生物多样性 ›› 2024, Vol. 32 ›› Issue (10): 24296. DOI: 10.17520/biods.2024296 cstr: 32101.14.biods.2024296
李乐1(), 张承云2(
), 裴男才1(
), 高丙涛1(
), 王娜3(
), 李嘉睿1, 武瑞琛1, 郝泽周1,*(
)(
)
收稿日期:
2024-07-06
接受日期:
2024-10-10
出版日期:
2024-10-20
发布日期:
2024-11-26
通讯作者:
*E-mail: zezhouhao@caf.ac.cn
基金资助:
Le Li1(), Chengyun Zhang2(
), Nancai Pei1(
), Bingtao Gao1(
), Na Wang3(
), Jiarui Li1, Ruichen Wu1, Zezhou Hao1,*(
)(
)
Received:
2024-07-06
Accepted:
2024-10-10
Online:
2024-10-20
Published:
2024-11-26
Contact:
*E-mail: zezhouhao@caf.ac.cn
Supported by:
摘要:
城市化导致的生境破碎化与生境质量下降对生物多样性造成了负面影响。鸟类是全球生物多样性的重要组成部分, 也是生态环境变化的重要指示物种。城市绿地在鸟类多样性保护中起着主导作用, 理解绿地景观特征与鸟类多样性的关系对城市景观可持续管理和生物多样性保护具有重要意义。为了探究不同取食集团鸟类多样性对城市绿地景观格局的响应差异, 本研究基于被动声学监测技术对广州市30个城市公园开展了为期6个月的同步连续监测, 并基于深度学习模型识别物种信息, 采用冗余分析、随机森林回归、分类和回归树模型量化了鸟类物种数量与绿地景观特征之间的关系。结果表明:较高绿地面积比例和较大斑块面积对鸟类物种数量有积极的影响, 而降低生境景观连通性对其有负面影响, 但不同食性的鸟类对景观特征的响应存在差异。杂食鸟类更加适应破碎化的环境, 食肉鸟对生境连通性高度敏感, 食虫鸟则依赖绿地平均斑块面积。此外, 夜间人造灯光与鸟类物种数量呈负相关关系, 食虫鸟对其的响应更加敏感。鸟类物种数量与绿地景观特征之间呈非线性关系, 具有不同的响应过程和阈值。当2 km圆形缓冲区内绿地平均斑块面积高于0.01-0.02 ha或孤岛面积比例低于0.92%-10.40%时, 有助于增加专一食性鸟类物种数量。为提升城市鸟类整体多样性, 建议减少人造灯光对鸟类的负面影响, 并在景观管理中保护和恢复以本地物种为主的残存栖息地、建立廊道和补充性新栖息地、增强生境连通性。
李乐, 张承云, 裴男才, 高丙涛, 王娜, 李嘉睿, 武瑞琛, 郝泽周 (2024) 基于被动声学监测技术的城市绿地景观格局与鸟类多样性关联分析. 生物多样性, 32, 24296. DOI: 10.17520/biods.2024296.
Le Li, Chengyun Zhang, Nancai Pei, Bingtao Gao, Na Wang, Jiarui Li, Ruichen Wu, Zezhou Hao (2024) Correlation analysis of urban green landscape patterns and bird diversity based on passive acoustic monitoring technology. Biodiversity Science, 32, 24296. DOI: 10.17520/biods.2024296.
编号 Code | 声场景类型 Acoustic scene | 精确率 Precision rate | 召回率 Recall rate | F1得分 F1 score |
---|---|---|---|---|
1 | 鸟类 Brid | 0.96 | 0.95 | 0.96 |
2 | 鸟类-昆虫 Bird-insect | 0.98 | 0.98 | 0.98 |
3 | 鸟类-人工 Bird-human | 0.96 | 0.98 | 0.98 |
表1 城市声场景分类模型的训练结果与分类精度
Table 1 Training results and classification accuracy of acoustic scene classification
编号 Code | 声场景类型 Acoustic scene | 精确率 Precision rate | 召回率 Recall rate | F1得分 F1 score |
---|---|---|---|---|
1 | 鸟类 Brid | 0.96 | 0.95 | 0.96 |
2 | 鸟类-昆虫 Bird-insect | 0.98 | 0.98 | 0.98 |
3 | 鸟类-人工 Bird-human | 0.96 | 0.98 | 0.98 |
图3 录音点鸟类物种数量统计图。CH: 从化文化公园; CQ: 传祺公园; CX: 创新公园; DF: 大夫山森林公园; FR: 芙蓉嶂水库; HD: 花都湖湿地公园; HG: 黄阁镇体育公园; HN: 华南农业大学树木园; HS: 黄山鲁旁林地; HZ1: 海珠湿地四号地块; HZ2: 海珠湿地研学空间; LJ: 鹿颈公园; LS: 龙山古树公园; LT: 龙头山森林公园; LZ: 荔枝文化公园; MA: 马鞍山公园; MF: 帽峰山森林公园; NG: 牛牯岭; SL: 石马龙湿地公园; SM: 石门森林公园; TH: 天河公园; TZ: 太子坑森林公园; WQ: 温泉镇林地; XG: 晓港公园; XW: 夏湾拿湿地公园; YC: 盈翠公园; YX: 越秀公园; ZE: 纵二路旁林地; ZJ: 珠江公园; ZX: 中心湖公园。
Fig. 3 Statistical map of bird species numbers at recording sites. CH, Conghua Cultural Park; CQ, Chuanqi Park; CX, Chuangxin Park; DF, Dafu Mountain Forest Park; FR, Furongzhang Reservoir; HD, Huadu Lake Wetland Park; HG, Huangge Town Sports Park; HN, South China Agricultural University Arboretum; HS, Huangshanlu Forest; HZ1, Haizhu Wetland Plot No. 4; HZ2, Haizhu Wetland Research Learning Space; LJ, Lujing Park; LS, Longshan Ancient Tree Park; LT, Longtou Mountain Forest Park; LZ, Lychee Cultural Park; MA, Ma’anshan Park; MF, Maofeng Mountain Forest Park; NG, Niuguling Forest; SL, Shimalong Wetland Park; SM, Shimen Forest Park; TH, Tianhe Park; TZ, Taizikeng Forest Park; WQ, Wenquan Town Forest; XG, Xiaogang Park; XW, Xiawanna Wetland Park; YC, Yingcui Park; YX, Yuexiu Park; ZE, Zongerlu Forest; ZJ, Pearl River Park; ZX, Central Lake Park.
排序轴 Sorting axis | 总解释方差 Total explained variance (%) | |||
---|---|---|---|---|
轴I Axis I | 轴II Axis II | 轴III Axis III | ||
特征值 Eigenvalues | 1.081 | 0.506 | 0.199 | 44.67 |
特征解释量 Eigenvalues explained (%) | 27.05 | 12.66 | 4.96 | |
特征累计解释量 Cumulative eigenvalues explained (%) | 27.05 | 39.71 | 44.67 |
表2 景观特征与鸟类物种数量的冗余分析结果
Table 2 Redundancy analysis results of the relationship between landscape features and bird species numbers
排序轴 Sorting axis | 总解释方差 Total explained variance (%) | |||
---|---|---|---|---|
轴I Axis I | 轴II Axis II | 轴III Axis III | ||
特征值 Eigenvalues | 1.081 | 0.506 | 0.199 | 44.67 |
特征解释量 Eigenvalues explained (%) | 27.05 | 12.66 | 4.96 | |
特征累计解释量 Cumulative eigenvalues explained (%) | 27.05 | 39.71 | 44.67 |
图4 景观特征和鸟类物种数量的冗余分析(RDA)排序图(红色箭头为目标变量, 蓝色箭头为解释变量)。PLAND-gs: 绿地面积比例; MPS-gs: 绿地平均斑块面积; ENN-gs: 绿地斑块平均邻近距离; PLAND-islet: 孤岛面积比例; PD-gallery: 廊道斑块密度; PD-core: 核心斑块密度; MPS-gallery: 廊道平均斑块面积; ALAN: 人造夜间灯光。
Fig. 4 Redundancy analysis (RDA) ordination plot of landscape features and bird species numbers (Red arrows represent target variables, blue arrows represent explanatory variables). PLAND-gs, Proportion of green space; MPS-gs, Mean patch size of green space; ENN-gs, Mean nearest-neighbor distance of green patches; PLAND-islet, Proportion of islet; PD-gallery, Patch density of gallery; PD-core, Patch density of core; MPS-gallery, Mean patch size of gallery; ALAN, Artificial night-time light.
图5 随机森林回归(RFR)模型中预测变量对鸟类物种数量的相对重要性。括号中为Pearson相关系数; ALAN: 人造夜间灯光; NDVI: 归一化植被指数; PLAND-gs: 绿地面积比例; MPS-gs: 绿地平均斑块面积; ENN-gs: 绿地斑块平均邻近距离; PLAND-islet: 孤岛面积比例; PD-gallery: 廊道斑块密度; PD-core: 核心斑块密度; MPS-gallery: 廊道平均斑块面积; COHESOON-gs: 绿地斑块结合度; MESH-gs: 绿地有效粒度尺寸; MPS-islet: 孤岛平均斑块面积; PLAND-gallery: 廊道面积比例; PLAND-core: 核心面积比例; MPS-core: 核心斑块平均面积; PD-gs: 绿地斑块密度; PD-islet: 孤岛斑块密度; * P < 0.05; ** P < 0.01。
Fig. 5 Relative importance of predictor variables in the random forest regression (RFR) model for bird species numbers. Parentheses contain the Pearson correlation coefficient. ALAN, Artificial night-time light; NDVI, Normalized difference vegetation index; PLAND-gs, Proportion of green space; MPS-gs, Mean patch size of green space; ENN-gs, Mean nearest-neighbor distance of green patches; PLAND-islet, Proportion of islet; PD-gallery, Patch density of gallery; PD-core, Patch density of core; MPS-gallery, Mean patch size of gallery; COHESOON-gs, Cohesion index of green patches; MESH-gs, Effective mesh size of green space; MPS-islet, Mean patch size of islet; PLAND-gallery, Proportion of gallery; PLAND-core, Proportion of core; MPS-core, Mean patch size of core; PD-gs, Patch density of green space; PD-islet, Patch density of islet. * P < 0.05; ** P < 0.01.
图6 预测鸟类物种数量的回归树。NDVI: 归一化植被指数; PLAND-gs: 绿地面积比例; MPS-gs: 绿地平均斑块面积; PLAND-islet: 孤岛面积比例; MPS-islet: 孤岛平均斑块面积。
Fig. 6 Regression tree for bird species numbers as the dependent variable. NDVI, Normalized difference vegetation index; PLAND-gs, Proportion of green space; MPS-gs, Mean patch size of green space; PLAND-islet, Proportion of islet; MPS-islet, Mean patch size of islet.
图7 景观指数与鸟类物种数量的散点矩阵与Loess拟合曲线(蓝色虚线为置信区间, 黑色实线为景观阈值)。NDVI: 归一化植被指数; PLAND-gs: 绿地面积比例; MPS-gs: 绿地平均斑块面积; PLAND-islet: 孤岛面积比例; MPS-islet: 孤岛平均斑块面积。
Fig. 7 Scattered matrix and loess fitting curve of landscape metrics and bird species numbers (Blue dashed line represents the lower and upper confidence limits, black solid line represents the landscape threshold). NDVI, Normalized difference vegetation index; PLAND-gs, Proportion of green space; MPS-gs, Mean patch size of green space; PLAND-islet, Proportion of islet; MPS-islet, Mean patch size of islet.
[1] | Aronson MF, Lepczyk CA, Evans KL, Goddard MA, Lerman SB, MacIvor JS, Nilon CH, Vargo T (2017) Biodiversity in the city: Key challenges for urban green space management. Frontiers in Ecology and the Environment, 15, 189-196. |
[2] | Barth BJ, FitzGibbon SI, Wilson RS (2015) New urban developments that retain more remnant trees have greater bird diversity. Landscape and Urban Planning, 136, 122-129. |
[3] | Beaugeard E, Brischoux F, Angelier F (2021) Green infrastructures and ecological corridors shape avian biodiversity in a small French city. Urban Ecosystems, 24, 549-560. |
[4] |
Bian Q, Wang C, Cheng H, Han D, Zhao YL, Yin LQ (2023) Exploring the application of acoustic indices in the assessment of bird diversity in urban forests. Biodiversity Science, 31, 22080. (in Chinese with English abstract)
DOI |
[边琦, 王成, 程贺, 韩丹, 赵伊琳, 殷鲁秦 (2023) 声学指数在城市森林鸟类多样性评估中的应用. 生物多样性, 31, 22080.]
DOI |
|
[5] |
Callaghan CT, Bino G, Major RE, Martin JM, Lyons MB, Kingsford RT (2019) Heterogeneous urban green areas are bird diversity hotspots: Insights using continental-scale citizen science data. Landscape Ecology, 34, 1231-1246.
DOI |
[6] | Callaghan CT, Major RE, Lyons MB, Martin JM, Kingsford RT (2018) The effects of local and landscape habitat attributes on bird diversity in urban greenspaces. Ecosphere, 9, e02347. |
[7] | Chen R, Carruthers-Jones J, Carver S, Wu J (2024) Constructing urban ecological corridors to reflect local species diversity and conservation objectives. Science of the Total Environment, 907, 167987. |
[8] | Ciach M, Fröhlich A (2017) Habitat type, food resources, noise and light pollution explain the species composition, abundance and stability of a winter bird assemblage in an urban environment. Urban Ecosystems, 20, 547-559. |
[9] | Clément F, Ruiz J, Rodríguez MA, Blais D, Campeau S (2017) Landscape diversity and forest edge density regulate stream water quality in agricultural catchments. Ecological Indicators, 72, 627-639. |
[10] |
Dadashpoor H, Azizi P, Moghadasi M (2019) Land use change, urbanization, and change in landscape pattern in a metropolitan area. Science of the Total Environment, 655, 707-719.
DOI |
[11] | Desmet PG (2018) Using landscape fragmentation thresholds to determine ecological process targets in systematic conservation plans. Biological Conservation, 221, 257-260. |
[12] | Evans KL, Newson SE, Gaston KJ (2009) Habitat influences on urban avian assemblages. Ibis, 151, 19-39. |
[13] | Fahrig L (2013) Rethinking patch size and isolation effects: The habitat amount hypothesis. Journal of Biogeography, 40, 1649-1663. |
[14] | Green DG (1994) Connectivity and complexity in landscapes and ecosystems. Pacific Conservation Biology, 1, 194-200. |
[15] | Haddad NM, Brudvig LA, Clobert J, Davies KF, Gonzalez A, Holt RD, Lovejoy TE, Sexton JO, Austin MP, Collins CD, Cook WM, Damschen EI, Ewers RM, Foster BL, Jenkins CN, King AJ, Laurance WF, Levey DJ, Margules CR, Melbourne BA, Nicholls AO, Orrock JL, Song DX, Townshend JR (2015) Habitat fragmentation and its lasting impact on Earth’s ecosystems. Science Advances, 1, e1500052. |
[16] | Hao ZZ, Zhan HS, Zhang CY, Pei NC, Sun B, He JH, Wu RC, Xu XH, Wang C (2022) Assessing the effect of human activities on biophony in urban forests using an automated acoustic scene classification model. Ecological Indicators, 144, 109437. |
[17] | Hao ZZ, Zhang CY, Li L, Gao BT, Wu RC, Pei NC, Liu Y (2024a) Anthropogenic noise and habitat structure shaping dominant frequency of bird sounds along urban gradients. iScience, 27, 109056. |
[18] | Hao ZZ, Zhang CY, Li L, Sun B, Luo SX, Liao JY, Wang QF, Wu RC, Xu XH, Lepczyk CA, Pei NC (2024b) Can urban forests provide acoustic refuges for birds? Investigating the influence of vegetation structure and anthropogenic noise on bird sound diversity. Journal of Forestry Research, 35, 33. |
[19] | Harper KA, MacDonald SE, Burton PJ, Chen J, Brosofske KD, Saunders SC, Euskirchen ES, Roberts D, Jaiteh MS, Esseen PA (2005) Edge influence on forest structure and composition in fragmented landscapes. Conservation Biology, 19, 768-782. |
[20] | Hastedt A, Tietze DT (2023) The importance of unsealed areas in the urban core and periphery for bird diversity in a large central European city. Urban Ecosystems, 26, 1015-1028. |
[21] |
Horton KG, Buler JJ, Anderson SJ, Burt CS, Collins AC, Dokter AM, Guo FY, Sheldon D, Tomaszewska MA, Henebry GM (2023) Artificial light at night is a top predictor of bird migration stopover density. Nature Communications, 14, 7446.
DOI PMID |
[22] |
Jiao S, Chen WM, Wang JL, Du NN, Li QP, Wei GH (2018) Soil microbiomes with distinct assemblies through vertical soil profiles drive the cycling of multiple nutrients in reforested ecosystems. Microbiome, 6, 146.
DOI PMID |
[23] | Jokimäki J, Huhta E (2000) Artificial nest predation and abundance of birds along an urban gradient. The Condor, 102, 838-847. |
[24] |
Kéfi S, Rietkerk M, Roy M, Franc A, de Ruiter PC, Pascual M (2011) Robust scaling in ecosystems and the meltdown of patch size distributions before extinction. Ecology Letters, 14, 29-35.
DOI PMID |
[25] | Lai JS, Zou Y, Zhang JL, Peres-Neto PR (2022) Generalizing hierarchical and variation partitioning in multiple regression and canonical analyses using the rdacca.hp R package. Methods in Ecology and Evolution, 13, 782-788. |
[26] | Leveau LM (2019) Urbanization induces bird color homogenization. Landscape and Urban Planning, 192, 103645. |
[27] |
Li B, Song PF, Gu HF, Xu B, Liu DX, Jiang F, Liang CB, Zhang M, Gao HM, Cai ZY, Zhang TZ (2024) Bird community diversity patterns and their drivers in the Qinghai region of Kunlun Mountains. Biodiversity Science, 32, 23406. (in Chinese with English abstract)
DOI |
[李斌, 宋鹏飞, 顾海峰, 徐波, 刘道鑫, 江峰, 梁程博, 张萌, 高红梅, 蔡振媛, 张同作 (2024) 昆仑山青海片区鸟类群落多样性格局及其驱动因素. 生物多样性, 32, 23406.]
DOI |
|
[28] | Li L, Gou MM, Wang N, La LM, Liu CF (2021) Do ecological restoration programs reduce forest fragmentation? Case study of the Three Gorges Reservoir Area, China. Ecological Engineering, 172, 106410. |
[29] | Li L, Wang N, Hao ZZ, Sun B, Gao BT, Gou MM, Wang P, Pei NC (2024) Urbanization intensifies the imbalance between human development and biodiversity conservation: Insights from the coupling analysis of human activities and habitat quality. Land Degradation & Development, 35, 3606-3626. |
[30] | Li ZH, He W, Cheng MF, Hu JX, Yang GY, Zhang HY (2023) SinoLC-1: The first 1 m resolution national-scale land-cover map of China created with a deep learning framework and open-access data. Earth System Science Data, 15, 4749-4780. |
[31] | Liaw A, Wiener M (2002) Classification and regression by randomForest. R News, 2, 18-22. |
[32] |
Liu DZ, Zhou LZ (2021) Effects of landscape pattern change on bird diversity in Anhui Anqing Caizi Lake National Wetland Park. Chinese Journal of Ecology, 40, 2201-2212. (in Chinese with English abstract)
DOI |
[刘大钊, 周立志 (2021) 安徽安庆菜子湖国家湿地公园景观格局变化对鸟类多样性的影响. 生态学杂志, 40, 2201-2212.] | |
[33] | Liu JJ, Wilson M, Hu G, Liu JL, Wu JG, Yu MJ (2018) How does habitat fragmentation affect the biodiversity and ecosystem functioning relationship? Landscape Ecology, 33, 341-352. |
[34] | Liu ZH, Wei L, Zhou Y (2024) Constructing sustainable landscape patterns for enhancing urban biodiversity. Acta Ecologica Sinica, 44, 5905-5913. (in Chinese with English abstract) |
[刘珍环, 魏莱, 周义 (2024) 面向城市生物多样性提升的可持续景观格局构建机理与途径. 生态学报, 44, 5905-5913.] | |
[35] | Liu ZY, Zhou Y, Yang HY, Liu ZH (2023) Urban green infrastructure affects bird biodiversity in the coastal megalopolis region of Shenzhen City. Applied Geography, 151, 102860. |
[36] | Ma ZJ, Zhang P, Hu NL, Wang GD, Dong YL, Guo YJ, Wang CC, Fu Y, Ren ZB (2023) Understanding the drivers of woody plant diversity in urban parks in a snow climate city of China. Journal of Forestry Research, 34, 1021-1032. |
[37] | Machar I, Šimek P, Schlossárek M, Pechanec V, Petrovič F, Brus J, Špinlerová Z, Seják J (2022) Comparison of bird diversity between temperate floodplain forests and urban parks. Urban Forestry & Urban Greening, 67, 127427. |
[38] | McDonald RI, Güneralp B, Huang CW, Seto KC, You M (2018) Conservation priorities to protect vertebrate endemics from global urban expansion. Biological Conservation, 224, 290-299. |
[39] |
McLaren JD, Buler JJ, Schreckengost T, Smolinsky JA, Boone M, Emiel van Loon E, Dawson DK, Walters EL (2018) Artificial light at night confounds broad-scale habitat use by migrating birds. Ecology Letters, 21, 356-364.
DOI PMID |
[40] | Metcalf O, Abrahams C, Ashington B, Baker E, Bradfer-Lawrence T, Browning E, Carruthers-Jones J, Darby J, Dick J, Eldridge A, Elliott D, Heath B, Howden-Leach P, Johnston A, Alexander L, Meyer CFJ, Ruiz Arana U, Smith S (2023) Good Practice Guidelines for Long-term Ecoacoustic Monitoring in the UK. UK Acoustics Network. https://doi.org/10.57711/1sxv-9k96/. (accessed on 2024-10-04) |
[41] | Morelli F, Benedetti Y, Ibáñez-Álamo JD, Tryjanowski P, Jokimäki J, Kaisanlahti-Jokimäki ML, Suhonen J, Díaz M, Møller AP, Moravec D, Prosek J, Bussière R, Mägi M, Kominos T, Galanaki A, Bukas N, Marko G, Pruscini F, Tonelli M, Jerzak L, Ciebiera O, Reif J (2021) Effects of urbanization on taxonomic, functional and phylogenetic avian diversity in Europe. Science of the Total Environment, 795, 148874. |
[42] | Neo L, Chong KY, Lindsay S, Middleton DJ, Tan PY, Er KBH (2024) A botanical oasis rather than a biological desert: Rediscoveries, new species and new records in a tropical city. Plants, People, Planet, 6, 697-709. |
[43] | Ortega-Álvarez R, MacGregor-Fors I (2009) Living in the big city: Effects of urban land-use on bird community structure, diversity, and composition. Landscape and Urban Planning, 90, 189-195. |
[44] |
Ouyang JQ, de Jong M, Matson KD, Haussmann MF, Meerlo P, Visser ME, Spoelstra K (2017) Restless roosts: Light pollution affects behavior, sleep, and physiology in a free-living songbird. Global Change Biology, 23, 4987-4994.
DOI PMID |
[45] | Pimm SL, Jenkins CN, Li BV (2018) How to protect half of Earth to ensure it protects sufficient biodiversity. Science Advances, 4, eaat2616. |
[46] |
Planchuelo G, Kowarik I, von der Lippe M (2020) Plant traits, biotopes and urbanization dynamics explain the survival of endangered urban plant populations. Journal of Applied Ecology, 57, 1581-1592.
DOI |
[47] | Planillo A, Kramer-Schadt S, Buchholz S, Gras P, von der Lippe M, Radchuk V (2021) Arthropod abundance modulates bird community responses to urbanization. Diversity and Distributions, 27, 34-49. |
[48] | Sanz V, Caula S (2015) Assessing bird assemblages along an urban gradient in a Caribbean island (Margarita, Venezuela). Urban Ecosystems, 18, 729-746. |
[49] |
Schütz C, Schulze CH (2015) Functional diversity of urban bird communities: Effects of landscape composition, green space area and vegetation cover. Ecology and Evolution, 5, 5230-5239.
DOI PMID |
[50] | Seress G, Liker A (2015) Habitat urbanization and its effects on birds. Acta Zoologica Academiae Scientiarum Hungaricae, 61, 373-408. |
[51] | Song XP, Hansen MC, Stehman SV, Potapov PV, Tyukavina A, Vermote EF, Townshend JR (2018) Global land change from 1982 to 2016. Nature, 560, 639-643. |
[52] |
Spotswood EN, Beller EE, Grossinger R, Grenier JL, Heller NE, Aronson MFJ (2021) The biological deserts fallacy: Cities in their landscapes contribute more than we think to regional biodiversity. BioScience, 71, 148-160.
DOI PMID |
[53] | Sutherland GD, Harestad AS, Price K, Lertzman KP (2000) Scaling of natal dispersal distances in terrestrial birds and mammals. Conservation Ecology, 4, 16. |
[54] |
Theodorou P, Radzevičiūtė R, Lentendu G, Kahnt B, Husemann M, Bleidorn C, Settele J, Schweiger O, Grosse I, Wubet T, Murray TE, Paxton RJ (2020) Urban areas as hotspots for bees and pollination but not a panacea for all insects. Nature Communications, 11, 576.
DOI PMID |
[55] | Van Doren BM, Willard DE, Hennen M, Horton KG, Stuber EF, Sheldon D, Sivakumar AH, Wang J, Farnsworth A, Winger BM (2021) Drivers of fatal bird collisions in an urban center. Proceedings of the National Academy of Sciences, USA, 118, e2101666118. |
[56] | Wang F, Wang YL, Xie XC (2019) Research progress in urban river greenway width from the perspective of ecological environment value. Journal of Chinese Urban Forestry, 17(1), 57-61. (in Chinese with English abstract) |
[王芳, 汪耀龙, 谢祥财 (2019) 生态学价值视角下的城市河流绿道宽度研究进展. 中国城市林业, 17(1), 57-61.] | |
[57] | Wang N, Li L, Gou MM, Hu JW, La LM, Xiao WF, Liu CF (2023) Spatial heterogeneity analysis of soil organic carbon in citrus orchards in Zigui County based on GWR model. Resources and Environment in the Yangtze Basin, 32, 751-763. (in Chinese with English abstract) |
[王娜, 李乐, 勾蒙蒙, 胡建文, 喇蕗梦, 肖文发, 刘常富 (2023) 基于GWR模型的秭归县柑橘园土壤有机碳空间异质性分析. 长江流域资源与环境, 32, 751-763.] | |
[58] | Wang YP, Song YF, Zhong YX, Chen CW, Zhao YH, Zeng D, Wu YR, Ding P (2021) A dataset on the life-history and ecological traits of Chinese birds. Biodiversity Science, 29, 1149-1153. (in Chinese with English abstract) |
[王彦平, 宋云枫, 钟雨茜, 陈传武, 赵郁豪, 曾頔, 吴亦如, 丁平 (2021) 中国鸟类的生活史和生态学特征数据集. 生物多样性, 29, 1149-1153.]
DOI |
|
[59] | Wu JH, Lu J (2019) Landscape patterns regulate non-point source nutrient pollution in an agricultural watershed. Science of the Total Environment, 669, 377-388. |
[60] | Wu RC, Zhang Q, Hao ZZ, Li L, Gao BT, Li JR, Liu XT, Liao C, Pei NC (2024) Insectivorous birds are more sensitive to urban greenspace changes in Guangzhou City, China. Urban Forestry & Urban Greening, 94, 128243. |
[61] | Yang G, Xu J, Wang Y, Ding YZ, Yuan X, Pei EL, Ma B, Wang XM, Wang ZH (2015) The influence of vegetation structure on bird guilds in an urban park. Acta Ecologica Sinica, 35, 4824-4835. (in Chinese with English abstract) |
[杨刚, 许洁, 王勇, 丁由中, 袁晓, 裴恩乐, 马波, 王小明, 王正寰 (2015) 城市公园植被特征对陆生鸟类集团的影响. 生态学报, 35, 4824-4835.] | |
[62] | You WB, Cai XY, Wang YZ, Wang R, Zhang JL, Chen Y, Qiu XY, Fang B, Tang SS, Jian WQ (2023) Relationship between bird diversity and landscape characteristics in the core area of Fuzhou City at two scales based on citizen science data. Acta Ecologica Sinica, 43, 7670-7681. (in Chinese with English abstract) |
[游巍斌, 蔡新瑜, 王英姿, 王瑞, 张锦琳, 陈莹, 邱晓月, 方冰, 汤绍圣, 坚文倩 (2023) 基于不同网格尺度福州主城区鸟类多样性与景观特征的关系研究. 生态学报, 43, 7670-7681.] | |
[63] | Zhang CY, Li QR, Zhan HS, Li YF, Gao XH (2023) One-step progressive representation transfer learning for bird sound classification. Applied Acoustics, 212, 109614. |
[64] | Zhang Q, Han RC, Huang ZL, Zou FS (2013) Linking vegetation structure and bird organization: Response of mixed-species bird flocks to forest succession in subtropical China. Biodiversity and Conservation, 22, 1965-1989. |
[65] | Zhang ZK, Huang GL (2018) Urban ornithological research in China: A review. Acta Ecologica Sinica, 38, 3357-3367. (in Chinese with English abstract) |
[张征恺, 黄甘霖 (2018) 中国城市鸟类学研究进展. 生态学报, 38, 3357-3367.] | |
[66] | Zhao YL, Wang C, Bai ZT, Hao ZZ (2021) Changes of bird community under urbanization and its relationship with urban vegetation. Acta Ecologica Sinica, 41, 479-489. (in Chinese with English abstract) |
[赵伊琳, 王成, 白梓彤, 郝泽周 (2021) 城市化鸟类群落变化及其与城市植被的关系. 生态学报, 41, 479-489.] | |
[67] | Zheng GM (2023) A Checklist on the Classification and Distribution of the Birds of China, 4th edn. Science Press, Beijing. (in Chinese) |
[郑光美 (2023) 中国鸟类分类与分布名录(第四版). 科学出版社, 北京.] | |
[68] | Zhu G, Wang X, Zhang WW, Wu Y, Yong F, Li CL, Cui P (2022) Effects of urban landscape pattern on bird community: A case study of Lishui District, Nanjing. Journal of Ecology and Rural Environment, 38, 327-333. (in Chinese with English abstract) |
[朱光, 王雪, 张文文, 吴翼, 雍凡, 李春林, 崔鹏 (2022) 城市景观格局对鸟类群落的影响: 以南京溧水区为例. 生态与农村环境学报, 38, 327-333.] |
[1] | 白皓天, 余上, 潘新园, 凌嘉乐, 吴娟, 谢恺琪, 刘阳, 陈学业. AI辅助识别的鸟类被动声学监测在城市湿地公园中的应用[J]. 生物多样性, 2024, 32(8): 24188-. |
[2] | 王秦韵, 张玉泉, 刘浩, 李明, 刘菲, 赵宁, 陈鹏, 齐敦武, 阙品甲. 成都大熊猫繁育研究基地鸟类多样性[J]. 生物多样性, 2024, 32(8): 24066-. |
[3] | 段菲, 刘鸣章, 卜红亮, 俞乐, 李晟. 城市化对鸟类群落组成及功能特征的影响——以京津冀地区为例[J]. 生物多样性, 2024, 32(8): 23473-. |
[4] | 刘双祺, 华方圆, 夏舫, 闫亮亮, 于方, 叶红, 彭澎, 张东元, 关雪燕, 付建平, 梁烜, 侯笑如, 李晓阳, 赵欣如. 城市绿地作为迁徙陆鸟中途停歇地的栖息地质量及其受留野措施的影响[J]. 生物多样性, 2024, 32(8): 24046-. |
[5] | 郝泽周, 张承云, 李乐, 高丙涛, 曾伟, 王淳, 王梓炫, 黄万涛, 张悦, 裴男才, 肖治术. 城市鸟类多样性被动声学监测与评价技术应用[J]. 生物多样性, 2024, 32(10): 24123-. |
[6] | 黄万涛, 郝泽周, 张梓欣, 肖治术, 张承云. 被动声学监测设备性能比较及对鸟声识别的影响[J]. 生物多样性, 2024, 32(10): 24273-. |
[7] | 刘莹莹, 龚立新, 曾皓, 冯江, 董永军, 王磊, 江廷磊. 被动声学监测在蝙蝠研究中的应用[J]. 生物多样性, 2024, 32(10): 24233-. |
[8] | 陈蕾, 许志勇, 苏菩坤, 赖小甜, 赵兆. 依频声学多样性指数用于人类活动区域的适用能力[J]. 生物多样性, 2024, 32(10): 24286-. |
[9] | 郭倩茸, 段淑斐, 谢捷, 董雪燕, 肖治术. 鸟声标注技术及其在被动声学监测中的应用[J]. 生物多样性, 2024, 32(10): 24313-. |
[10] | 谢将剑, 沈忱, 张飞宇, 肖治术. 融合音频及生态位信息的跨地域鸟类物种识别方法[J]. 生物多样性, 2024, 32(10): 24259-. |
[11] | 殷鲁秦, 王成, 韩文静. 基于取食行为探究北京居民区鸟类的食源特征及多样性[J]. 生物多样性, 2023, 31(5): 22473-. |
[12] | 申小虎, 朱翔宇, 史洪飞, 王传之. 基于机器学习鸟声识别算法研究进展[J]. 生物多样性, 2023, 31(11): 23272-. |
[13] | 肖治术, 崔建国, 王代平, 王志陶, 罗金红, 谢捷. 现代生物声学的学科发展趋势及中国机遇[J]. 生物多样性, 2023, 31(1): 22423-. |
[14] | 边琦, 王成, 程贺, 韩丹, 赵伊琳, 殷鲁秦. 声学指数在城市森林鸟类多样性评估中的应用[J]. 生物多样性, 2023, 31(1): 22080-. |
[15] | 马海港, 范鹏来. 被动声学监测技术在陆生哺乳动物研究中的应用、进展和展望[J]. 生物多样性, 2023, 31(1): 22374-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn