生物多样性 ›› 2024, Vol. 32 ›› Issue (8): 24188.  DOI: 10.17520/biods.2024188  cstr: 32101.14.biods.2024188

• 研究报告 • 上一篇    下一篇

AI辅助识别的鸟类被动声学监测在城市湿地公园中的应用

白皓天1,2, 余上2,3, 潘新园4, 凌嘉乐2,3, 吴娟5, 谢恺琪6, 刘阳7, 陈学业1,8,*()   

  1. 1.自然资源部城市国土资源监测与仿真重点实验室, 广东深圳 518040
    2.广州市华南自然保护与生态修复研究院, 广州 510520
    3.广州灵感生态科技有限公司, 广州 510555
    4.华南农业大学林学与风景园林学院, 广州 510642
    5.广州市野生动植物保护管理办公室, 广州 510260
    6.深圳市红树林湿地保护基金会, 广东深圳 518000
    7.中山大学生态学院, 广东深圳 518107
    8.深圳市规划和自然资源数据管理中心, 广东深圳 518040
  • 收稿日期:2024-05-16 接受日期:2024-08-09 出版日期:2024-08-20 发布日期:2024-08-28
  • 通讯作者: *E-mail: xueye31@163.com
  • 基金资助:
    自然资源部城市国土资源监测与仿真重点实验室开放课题(KF-2022-07-004);广东省林业局生态林业建设专项资金;中山大学中央高校基本科研业务费重点项目(09020-31670001)

AI-assisted recognition for passive acoustic monitoring of birds in urban wetland parks

Haotian Bai1,2, Shang Yu2,3, Xinyuan Pan4, Jiale Ling2,3, Juan Wu5, Kaiqi Xie6, Yang Liu7, Xueye Chen1,8,*()   

  1. 1 Key Laboratory of Urban Land Resources Monitoring and Simulation, Ministry of Natural Resources, Shenzhen, Guangdong 518040, China
    2 South China Institute of Nature Conservation and Ecological Restoration, Guangzhou 510520, China
    3 Guangzhou Linggan Ecological Technology Ltd Co., Guangzhou 510555, China
    4 College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
    5 The Conservation and Management Office of Fauna and Flora of Guangzhou, Guangzhou 510260, China
    6 Shenzhen Mangrove Wetlands Conservation Foundation, Shenzhen, Guangdong 518000, China
    7 School of Ecology, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
    8 Shenzhen Planning and Natural Resource Data Management Center, Shenzhen, Guangdong 518040, China
  • Received:2024-05-16 Accepted:2024-08-09 Online:2024-08-20 Published:2024-08-28
  • Contact: *E-mail: xueye31@163.com
  • Supported by:
    Open Fund of Key Laboratory of Urban Land Resources Monitoring and Simulation, Ministry of Natural Resources(KF-2022-07-004);Special Funds for Ecological Forestry Construction of Guangdong Forestry Bureau;Fundamental Research Funds for the Central Universities, Sun Yat-sen University(09020-31670001)

摘要:

为了探究基于AI识别的鸟类被动声学监测手段在城市湿地公园中的应用效果, 同时对比其与传统人工样线调查结果的差别, 本研究于2023年3-5月在广州市湾咀头湿地公园开展了为期3个月的同期监测。样线法为每月调查两次; 声学监测法通过安装两台声纹监测仪, 全天开启触发录制模式, 通过4G网络回传音频文件并使用以珠三角鸟类名录构建的AI识别模型进行鸟种识别, 再对结果进行置信度筛选和人工复核。样线法累计记录鸟类2,200只次; 声学监测法共采集音频96,848条, 筛选验证获得有效记录34,117条。两种方法共记录鸟类70种, 其中样线调查记录鸟类48种, 声学监测记录49种, 两种调查方法都记录到的鸟类有27种。两种调查方法重叠的物种比例不足总物种数的一半, 说明在此类湿地公园生境下这两种方法尚无法互相取代。样线调查结果相对准确、便于估算种群密度, 但对调查者的认鸟水平和工作量要求较高; 声学监测可自动化运行, 便于扩大监测规模, 但后期数据处理难度较大, 结合AI物种识别和人工校正可以提高数据处理效率。综上, 基于机器学习的AI识别技术的鸟类被动声学监测方法大大提高了数据处理效率, 但仍需要结合传统的样线调查方法, 两者结合将有更高的准确率和更广阔的应用前景。

关键词: 鸟类多样性, 样线法, 被动声学监测, AI识别模型

Abstract

Aims: This study aims to explore the effectiveness of AI recognition-based passive acoustic monitoring of bird species in urban wetland parks, as well as to compare its results with traditional transect survey.

Methods: A three-month concurrent monitoring has been carried out from March to May in 2023 at Wanzuitou Wetland Park in Guangzhou City, China. The transect method involved a twice-monthly survey, while acoustic monitoring method utilized two acoustic monitoring devices operating in triggered recording mode throughout the day. Audio files were transmitted via a 4G mobile network to a server, and bird species were identified using an AI model based on the Pearl River Delta bird list, filtered by confidence scores and manually reviewed.

Results: The transect method recorded 2,200 individuals, whereas the acoustic monitoring collected 96,848 audio files, and obtained 34,117 valid records after screening and validation. Two methods identified a total of 70 bird species: 48 species by the transect survey and 49 species by the acoustic monitoring, with 27 species common to both survey methods.

Conclusions: The proportion of species overlapping between the two survey methods was less than half of the total species, suggesting that neither method can fully replace the other in this type of wetland park habitat. Transect survey is more accurate and makes it easier to estimate the population density, but it requires a higher level of bird species identification skills and involve more workloads. The acoustic monitoring can be automated and unmanned, making it easy to expand the scale of monitoring. However, processing the data from audio files is more challenging, and AI species identification results still need manual correction. The combination of traditional transect survey methods and AI recognition-based passive acoustic monitoring will provide higher accuracy and broader application prospects in the future.

Key words: bird diversity, transect survey method, passive acoustic monitoring, AI recognition model