生物多样性 ›› 2024, Vol. 32 ›› Issue (8): 24150. DOI: 10.17520/biods.2024150 cstr: 32101.14.biods.2024150
李雪原1,2, 孙智闲1,3(), 王凤震4, 席蕊1,3, 方雨田1,2, 郝浚源1,3, 盛冬1, 孙书雅1, 赵亚辉1,2,*(
)(
)
收稿日期:
2024-04-21
接受日期:
2024-09-06
出版日期:
2024-08-20
发布日期:
2024-09-12
通讯作者:
*E-mail: zhaoyh@ioz.ac.cn
基金资助:
Xueyuan Li1,2, Zhixian Sun1,3(), Fengzhen Wang4, Rui Xi1,3, Yutian Fang1,2, Junyuan Hao1,3, Dong Sheng1, Shuya Sun1, Yahui Zhao1,2,*(
)(
)
Received:
2024-04-21
Accepted:
2024-09-06
Online:
2024-08-20
Published:
2024-09-12
Contact:
*E-mail: zhaoyh@ioz.ac.cn
Supported by:
摘要:
城市发展对当地的水生生态系统会造成不利影响。北京作为全球超大城市之一, 其城市化进程比大多数城市更为迅速, 因此北京水生生态系统受到城市发展的影响更甚, 尤其表现在对水生环境变化敏感的鱼类群体上。功能多样性是生物多样性的重要部分, 亦是评估生态系统功能的重要指标之一, 能更好地反映出鱼类群落中物种间资源分配和互补的程度。本研究结合野外调查数据、历史标本以及相关历史资料, 选取了与栖息、摄食、运动和繁殖4个方面相关的功能指标, 计算并比较了北京市1920-1960年、1960-1984年、1984-2013年和2013-2024年四个不同时期, 以及北京市建成区与生态涵养区的鱼类功能丰富度指数(FRic)、功能均匀度指数(FEve)、功能离散度指数(FDiv)和功能分散度指数(FDis), 探讨了城市化过程对北京鱼类群落的影响。研究表明, 北京市1920-1960年、1960-1984年、1984-2013年、2013-2024年分别记录到81、66、48、55种土著鱼类。北京四个时期的鱼类功能丰富度指数呈现先下降后上升的趋势, 从28.889先下降到17.693, 后又下降到11.358, 最后又回升到19.888, 这与四个时期的物种多样性变化同步, 而功能均匀度指数、功能离散度指数以及功能分散度指数变化很小。北京市建成区与生态涵养区的功能丰富度指数与两地区的物种多样性也呈正相关关系, 建成区的鱼类功能丰富度指数(1.639)明显低于生态涵养区(14.156), 而两地区的功能均匀度指数、功能离散度指数和功能分散度指数变化较小。总体而言, 功能丰富度指数对于城市发展变化的响应更为明显。北京市鱼类功能丰富度指数在2013年以前不断下降, 2013年以后有所回升, 这与土著鱼类资源得到了一定程度恢复, 且与一些外来鱼类占据部分缺失的土著鱼类生态位有关。外来物种防控应是北京作为超大城市在未来发展过程中需要特别注意的环节。
李雪原, 孙智闲, 王凤震, 席蕊, 方雨田, 郝浚源, 盛冬, 孙书雅, 赵亚辉 (2024) 城市发展对鱼类功能多样性的影响: 以超大城市北京为例. 生物多样性, 32, 24150. DOI: 10.17520/biods.2024150.
Xueyuan Li, Zhixian Sun, Fengzhen Wang, Rui Xi, Yutian Fang, Junyuan Hao, Dong Sheng, Shuya Sun, Yahui Zhao (2024) Impacts of urban development on functional diversity in fish: A case study of Beijing, a megacity. Biodiversity Science, 32, 24150. DOI: 10.17520/biods.2024150.
功能性状 Functional traits | 测量方法 Measuring methods |
---|---|
标准体长 Standard length | 吻端至尾柄最后一枚尾椎骨的距离 The distance from the snout to the last vertebra of caudal peduncle |
体高 Body depth | 背鳍起点至体下端的垂直距离 The vertical distance from the origin of dorsal fin to the lower end of body |
体宽 Body width | 背鳍起点身体两侧的最大宽度 The maximum width on either side of the body at the origin of the dorsal fin |
头长 Head length | 吻端至鳃盖骨后缘的距离 The distance from the snout to the posterior margin of operculum |
下颌长 Lower jaw length | 口角处到下颌顶点的距离 The distance from the corner of mouth to the tip of lower jaw |
口裂宽 Mouth width | 左右口角间的距离 The distance between corners of mouth |
口高 Mouth height | 口裂上下中点垂直距离 The vertical distance from the midpoint of mouth cleft |
眼径 Eye diameter | 眼睛的横向直径 Horizontal diameter of eye |
眼间距 Interorbital width | 眼眶间的最短距离 The minimum distance between the edges of the orbits |
胸鳍长 Pectoral-fin length | 胸鳍基至胸鳍末端距离 The distance from the base to tip of pectoral fin |
臀鳍长 Anal-fin length | 臀鳍起点至臀鳍末端距离 The distance from the origin to tip of anal fin |
尾柄长 Caudal peduncle length | 臀鳍基末端至最后一枚尾椎骨的距离 The distance from the end of anal-fin base to the last vertebra |
尾柄高 Caudal peduncle depth | 尾柄最窄处的垂直高度 The vertical height at the narrowest point of caudal peduncle |
尾柄宽 Caudal peduncle width | 尾柄在直线面上的宽度 The width of caudal peduncle in linear profile |
表1 鱼类功能性状和测量方法
Table 1 Functional traits and measuring methods of fish
功能性状 Functional traits | 测量方法 Measuring methods |
---|---|
标准体长 Standard length | 吻端至尾柄最后一枚尾椎骨的距离 The distance from the snout to the last vertebra of caudal peduncle |
体高 Body depth | 背鳍起点至体下端的垂直距离 The vertical distance from the origin of dorsal fin to the lower end of body |
体宽 Body width | 背鳍起点身体两侧的最大宽度 The maximum width on either side of the body at the origin of the dorsal fin |
头长 Head length | 吻端至鳃盖骨后缘的距离 The distance from the snout to the posterior margin of operculum |
下颌长 Lower jaw length | 口角处到下颌顶点的距离 The distance from the corner of mouth to the tip of lower jaw |
口裂宽 Mouth width | 左右口角间的距离 The distance between corners of mouth |
口高 Mouth height | 口裂上下中点垂直距离 The vertical distance from the midpoint of mouth cleft |
眼径 Eye diameter | 眼睛的横向直径 Horizontal diameter of eye |
眼间距 Interorbital width | 眼眶间的最短距离 The minimum distance between the edges of the orbits |
胸鳍长 Pectoral-fin length | 胸鳍基至胸鳍末端距离 The distance from the base to tip of pectoral fin |
臀鳍长 Anal-fin length | 臀鳍起点至臀鳍末端距离 The distance from the origin to tip of anal fin |
尾柄长 Caudal peduncle length | 臀鳍基末端至最后一枚尾椎骨的距离 The distance from the end of anal-fin base to the last vertebra |
尾柄高 Caudal peduncle depth | 尾柄最窄处的垂直高度 The vertical height at the narrowest point of caudal peduncle |
尾柄宽 Caudal peduncle width | 尾柄在直线面上的宽度 The width of caudal peduncle in linear profile |
功能类型 Function type | 功能性状 Functional traits | 计算方法 Method | 生态学意义 Ecological meaning |
---|---|---|---|
栖息 Habitat | 体型指标 Body shape | 体高/标准体长 Body depth/Standard length | 在水体中的栖息位置及游泳能力 Position and swimming ability in water |
运动 Sport | 胸鳍相对长度 Relative pectoral-fin length | 胸鳍长/标准体长 Pectoral-fin length/Standard length | 比值越大, 则转向越强, 灵活性越高 The higher the ratio, the stronger the turning ability and greater flexibility |
臀鳍相对长度 Relative anal-fin length | 臀鳍长/标准体长 Anal-fin length/Standard length | 比值越大, 则平衡力越强 The higher the ratio, the stronger the balance | |
尾柄相对面积 Relative area of caudal peduncle | (尾柄长 × 尾柄高)/(标准体长 × 体高) (Caudal peduncle length × Caudal peduncle depth)/(Standard length × Body depth) | 比值越高, 则游泳能力越强 The higher the ratio, the stronger the swimming ability | |
尾柄相对高度 Relative depth of caudal peduncle | 尾柄高/体高 Caudal peduncle depth/Body depth | 比值越高, 尾鳍摆动能力越强 The higher the ratio, the stronger the caudal fin oscillation ability | |
尾柄相对宽度 Relative width of caudal peduncle | 尾柄宽/体宽 Caudal peduncle width/Body width | 较高的值表示具有更好持续游泳能力 Higher values indicate better sustained swimming ability | |
摄食 Feeding | 口裂相对大小1 Relative mouth opening 1 | (口裂宽 × 口高)/(体宽 × 体高) (Mouth width × Mouth height)/(Body width × Body depth) | 最大捕食能力, 比值越高, 能力越强 Maximum feeding capacity, higher ratio indicates stronger ability |
口裂相对大小2 Relative mouth opening 2 | 口裂宽 × 口高/下颌长 Mouth width × Mouth height/Lower jaw length | 比值越高, 表示其摄食体型更大食物的能力越强 Higher ratio indicates ability to consume larger food items | |
口裂形状 Mouth opening shape | 口高/口裂宽 Mouth height/Mouth width | 食物形状 Shape of food | |
眼睛相对长度 Relative eye length | 眼径/头长 Eye diameter/Head length | 对食物的可视范围 Visual range of food | |
相对眼径 Relative eye diameter | 眼间距/眼径 Interorbital width/Eye diameter | 比值越高, 对食物的可视范围越大 The higher the ratio, the greater the visual range of food | |
口位 Mouth position | 端位、上位、下位 Termina, superior, inferior | 不同位置表示获得食物组成不一样 Different location means different food composition | |
繁殖 Breed | 鱼卵生态类型 Ecological types of fish eggs | 沉黏性、黏性、浮性、漂流性 Pelagic, adhesive, buoyant, drift | 不同产卵类型表示生长发育和繁衍方式不一样 Different spawning types indicate varied methods of growth, development, and reproduction |
表2 鱼类功能特征的计算方法和生态学意义
Table 2 Calculation methods and ecological meaning of fish functional traits
功能类型 Function type | 功能性状 Functional traits | 计算方法 Method | 生态学意义 Ecological meaning |
---|---|---|---|
栖息 Habitat | 体型指标 Body shape | 体高/标准体长 Body depth/Standard length | 在水体中的栖息位置及游泳能力 Position and swimming ability in water |
运动 Sport | 胸鳍相对长度 Relative pectoral-fin length | 胸鳍长/标准体长 Pectoral-fin length/Standard length | 比值越大, 则转向越强, 灵活性越高 The higher the ratio, the stronger the turning ability and greater flexibility |
臀鳍相对长度 Relative anal-fin length | 臀鳍长/标准体长 Anal-fin length/Standard length | 比值越大, 则平衡力越强 The higher the ratio, the stronger the balance | |
尾柄相对面积 Relative area of caudal peduncle | (尾柄长 × 尾柄高)/(标准体长 × 体高) (Caudal peduncle length × Caudal peduncle depth)/(Standard length × Body depth) | 比值越高, 则游泳能力越强 The higher the ratio, the stronger the swimming ability | |
尾柄相对高度 Relative depth of caudal peduncle | 尾柄高/体高 Caudal peduncle depth/Body depth | 比值越高, 尾鳍摆动能力越强 The higher the ratio, the stronger the caudal fin oscillation ability | |
尾柄相对宽度 Relative width of caudal peduncle | 尾柄宽/体宽 Caudal peduncle width/Body width | 较高的值表示具有更好持续游泳能力 Higher values indicate better sustained swimming ability | |
摄食 Feeding | 口裂相对大小1 Relative mouth opening 1 | (口裂宽 × 口高)/(体宽 × 体高) (Mouth width × Mouth height)/(Body width × Body depth) | 最大捕食能力, 比值越高, 能力越强 Maximum feeding capacity, higher ratio indicates stronger ability |
口裂相对大小2 Relative mouth opening 2 | 口裂宽 × 口高/下颌长 Mouth width × Mouth height/Lower jaw length | 比值越高, 表示其摄食体型更大食物的能力越强 Higher ratio indicates ability to consume larger food items | |
口裂形状 Mouth opening shape | 口高/口裂宽 Mouth height/Mouth width | 食物形状 Shape of food | |
眼睛相对长度 Relative eye length | 眼径/头长 Eye diameter/Head length | 对食物的可视范围 Visual range of food | |
相对眼径 Relative eye diameter | 眼间距/眼径 Interorbital width/Eye diameter | 比值越高, 对食物的可视范围越大 The higher the ratio, the greater the visual range of food | |
口位 Mouth position | 端位、上位、下位 Termina, superior, inferior | 不同位置表示获得食物组成不一样 Different location means different food composition | |
繁殖 Breed | 鱼卵生态类型 Ecological types of fish eggs | 沉黏性、黏性、浮性、漂流性 Pelagic, adhesive, buoyant, drift | 不同产卵类型表示生长发育和繁衍方式不一样 Different spawning types indicate varied methods of growth, development, and reproduction |
图1 北京地区四个时期土著鱼类目、科、属、种级水平组成比较
Fig. 1 Comparison of the order, family, genus and species level composition of native fish in the four periods of Beijing
亚科 Subfamily | 建成区物种数 Species numbers of built-up area | 生态涵养区物种数 Species numbers of ecological conservation area |
---|---|---|
鲑亚科 Salmoninae | 0 | 1 |
马口鱼亚科 Opsariichthyinae | 2 | 2 |
雅罗鱼亚科 Leuciscinae | 1 | 3 |
鲌亚科 Culterinae | 4 | 5 |
鲴亚科 Xenocyprinae | 0 | 2 |
鱊亚科 Acheilognathinae | 7 | 6 |
鮈亚科 Gobioninae | 8 | 12 |
鲤亚科 Cyprininae | 2 | 2 |
条鳅亚科 Nemacheilinae | 0 | 3 |
花鳅亚科 Cobitinae | 1 | 3 |
青鳉亚科 Oryziinae | 1 | 1 |
刺鳅亚科 Mastacembelinae | 1 | 1 |
斗鱼亚科 Macropodinae | 1 | 1 |
表3 北京市建成区与生态涵养区土著鱼类亚科物种数比较
Table 3 Comparison of species numbers of native fish subfamilies between built-up area and ecological conservation area in Beijing
亚科 Subfamily | 建成区物种数 Species numbers of built-up area | 生态涵养区物种数 Species numbers of ecological conservation area |
---|---|---|
鲑亚科 Salmoninae | 0 | 1 |
马口鱼亚科 Opsariichthyinae | 2 | 2 |
雅罗鱼亚科 Leuciscinae | 1 | 3 |
鲌亚科 Culterinae | 4 | 5 |
鲴亚科 Xenocyprinae | 0 | 2 |
鱊亚科 Acheilognathinae | 7 | 6 |
鮈亚科 Gobioninae | 8 | 12 |
鲤亚科 Cyprininae | 2 | 2 |
条鳅亚科 Nemacheilinae | 0 | 3 |
花鳅亚科 Cobitinae | 1 | 3 |
青鳉亚科 Oryziinae | 1 | 1 |
刺鳅亚科 Mastacembelinae | 1 | 1 |
斗鱼亚科 Macropodinae | 1 | 1 |
图7 北京市四个时期鱼类按栖息水层、洄游类型、产卵类型以及食性的生态分布
Fig. 7 Ecological distribution of fishes in Beijing in four periods according to habitat water layer, migration type, ovulation type and food preference
图8 北京市建成区与生态涵养区鱼类按栖息水层、洄游类型、产卵类型以及食性的生态分布
Fig. 8 Ecological distribution of fish in built-up areas and ecological conservation areas of Beijing by habitat water layer, migration type, ovulation type and food preference
[1] | Boët P, Belliard J, Berrebi-dit-Thomas R, Tales E (1999) Man and River Systems. Springer, Dordrecht. |
[2] |
Chen QJ, Sun ZX, Li XJ, Zhang R, Xi R, Tian C, Wang X, Xing YC, Zhao YH (2022) Fish diversity of Wuyishan National Park and its adjacent areas. Biodiversity Science, 30, 22260. (in Chinese with English abstract)
DOI |
[陈秋菊, 孙智闲, 李雪健, 张睿, 席蕊, 田晨, 王鑫, 邢迎春, 赵亚辉 (2022) 武夷山国家公园及其周边鱼类多样性. 生物多样性, 30, 22260.]
DOI |
|
[3] | Chen YY (1998) Fauna Sinica∙Osteichthyes∙Cypriniformes.II. Science Press, Beijing. (in Chinese) |
[陈宜瑜 (1998) 中国动物志∙硬骨鱼纲∙鲤形目(中卷). 科学出版社, 北京.] | |
[4] | Chu XL (1999) Fauna Sinica∙Osteichthyes∙Siluriformes. Science Press, Beijing. (in Chinese) |
[褚新洛 (1999) 中国动物志∙硬骨鱼纲∙鲇形目. 科学出版社, 北京.] | |
[5] | Chua KWJ, Tan HH, Yeo DCJ (2019) Loss of endemic fish species drives impacts on functional richness, redundancy and vulnerability in freshwater ecoregions of Sundaland. Biological Conservation, 234, 72-81. |
[6] | Gou SJ, Qiu WS, Li S, Yang MY, Li XL, Wang H, Li GH (2023) Effect of large-scale ecological water replenishment on infiltration capacity of Beijing section of long-term cut-off river Yongding River. Water Resources and Power, 41(8), 35-38, 26. (in Chinese with English abstract) |
[苟少杰, 仇文顺, 李述, 杨默远, 李晓琳, 王赫, 黎光和 (2023) 大规模生态补水对长期断流河道永定河北京段入渗能力的影响. 水电能源科学, 41(8), 35-38, 26.] | |
[7] | Hao L, Sun G (2021) Impacts of urbanization on watershed ecohydrological processes: Progresses and perspectives. Acta Ecologica Sinica, 41, 13-26. (in Chinese with English abstract) |
[郝璐, 孙阁 (2021) 城市化对流域生态水文过程的影响研究综述. 生态学报, 41, 13-26.] | |
[8] |
Haubrock PJ, Pilotto F, Innocenti G, Cianfanelli S, Haase P (2021) Two centuries for an almost complete community turnover from native to non-native species in a riverine ecosystem. Global Change Biology, 27, 606-623.
DOI PMID |
[9] | Ihaka R, Gentleman R (1996) R: A language for data analysis and graphics. Journal of Computational and Graphical Statistics, 5, 299314. |
[10] | Jia WQ, Ren GY, Yu XJ, Zhang YQ, Zhang PF (2021) Difference of urban heat island effect among representative cities of different climatic zones over eastern China monsoon region. Climatic and Environmental Research, 26, 569-582. (in Chinese with English abstract) |
[贾文茜, 任国玉, 于秀晶, 张永强, 张盼峰 (2021) 中国东部季风区不同气候带城市热岛效应的差异. 气候与环境研究, 26, 569-582.] | |
[11] |
Laliberté E, Legendre P (2010) A distance-based framework for measuring functional diversity from multiple traits. Ecology, 91, 299-305.
PMID |
[12] | Li XJ, Sun ZX, Tang WQ, Zhao YH (2022) Revalidation and redescription of Sarcocheilichthys sciistius (Abbott, 1901) (Cypriniformes: Cyprinidae) from the northern China. Zootaxa, 5141, 341-357. |
[13] | Liang ZS, Yi BL, Yu ZT (2019) A Photographic Guide to Early Development of Fish in Rivers. Guangdong Science & Technology Press, Guangzhou. (in Chinese) |
[梁秩燊, 易伯鲁, 余志堂 (2019) 江河鱼类早期发育图志. 广东科技出版社, 广州.] | |
[14] | Liu M, Lin AW, Gu JN, Cao XK, Jin H (2016) Evaluation on water quality of north water delivery line of water diversion project from Yellow River to Beijing. Journal of Water Resources Research, 5, 510-515. (in Chinese with English abstract) |
[刘苗, 林爱武, 顾军农, 曹新恺, 金红 (2016) “引黄入京”工程北输水线水源水质评价. 水资源研究, 5, 510-515.] | |
[15] | Liu X, Wang HR, Yu S, Ma DC, Liang Y, Lai WL, Gao YY (2015) Study on water resources risk in Beijing after “South-north Water Transfer” Project. Journal of China Hydrology, 35(4), 55-61. (in Chinese with English abstract) |
[刘晓, 王红瑞, 俞淞, 马东春, 梁媛, 来文立, 高媛媛 (2015) 南水北调进京后的北京市水资源短缺风险研究. 水文, 35(4), 55-61.] | |
[16] | Lü YL, Wang CC, Cao XH (2018) Ecological risk of urbanization and risk management. Acta Ecologica Sinica, 38, 359-370. (in Chinese with English abstract) |
[吕永龙, 王尘辰, 曹祥会 (2018) 城市化的生态风险及其管理. 生态学报, 38, 359-370.] | |
[17] | Mao ZG, Gu XH, Cao Y, Luo JH, Zeng QF, Chen HH, Jeppesen E (2021) How does fish functional diversity respond to environmental changes in two large shallow lakes? Science of the Total Environment, 753, 142158. |
[18] | Massicotte P, Frenette JJ, Proulx R, Pinel-Alloul B, Bertolo A (2014) Riverscape heterogeneity explains spatial variation in zooplankton functional evenness and biomass in a large river ecosystem. Landscape Ecology, 29, 67-79. |
[19] | Meng QY, Ouyang ZY, Ma DC (2012) Water Ecosystem Service Assessment and Valuation in Beijing. Science Press, Beijing. (in Chinese) |
[孟庆义, 欧阳志云, 马东春 (2012) 北京水生态服务功能与价值. 科学出版社, 北京.] | |
[20] | Pease AA, González-Díaz AA, Rodiles-Hernández R, Winemiller KO (2012) Functional diversity and trait-environment relationships of stream fish assemblages in a large tropical catchment. Freshwater Biology, 57, 1060-1075. |
[21] | Peng SL, Zhou K, Ye YH, Su J (2005) Research progress in urban heat island. Ecology and Environment, 14, 574-579. (in Chinese with English abstract) |
[彭少麟, 周凯, 叶有华, 粟娟 (2005) 城市热岛效应研究进展. 生态环境, 14, 574-579.] | |
[22] | Piao Y, Ma KM (2006) Economic driving force of urban built-up area expansion in Beijing. Natural Resource Economics of China, 19(7), 34-37. (in Chinese with English abstract) |
[朴妍, 马克明 (2006) 北京城市建成区扩张的经济驱动: 1978-2002. 中国国土资源经济, 19(7), 34-37.] | |
[23] |
Prada-Salcedo LD, Wambsganss J, Bauhus J, Buscot F, Goldmann K (2021) Low root functional dispersion enhances functionality of plant growth by influencing bacterial activities in European forest soils. Environmental Microbiology, 23, 1889-1906.
DOI PMID |
[24] | Qiao JL, Liu Y, Fu HX, Chu L, Yan YZ (2022) Urbanization affects the taxonomic and functional alpha and beta diversity of fish assemblages in streams of subtropical China. Ecological Indicators, 144, 109441. |
[25] | Qu X, Liu H, Yang M, Xin W, Wang WM, Chen YS (2022) Characteristics of fish communities and driving factors under urbanization in typical river basins in Shenzhen City, China. Acta Ecologica Sinica, 42, 10029-10040. (in Chinese with English abstract) |
[屈霄, 刘晗, 阳敏, 辛未, 王伟民, 陈宇顺 (2022) 城镇化背景下深圳典型流域鱼类群落特征及驱动因子. 生态学报, 42, 10029-10040.] | |
[26] | Shuai FM, Li XH, Chen FC, Li YF, Yang JP, Li J, Wu Z (2017) Functional diversity of freshwater fishes and methods of measurement. Acta Ecologica Sinica, 37, 5228-5237. (in Chinese with English abstract) |
[帅方敏, 李新辉, 陈方灿, 李跃飞, 杨计平, 李捷, 武智 (2017) 淡水鱼类功能多样性及其研究方法. 生态学报, 37, 5228-5237.] | |
[27] | Sun R, Pan XY, Wang JW, Ren Y, Du P, Ma Y, Xing Y (2021) An analysis and evaluation of ecological water replenishment benefit of Yongding River (Beijing Section). China Rural Water and Hydropower, (6), 19-24. (in Chinese with English abstract) |
[孙冉, 潘兴瑶, 王俊文, 任宇, 杜鹏, 马尧, 邢渊 (2021) 永定河(北京段)河道生态补水效益分析与方案评估. 中国农村水利水电, (6), 19-24.] | |
[28] | Sun ZX, Kawase S, Zhang R, Zhao YH (2021) Taxonomic revision and redescription of Microphysogobio hsinglungshanensis, the type species of Microphysogobio Mori, 1934 (Cypriniformes: Cyprinidae). Journal of Fish Biology, 99, 373-383. |
[29] | UN (2018) The world’s cities in 2018. The World’s Cities in 2018- Data Booklet (ST/ESA/SER.A/417). https://www.un.org/development/desa/pd/content/worlds-cities-2018-data-booklet. (accessed on 2024-04-02) |
[30] |
Villéger S, Mason NWH, Mouillot D (2008) New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology, 89, 2290-2301.
DOI PMID |
[31] |
Villéger S, Miranda JR, Hernández DF, Mouillot D (2010) Contrasting changes in taxonomic vs. functional diversity of tropical fish communities after habitat degradation. Ecological Applications, 20, 1512-1522.
PMID |
[32] | Wang HY (1984) Beijing Fish Records. Beijing Publishing House, Beijing. (in Chinese) |
[王鸿媛 (1984) 北京鱼类志. 北京出版社, 北京.] | |
[33] | Wu HL, Zhong JS (2008) Fauna Sinica∙Osteichthyes∙Perciformes (V)∙Gobioidei. Science Press, Beijing. (in Chinese) |
[伍汉霖, 钟俊生 (2008) 中国动物志∙硬骨鱼纲∙鲈形目(五)∙虾虎鱼亚目. 科学出版社, 北京.] | |
[34] | Xia ZJ, Liu F, Yu FD, Tang R, Wang JW (2022) Species, functional and taxonomic diversity of fish in the Chishui River basin. Journal of Hydroecology, 43(5), 89-98. (in Chinese with English abstract) |
[夏治俊, 刘飞, 余梵冬, 唐瑞, 王剑伟 (2022) 赤水河流域鱼类物种、功能和分类多样性研究. 水生态学杂志, 43(5), 89-98.] | |
[35] | Yang B, Qu X, Liu H, Yang M, Xin W, Wang W, Chen Y (2024) Urbanization reduces fish taxonomic and functional diversity while increases phylogenetic diversity in subtropical rivers. Science of the Total Environment, 908, 168178. |
[36] | Yang H (2013) Analysis on climate change feature of Beijing during 1951 to 2006. Beijing Water, (3), 36-40. (in Chinese with English abstract) |
[杨浩 (2013) 1951-2006年北京气候变化特征分析. 北京水务, (3), 36-40.] | |
[37] | Yang S (2018) Analysis on evolution of water consumption structure and driving forces in Beijing. Pearl River, 39(5), 50-53. (in Chinese with English abstract) |
[杨硕 (2018) 北京市用水结构演变分析及驱动因子研究. 人民珠江, 39(5), 50-53.] | |
[38] | Yu RH, Wu QQ, Li F, Zhan AB, Zhou JX, Li S (2024) Risk screening of invasive aquatic species and a survey of fish diversity using environmental DNA metabarcoding analysis in Shanghai. Diversity, 16, 29. |
[39] | Yue PQ (2000) Fauna Sinica∙Osteichthyes∙Cypriniformes (III). Science Press, Beijing. (in Chinese) |
[乐佩琦 (2000) 中国动物志∙硬骨鱼纲∙鲤形目(下卷). 科学出版社, 北京.] | |
[40] | Zhang CG, Shao GZ, Wu HL, Zhao YH, Xing YC, Niu CY (2020) Species Catalogue of China (Vol. 2): Animals∙Vertebrates (V)∙Fish (I). Science Press, Beijing. (in Chinese) |
[张春光, 邵广昭, 伍汉霖, 赵亚辉, 邢迎春, 牛诚祎 (2020) 中国生物物种名录(第二卷): 动物∙脊椎动物(V)∙鱼类(上卷). 科学出版社, 北京.] | |
[41] | Zhang CG, Zhao YH (2013) Fishes in Beijing and Adjacent Area. Science Press, Beijing. (in Chinese) |
[张春光, 赵亚辉 (2013) 北京及其邻近地区的鱼类. 科学出版社, 北京.] | |
[42] | Zhang CG, Zhao YH (2016) Species Diversity and Distribution of Inland Fishes in China. Science Press, Beijing. (in Chinese) |
[张春光, 赵亚辉 (2016) 中国内陆鱼类物种与分布. 科学出版社, 北京.] | |
[43] | Zhang E, Cao WX (2021) China’s Red List of Biodiversity∙Vertebrates (V)∙Freshwater Fishes. Science Press, Beijing. (in Chinese and in English) |
[张鹗, 曹文宣 (2021) 中国生物多样性红色名录∙脊椎动物(第五卷)∙淡水鱼类. 科学出版社, 北京.] | |
[44] | Zhang S, Zheng YT, Zhan AB, Dong CX, Zhao JD, Yao M (2022) Environmental DNA captures native and non-native fish community variations across the lentic and lotic systems of a megacity. Science Advances, 8, eabk0097. |
[45] | Zhu ZF, Zhang XH, Liu RJ (2012) Expectation on “super city”—Tianjin urban traffic mode. Urban Roads, Bridges & Flood Control, (8), 1-9, 15. (in Chinese with English abstract) |
[朱兆芳, 张欣红, 刘锐晶 (2012) “超级城市”——天津城市交通方式的展望. 城市道桥与防洪, (8), 1-9, 15.] |
[1] | 高翔, 潘淑芳, 孙争争, 李霁筱, 高天雨, 董路, 王宁. 广东珠海凤凰山和淇澳岛小灵猫的分布与活动节律[J]. 生物多样性, 2024, 32(8): 24045-. |
[2] | 李佳琪, 冯一迪, 王蕾, 潘盆艳, 刘潇如, 李雪阳, 王怡涵, 王放. 上海城市环境中貉的食性分析及家域范围内的栖息地选择[J]. 生物多样性, 2024, 32(8): 24131-. |
[3] | 金泉泉, 向颖, 王华, 习新强. 南京仙林大学城三种绿地类型中果蝇多样性及其被寄生率[J]. 生物多样性, 2024, 32(8): 24156-. |
[4] | 苏荣菲, 陈睿山, 俞霖琳, 吴婧彬, 康燕. 基于红外相机调查的上海市长宁区社区生境花园生物多样性[J]. 生物多样性, 2024, 32(8): 24068-. |
[5] | 牛红玉, 陈璐, 赵恒月, 古丽扎尔·阿不都克力木, 张洪茂. 城市化对动物的影响: 从群落到个体[J]. 生物多样性, 2024, 32(8): 23489-. |
[6] | 孙智闲, 田晨, 王鑫, 方雨田, 李博, 赵亚辉. 热带沿海城市土著鱼类面临的威胁: 以海南省三亚市为例[J]. 生物多样性, 2024, 32(8): 24165-. |
[7] | 耿江天, 王菲, 赵华斌. 城市化对中国蝙蝠影响的研究进展[J]. 生物多样性, 2024, 32(8): 24109-. |
[8] | 卢佳玉, 石小亿, 多立安, 王天明, 李治霖. 基于红外相机技术的天津城市地栖哺乳动物昼夜活动节律评价[J]. 生物多样性, 2024, 32(8): 23369-. |
[9] | 段菲, 刘鸣章, 卜红亮, 俞乐, 李晟. 城市化对鸟类群落组成及功能特征的影响——以京津冀地区为例[J]. 生物多样性, 2024, 32(8): 23473-. |
[10] | 胡志清, 董路. 城市化对鸟类参与的种间互作的影响[J]. 生物多样性, 2024, 32(8): 24048-. |
[11] | 鄢德奎. 中国生物多样性保护政策的共同要素、不足和优化建议[J]. 生物多样性, 2024, 32(5): 23293-. |
[12] | 蔡颖莉, 朱洪革, 李家欣. 中国生物多样性保护政策演进、主要措施与发展趋势[J]. 生物多样性, 2024, 32(5): 23386-. |
[13] | 刘荆州, 钱易鑫, 张燕雪丹, 崔凤. 基于潜在迪利克雷分布(LDA)模型的旗舰物种范式研究进展与启示[J]. 生物多样性, 2024, 32(4): 23439-. |
[14] | 韩丽霞, 王永健, 刘宣. 外来物种入侵与本土物种分布区扩张的异同[J]. 生物多样性, 2024, 32(1): 23396-. |
[15] | 杜红. “物种”与“个体”: 究竟谁是生物多样性保护的恰当对象?[J]. 生物多样性, 2023, 31(8): 23140-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn