pereira HM (2019) Beware that the lack of wildlife mortality records can mask a serious impact of linear infrastructures. Global Ecology and Conservation, 19, e00661. |
[2] | Bager A, Fontoura V (2013) Evaluation of the effectiveness of a wildlife roadkill mitigation system in wetland habitat. Ecological Engineering, 53, 31-38. |
[3] | Balčiauskas L, Stratford J, Balčiauskienė L, Kučas A (2020) Importance of professional roadkill data in assessing diversity of mammal roadkills. Transportation Research Part D: Transport and Environment, 87, 102493. |
[4] | Banks-Leite C, Ewers RM, Folkard-Tapp H, Fraser A (2020) Countering the effects of habitat loss, fragmentation, and degradation through habitat restoration. One Earth, 3, 672-676. |
[5] | Bishop CA, Brogan JM (2013) Estimates of avian mortality attributed to vehicle collisions in Canada. Avian Conservation and Ecology, 8, 2. |
[6] | Boynton CK, Mahony NA, Williams TD (2020) Barn Swallow (Hirundo rustica) fledglings use crop habitat more frequently in relation to its availability than pasture and other habitat types. The Condor: Ornithological Applications, 122, duz067. |
[7] | Brown CR, Bomberger Brown M (2013) Where has all the road kill gone? Current Biology, 23, R233-R234. |
[8] | Cai M, Zou JF, Xie JM, Ma XL (2015) Road traffic noise mapping in Guangzhou using GIS and GPS. Applied Acoustics, 87, 94-102. |
[9] |
Cheadle C, Vawter MP, Freed WJ, Becker KG (2003) Analysis of microarray data using Z score transformation. Journal of Molecular Diagnostics, 5, 73-81.
DOI PMID |
[10] | Chyn K, Lin TE, Chen YK, Chen CY, Fitzgerald LA (2019) The magnitude of roadkill in Taiwan: Patterns and consequences revealed by citizen science. Biological Conservation, 237, 317-326. |
[11] | Colino-Rabanal VJ, Langen TA, Peris SJ, Lizana M (2018) Ungulate: Vehicle collision rates are associated with the phase of the moon. Biodiversity and Conservation, 27, 681-694. |
[12] | Costa de Souza L (2011) Survey of wild mammals small and medium-size run over in BR 101, stretch between the municipalities of Joinville and Piçarras, State of Santa Catarina. Bioscience Journal, 27, 666-673. |
[13] | Crego RD, Wells HBM, Ndung’u KS, Evans L, Njeri Nduguta R, Chege MA, Bomberger Brown M, Ogutu JO, Ojwang GO, Fennessy J, O’Connor D, Stacy-Dawes J, Rubenstein DI, Martins DJ, Leimgruber P, Stabach JA (2021) Moving through the mosaic: Identifying critical linkage zones for large herbivores across a multiple-use African landscape. Landscape Ecology, 36, 1325-1340. |
[14] | Dray S, Pélissier R, Couteron P, Fortin MJ, Legendre P, Peres-Neto PR, Bellier E, Bivand R, Blanchet FG, De Cáceres M, Dufour AB, Heegaard E, Jombart T, Munoz F, Oksanen J, Thioulouse J, Wagner HH (2012) Community ecology in the age of multivariate multiscale spatial analysis. Ecological Monographs, 82, 257-275. |
[15] | Erritzoe J, Mazgajski TD, Rejt Ł (2003) Bird casualties on European roads—A review. Acta Ornithologica, 38, 77-93. |
[16] | Fahrig L, Rytwinski T (2009) Effects of roads on animal abundance: An empirical review and synthesis. Ecology and Society, 14, art21. |
[17] |
Filius J, van der Hoek Y, Jarrín-V P, van Hooft P (2020) Wildlife roadkill patterns in a fragmented landscape of the Western Amazon. Ecology and Evolution, 10, 6623-6635.
DOI PMID |
[18] | Freitas SR, de Nepomuceno OA, Ciocheti G, Vieira MV, Maria D, Matos S (2015) How landscape features influence roadkill of three species of mammals in the Brazilian savanna. Oecologia Australis, 18, 35-45. |
[19] | Gehrt SD, Clark WR (2003) Raccoons, coyotes, and reflections on the mesopredator release hypothesis. Wildlife Society Bulletin, 31, 836-842. |
[20] | Grilo C, Ferreira FZ, Revilla E (2015) No evidence of a threshold in traffic volume affecting road-kill mortality at a large spatio-temporal scale. Environmental Impact Assessment Review, 55, 54-58. |
[21] | Grilo C, Koroleva E, Andrášik R, Bíl M, González-Suárez M (2020) Roadkill risk and population vulnerability in European birds and mammals. Frontiers in Ecology and the Environment, 18, 323-328. |
[22] | Ha H, Shilling F (2018) Modelling potential wildlife-vehicle collisions (WVC) locations using environmental factors and human population density: A case-study from 3 state highways in Central California. Ecological Informatics, 43, 212-221. |
[23] | Harris S, Cresswell W, Reason P, Cresswell P (1992) An integrated approach to monitoring badger (Meles meles) population changes in Britain. In: Wildlife 2001: Populations (eds McCullough DR, Barrett RH), pp. 945-953. Springer, Dordrecht. |
[24] | Hobday AJ (2010) Nighttime driver detection distances for Tasmanian fauna: Informing speed limits to reduce roadkill. Wildlife Research, 37, 265-272. |
[25] | Hsieh FY, Lavori PW, Cohen HJ, Feussner JR (2003) An overview of variance inflation factors for sample-size calculation. Evaluation & the Health Professions, 26, 239-257. |
[26] | Husby M (2016) Factors affecting road mortality in birds. Ornis Fennica, 93, 212-224. |
[27] |
Ibisch PL, Hoffmann MT, Kreft S, Pe’er G, Kati V, Biber-Freudenberger L, DellaSala DA, Vale MM, Hobson PR, Selva N (2016) A global map of roadless areas and their conservation status. Science, 354, 1423-1427.
PMID |
[28] | Jaeger JAG, Bowman J, Brennan J, Fahrig L, Bert D, Bouchard J, Charbonneau N, Frank K, Gruber B, von Toschanowitz KT (2005) Predicting when animal populations are at risk from roads: An interactive model of road avoidance behavior. Ecological Modelling, 185, 329-348. |
[29] | Jiang ZG (2021) China’s Red List of Biodiversity·Vertebrates (Vol. I):Mammals (I). Science Press, Beijing. (in Chinese and in English) |
[蒋志刚 (2021) 中国生物多样性红色名录·脊椎动物(第一卷): 哺乳动物(上册). 科学出版社, 北京.] | |
[30] | Johnson CD, Evans D, Jones D (2017) Birds and roads: Reduced transit for smaller species over roads within an urban environment. Frontiers in Ecology and Evolution, 5, 241076. |
[31] | Kent E, Schwartz ALW, Perkins SE (2021) Life in the fast lane: Roadkill risk along an urban-rural gradient. Journal of Urban Ecology, 7, juaa039. |
[32] | Krukowicz T, Firląg K, Chrobot P (2022) Spatiotemporal analysis of road crashes with animals in Poland. Sustainability, 14, 1253. |
[33] | Kusack JW, Mitchell GW, Evans DR, Cadman MD, Hobson KA (2020) Effects of agricultural intensification on nestling condition and number of young fledged of barn swallows (Hirundo rustica). Science of the Total Environment, 709, 136195. |
[34] | Kušta T, Keken Z, Ježek M, Holá M, Šmíd P (2017) The effect of traffic intensity and animal activity on probability of ungulate-vehicle collisions in the Czech Republic. Safety Science, 91, 105-113. |
[35] | Leblond M, Dussault C, Ouellet JP (2013) Avoidance of roads by large herbivores and its relation to disturbance intensity. Journal of Zoology, 289, 32-40. |
[36] | Li J, Cong J, Liu X, Zhou YY, Wang XL, Li GL, Li DQ (2015) Effect of tourist roads on mammal activity in Shennongjia National Nature Reserve based on the trap technique of infrared cameras. Chinese Journal of Ecology, 34, 2195-2200. (in Chinese with English abstract) |
[李佳, 丛静, 刘晓, 周芸芸, 王秀磊, 李广良, 李迪强 (2015) 基于红外相机技术调查神农架旅游公路对兽类活动的影响. 生态学杂志, 34, 2195-2200.] | |
[37] | Liu Y, Chen SH (2021) A Guide to the Bird in China. Hunan Science and Technology Press, Changsha. (in Chinese) |
[刘阳, 陈水华 (2021) 中国鸟类观察手册. 湖南科学技术出版社, 长沙.] | |
[38] | Loss SR, Will T, Marra PP (2014) Estimation of bird-vehicle collision mortality on U.S. roads. The Journal of Wildlife Management, 78, 763-771. |
[39] |
Madden JR, Hall A, Whiteside MA (2018) Why do many pheasants released in the UK die, and how can we best reduce their natural mortality? European Journal of Wildlife Research, 64, 40.
DOI PMID |
[40] |
Maierdiyali A, Wang Y, Tao SC, Kong YP, Wang H, Lü Z (2022) Research status and challenges of road impacts on wildlife in China. Biodiversity Science, 30, 22209. (in Chinese with English abstract)
DOI |
[阿卜杜赛麦提·买尔迪亚力, 王云, 陶双成, 孔亚平, 王昊, 吕植 (2022) 我国道路对野生动物影响研究的现状与挑战. 生物多样性, 30, 22209.]
DOI |
|
[41] |
Markovchick NL, Regan HM, Deutschman DH, Widyanata A, Martin B, Noreke L, Hunt TA (2008) Relationships between human disturbance and wildlife land use in urban habitat fragments. Conservation Biology, 22, 99-109.
DOI PMID |
[42] | Medrano-Vizcaíno P, Espinosa S (2021) Geography of roadkills within the Tropical Andes Biodiversity Hotspot: Poorly known vertebrates are part of the toll. Biotropica, 53, 820-830. |
[43] | Morelli F, Beim M, Jerzak L, Jones D, Tryjanowski P (2014) Can roads, railways and related structures have positive effects on birds?—A review. Transportation Research Part D: Transport and Environment, 30, 21-31. |
[44] | Morin DJ, Lesmeister DB, Nielsen CK, Schauber EM (2018) The truth about cats and dogs: Landscape composition and human occupation mediate the distribution and potential impact of non-native carnivores. Global Ecology and Conservation, 15, e00413. |
[45] | Qiu L, Feng ZJ (2004) Effects of traffic during daytime and other human activities on the migration of Tibetan antelope along the Qinghai-Tibet Highway, Qinghai-Tibet Plateau. Acta Zoologica Sinica, 50, 669-674. (in Chinese with English abstract) |
[裘丽, 冯祚建 (2004) 青藏公路沿线白昼交通运输等人类活动对藏羚羊迁徙的影响. 动物学报, 50, 669-674.] | |
[46] | R Core Team (2022) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org. (accessed on 2023-09-01) |
[47] | Rytwinski T, Soanes K, Jaeger JAG, Fahrig L, Findlay CS, Houlahan J, Ree R, Grift EA (2016) How effective is road mitigation at reducing road-kill? A meta-analysis. PLoS ONE, 11, e0166941. |
[48] |
Santos SM, Marques JT, Lourenço A, Medinas D, Barbosa AM, Beja P, Mira A (2015) Sampling effects on the identification of roadkill hotspots: Implications for survey design. Journal of Environmental Management, 162, 87-95.
DOI PMID |
[49] | Seress G, Liker A (2015) Habitat urbanization and its effects on birds. Acta Zoologica Academiae Scientiarum Hungaricae, 4, 373-408. |
[50] |
Taylor SK, Buergelt CD, Roelke-Parker ME, Homer BL, Rotstein DS (2002) Causes of mortality of free-ranging Florida panthers. Journal of Wildlife Diseases, 38, 107-114.
PMID |
[51] | Tres GZ, Pacheco TD, Silva Vitor GC, Wagner PGC, Nisa-Castro-Neto W, Cruz CE (2024) The impact of RS-040 highway on wildlife roadkill patterns, Porto Alegre, Southern Brazil. Ethnobiology and Conservation, 13, 1-15. |
[52] | Trombulak SC, Frissell CA (2000) Review of ecological effects of roads on terrestrial and aquatic communities. Conservation Biology, 14, 18-30. |
[53] | Van Der Hoeven CA, De Boer WF, Prins HHT (2010) Roadside conditions as predictor for wildlife crossing probability in a Central African rainforest. African Journal of Ecology, 48, 368-377. |
[54] | Volpato A, Moran J (2022) Ecological value of different vegetated strip types in providing valuable insect-rich habitats for grey partridge chicks. Irish Journal of Agricultural and Food Research, 60, 180-190. |
[55] | Wang MY, Ji SN, Shao CL, Xu WX, Chen C, Yang WK (2021) Effects of road type on the distribution of great gerbil in the Kalamaili Mountain Ungulate Nature Reserve, China. Sichuan Journal of Zoology, 40, 1-7. (in Chinese with English abstract) |
[汪沐阳, 吉晟男, 邵长亮, 徐文轩, 陈晨, 杨维康 (2021) 不同类型道路对卡拉麦里山有蹄类野生动物自然保护区大沙鼠分布的影响. 四川动物, 40, 1-7.] | |
[56] | Wang Y, Yang YG, Han YS, Shi GQ, Zhang LL, Wang ZC, Cao GH, Zhou HP, Kong YP, Piao ZJ (2022) Temporal patterns and factors influencing vertebrate roadkill in China. Transportation Research Interdisciplinary Perspectives, 15, 100662. |
[57] | Wei FW, Yang QS, Wu Y, Jiang XL, Liu SY, Li BG, Yang G, Li M, Zhou J, Li S, Hu YB, Ge DY, Li S, Yu WH, Chen BY, Zhang ZJ, Zhou CQ, Wu SB, Zhang L, Chen ZZ, Chen SD, Deng HQ, Jiang TL, Zhang LB, Shi HY, Lu XL, Li Q, Liu Z, Cui YQ, Li YC (2021) Catalogue of Mammals in China (2021). Acta Theriologica Sinica, 41, 487-501. (in Chinese with English abstract) |
[魏辅文, 杨奇森, 吴毅, 蒋学龙, 刘少英, 李保国, 杨光, 李明, 周江, 李松, 胡义波, 葛德燕, 李晟, 余文华, 陈炳耀, 张泽钧, 周材权, 吴诗宝, 张立, 陈中正, 陈顺德, 邓怀庆, 江廷磊, 张礼标, 石红艳, 卢学理, 李权, 刘铸, 崔雅倩, 李玉春 (2021) 中国兽类名录(2021版). 兽类学报, 41, 487-501.]
DOI |
|
[58] | Wu Q, Sun TZ, Zhao YM, Yu C, Hu JH, Li ZQ (2023) Temporal and spatial patterns of small vertebrate roadkill in a supercity of eastern China. PeerJ, 11, e16251. |
[59] | Zhao EM, Huang MH, Zong Y (1998) Fauna Sinica·Reptilia (Vol. 3): Squamata·Serpentes. Science Press, Beijing. (in Chinese) |
[赵尔宓, 黄美华, 宗愉 (1998) 中国动物志·爬行纲(第三卷): 有鳞目·蛇亚目. 科学出版社, 北京.] | |
[60] | Zheng GM (2023) A Checklist on the Classification and Distribution of the Birds of China, 3rd edn. Science Press, Beijing. (in Chinese) |
[郑光美 (2023) 中国鸟类分类与分布名录(第三版). 科学出版社, 北京.] | |
[61] | Zhou YT, Xu JH, Hu DF, Zhao Y, Li QH, Sun JX, Chen W, Chang Q, Li P, Hu CC (2023) Functional and phylogenetic bird diversity and bird strike avoidance at Nanjing Lukou International Airport. Journal of Nanjing Normal University (Natural Science Edition), 46(3), 69-78. (in Chinese with English abstract) |
[周雨桐, 徐嘉晖, 胡东方, 赵阳, 李权衡, 孙健翔, 陈婉, 常青, 李鹏, 胡超超 (2023) 南京禄口国际机场鸟类群落功能和谱系多样性及鸟击防范研究. 南京师大学报(自然科学版), 46(3), 69-78.] |
[1] | 段菲, 刘鸣章, 卜红亮, 俞乐, 李晟. 城市化对鸟类群落组成及功能特征的影响——以京津冀地区为例[J]. 生物多样性, 2024, 32(8): 23473-. |
[2] | 胡志清, 董路. 城市化对鸟类参与的种间互作的影响[J]. 生物多样性, 2024, 32(8): 24048-. |
[3] | 白皓天, 余上, 潘新园, 凌嘉乐, 吴娟, 谢恺琪, 刘阳, 陈学业. AI辅助识别的鸟类被动声学监测在城市湿地公园中的应用[J]. 生物多样性, 2024, 32(8): 24188-. |
[4] | 王秦韵, 张玉泉, 刘浩, 李明, 刘菲, 赵宁, 陈鹏, 齐敦武, 阙品甲. 成都大熊猫繁育研究基地鸟类多样性[J]. 生物多样性, 2024, 32(8): 24066-. |
[5] | 顾燚芸, 薛嘉祈, 高金会, 谢心仪, 韦铭, 雷进宇, 闻丞. 一种基于公众科学数据的区域性鸟类多样性评价方法[J]. 生物多样性, 2024, 32(7): 24080-. |
[6] | 李柏灿, 张军国, 张长春, 王丽凤, 徐基良, 刘利. 基于TC-YOLO模型的北京珍稀鸟类识别方法[J]. 生物多样性, 2024, 32(5): 24056-. |
[7] | 李斌, 宋鹏飞, 顾海峰, 徐波, 刘道鑫, 江峰, 梁程博, 张萌, 高红梅, 蔡振媛, 张同作. 昆仑山青海片区鸟类群落多样性格局及其驱动因素[J]. 生物多样性, 2024, 32(4): 23406-. |
[8] | 王鹏, 隋佳容, 丁欣瑶, 王伟中, 曹雪倩, 赵海鹏, 王彦平. 郑州城市公园鸟类群落嵌套分布格局及其影响因素[J]. 生物多样性, 2024, 32(3): 23359-. |
[9] | 王丽媛, 胡慧建, 姜杰, 胡一鸣. 南岭哺乳类和鸟类物种丰富度空间分布格局及其影响因子[J]. 生物多样性, 2024, 32(1): 23026-. |
[10] | 李发扬, 李滢钰, 蒋文妮, 刘曙光, 霍超, 孙巧奇, 邹红菲. 火后恢复时间影响大兴安岭寒温带森林内部与边缘鸟类多样性[J]. 生物多样性, 2023, 31(7): 22665-. |
[11] | 殷鲁秦, 王成, 韩文静. 基于取食行为探究北京居民区鸟类的食源特征及多样性[J]. 生物多样性, 2023, 31(5): 22473-. |
[12] | 陈本平, 陈建武, 凌征文, 杨旭, 陈鑫, 李生强, 杨彪. 四川老君山国家级自然保护区林下鸟兽多样性及动态变化数据集[J]. 生物多样性, 2023, 31(5): 22566-. |
[13] | 陈晓澄, 张鹏展, 康斌, 刘林山, 赵亮. 基于中国科学院西北高原生物研究所馆藏标本分析青藏高原雀形目鸟类物种和功能多样性[J]. 生物多样性, 2023, 31(5): 22638-. |
[14] | 张琼悦, 邓卓迪, 胡学斌, 丁志锋, 肖荣波, 修晨, 吴政浩, 汪光, 韩东晖, 张语克, 梁健超, 胡慧建. 粤港澳大湾区城市化进程对区域内鸟类分布及栖息地连通性的影响[J]. 生物多样性, 2023, 31(3): 22161-. |
[15] | 赵也茜, 张家语, 李子涵, 解秦米佳, 邓歆, 王楠. 北京城市鸟类夜栖时对本土和外来植物的利用[J]. 生物多样性, 2023, 31(3): 22399-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn