生物多样性 ›› 2024, Vol. 32 ›› Issue (1): 23295. DOI: 10.17520/biods.2023295
杨舒涵1(), 王贺1, 陈磊1, 廖蓥飞1, 严光2, 伍一宁1,*()(), 邹红菲1,*()
收稿日期:
2023-08-15
接受日期:
2023-11-21
出版日期:
2024-01-20
发布日期:
2024-01-19
通讯作者:
*E-mail: wuyiningnefu@126.com;Hongfeizou@163.com
基金资助:
Shuhan Yang1(), He Wang1, Lei Chen1, Yingfei Liao1, Guang Yan2, Yining Wu1,*()(), Hongfei Zou1,*()
Received:
2023-08-15
Accepted:
2023-11-21
Online:
2024-01-20
Published:
2024-01-19
Contact:
*E-mail: wuyiningnefu@126.com;Hongfeizou@163.com
摘要:
湿地是世界上三大生态系统类型之一, 对全球气候变化具有重要的缓冲作用。生境异质性对植物群落的演替起到主导作用, 植被特征可以显著影响土壤生物群落的结构与组成, 因此生境异质性直接或间接地促进土壤食物网的多样性。为探究湿地异质生境对土壤线虫群落结构和功能的影响, 本研究选取松嫩平原5种异质生境为研究对象, 即星星草(Puccinellia tenuiflora)生境、小叶章(Deyeuxia angustifolia)生境、臌囊薹草(Carex schmidtii)生境、羊草(Leymus chinensis)生境及光碱斑生境(alkali habitat), 于2022年7月对生境中土壤线虫群落、植物和土壤环境因子进行调查, 本研究采用五点法采集湿地样土后, 用改进的浅盘分离-蔗糖离心提取土壤中的线虫并进行形态学鉴定, 采用种类组成、个体密度、多样性指数、功能性指数等特征值分析土壤线虫群落结构、多样性特点, 并通过冗余分析及相关性分析探讨线虫群落与土壤理化性质和植被特征间的关系。结果表明: 不同生境的土壤线虫的分类组成不同, 5个群落间均存在差异, 总体上以捕食-杂食线虫和植物寄生线虫为主, 羊草生境中线虫群落的个体数、多样性、丰富度在采样期间均为最大值。线虫功能足迹在生境中表现为羊草 > 臌囊薹草 > 小叶章 > 星星草 > 光碱斑, 根据生境间结构指数(structure index, SI)和富集指数(enrichment index, EI)值可以得出, 未退化的臌囊薹草生境最为稳定, 光碱斑生境养分枯竭, 食物网发生退化, 表明湿地过度退化会导致地下生态系统功能同时发生退化。小叶章生境土壤线虫通道指数(nematode channel ratio, NCR)显著低于其他生境, 其土壤分解过程以真菌通道为主, 而其他生境均以细菌通道为主。ANOSIM检验结果显示, 生境异质性显著影响了4个营养类群和总体线虫群落的组成。Pearson相关性分析和冗余分析结果显示, 植物对土壤食物网的直接影响效应更为显著, 土壤理化性质则间接影响线虫群落的结构, 土壤全磷、含水量、pH值和植被中的湿生植物重要值是影响土壤线虫群落结构和组成的主要环境因子。总体来说, 臌囊薹草生境由于其食物网的稳定性对于湿地的改善和近自然修复有望产生更大的影响, 研究结果有助于从土壤生物学角度理解松嫩平原湿地地下生态系统过程和功能。
杨舒涵, 王贺, 陈磊, 廖蓥飞, 严光, 伍一宁, 邹红菲 (2024) 松嫩平原异质生境对土壤线虫群落特征的影响. 生物多样性, 32, 23295. DOI: 10.17520/biods.2023295.
Shuhan Yang, He Wang, Lei Chen, Yingfei Liao, Guang Yan, Yining Wu, Hongfei Zou (2024) Effects of heterogeneous habitat on soil nematode community characteristics in the Songnen Plain. Biodiversity Science, 32, 23295. DOI: 10.17520/biods.2023295.
图2 松嫩平原5种生境的土壤理化性质。PT: 星星草生境; DA: 小叶章生境; CS: 臌囊薹草生境; LC: 羊草生境; AH: 光碱斑生境。不同小写字母表示生境间差异显著(P < 0.05)。
Fig. 2 Soil physicochemical properties of five habitats in the Songnen Plain. PT, Puccinellia tenuiflora habitat; DA, Deyeuxia angustifolia habitat; CS, Carex schmidtii habitat; LC, Leymus chinensis habitat; AH, Alkali habitat. SOC, Soil organic carbon; TN, Total nitrogen; TP, Total phosphorus; TK, Total potassium; AN, Available nitrogen; AP, Available phosphorus; AK, Available potassium. Different lowercase letters indicate significant differences between habitat.
图3 松嫩平原不同植被类型土壤线虫相对丰度(a)及其营养类群(b)。PT: 星星草生境; DA: 小叶章生境; CS: 臌囊薹草生境; LC: 羊草生境; AH: 光碱斑生境。BF: 食细菌线虫; FF: 食真菌线虫; PF: 植物寄生线虫; OP: 捕食-杂食线虫。不同小写字母表示差异显著(P < 0.05)。
Fig. 3 Relative abundance and trophic groups of soil nematodes in various vegetation types in the Songnen Plain. PT, Puccinellia tenuiflora habitat; DA, Deyeuxia angustifolia habitat; CS, Carex schmidtii habitat; LC, Leymus chinensis habitat; AH, Alkali habitat. BF, Bacterivores; FF, Fungivores; PF, Plant-parasites; OP, Omnivores-predators. Different small letters mean significant difference at 0.05 level.
图4 松嫩平原5种生境的土壤线虫群落生态指数。PT: 星星草生境; DA: 小叶章生境; CS: 臌囊薹草生境; LC: 羊草生境; AH: 光碱斑生境。不同小写字母表示差异显著(P < 0.05)。
Fig. 4 Ecological index values of soil nematode communities in heterogeneous habitats in the Songnen Plain. PT, Puccinellia tenuiflora habitat; DA, Deyeuxia angustifolia habitat; CS, Carex schmidtii habitat; LC, Leymus chinensis habitat; AH, Alkali habitat. Different lowercase letters mean significant difference at 0.05 level.
图6 松嫩平原不同生境中土壤线虫群落RDA分析。Acr: 拟丽突属; All: 异矛线属; Apo1: 无孔小咽属; Apo2: 孔咽属; Cri: 轮线虫属; Dip1: 钩唇属; Dip2: 膜皮属; Epi: 表矛线属; Euc: 真头叶属; Eud: 真矛线属; Lai: 咽针属; Lep: 细齿属; Mac: 大节片属; Mes: 中矛线属; Nyg: 穿咽属; Par: 异滑刃属; Pra: 短体属; Pro: 原细齿属; Tho: 索努斯属; Tri: 三孔属; Tyl1: 垫咽属; Tyl2: 垫刃属。SOC: 有机碳; SWC: 含水量; TP: 全磷; SBD: 容重; P1: 湿生植物重要值; P3: 沼生植物重要值。
Fig. 6 RDA analysis of soil nematode communities in heterogeneous habitat types in Songnen Plain. Acr, Acrobeloides; All, Allodorylaimus; Apo1, Aporcelaimellus; Apo2, Aporcelaimus; Cri, Criconemaides; Dip1, Diphtherophora; Dip2, Diploscapter; Epi, Epidorylaimus; Euc, Eucephalobus; Eud, Eudorylaimus; Lai, Laimydorus; Lep, Leptolaimus; Mac, Macroposthonia; Mes, Mesodorylaimus; Nyg, Nygolaimus; Par, Pararotylenchus; Pra, Pratylenchus; Pro, Proleptonchus; Tho, Thonus; Tri, Tripyla; Tyl1, Tylencholaimus; Tyl2, Tylenchus. SOC, Soil organic carbon; SWC, Soil water content; TP, Total phosphorus; SBD, Soil bulk density; P1, Importance value of hygrophytes; P3, Importance value of swamp plant.
指标 Index | pH | 土壤有机碳 SOC | 全氮 TN | 全磷 TP | 全钾 TK | 速效氮 AN | 速效磷 AP | 速效钾 AK |
---|---|---|---|---|---|---|---|---|
线虫多样性指数 H' | -0.527* | 0.100 | 0.105 | -0.008 | 0.077 | 0.130 | -0.459 | 0.496 |
线虫丰富度指数 SR | -0.616* | 0.157 | 0.170 | -0.015 | 0.066 | 0.114 | -0.644** | 0.642** |
结构指数 SI | -0.607* | 0.506 | 0.528* | 0.697** | -0.548* | 0.502 | -0.513 | 0.068 |
富集指数 EI | -0.446 | 0.801** | 0.813** | 0.686** | -0.870** | 0.783** | -0.200 | -0.070 |
线虫个体数 N | -0.666** | 0.207 | 0.219 | 0.101 | 0.062 | 0.100 | -0.729** | 0.767** |
自由生活线虫成熟度 MI | -0.282 | -0.038 | -0.036 | 0.268 | -0.031 | -0.084 | -0.169 | -0.062 |
植物-寄生线虫指数 PPI | -0.231 | 0.035 | 0.034 | -0.165 | 0.043 | -0.071 | 0.210 | 0.103 |
瓦斯乐斯卡指数 WI | -0.038 | -0.004 | 0.014 | 0.240 | -0.005 | 0.140 | -0.006 | -0.032 |
食细菌线虫多度 BF | -0.169 | 0.206 | 0.230 | -0.131 | -0.015 | 0.229 | -0.354 | 0.551* |
食真菌线虫多度 FF | -0.520* | 0.305 | 0.268 | 0.339 | -0.054 | 0.210 | -0.299 | 0.281 |
植物寄生线虫多度 PF | -0.119 | 0.332 | 0.333 | 0.086 | -0.239 | 0.212 | -0.189 | 0.194 |
捕食-杂食线虫多度 OP | -0.514 | 0.110 | 0.124 | 0.326 | -0.092 | 0.075 | -0.392 | 0.216 |
线虫通道比 NCR | 0.386 | -0.185 | -0.150 | -0.428 | 0.184 | -0.102 | 0.008 | 0.181 |
表1 松嫩平原线虫数量、营养类群、生态指数与土壤理化指标间的Pearson相关系数
Table 1 Pearson correlation between nematode abundance, trophic groups, ecological indices and soil physicochemical parameters in the Songnen Plain
指标 Index | pH | 土壤有机碳 SOC | 全氮 TN | 全磷 TP | 全钾 TK | 速效氮 AN | 速效磷 AP | 速效钾 AK |
---|---|---|---|---|---|---|---|---|
线虫多样性指数 H' | -0.527* | 0.100 | 0.105 | -0.008 | 0.077 | 0.130 | -0.459 | 0.496 |
线虫丰富度指数 SR | -0.616* | 0.157 | 0.170 | -0.015 | 0.066 | 0.114 | -0.644** | 0.642** |
结构指数 SI | -0.607* | 0.506 | 0.528* | 0.697** | -0.548* | 0.502 | -0.513 | 0.068 |
富集指数 EI | -0.446 | 0.801** | 0.813** | 0.686** | -0.870** | 0.783** | -0.200 | -0.070 |
线虫个体数 N | -0.666** | 0.207 | 0.219 | 0.101 | 0.062 | 0.100 | -0.729** | 0.767** |
自由生活线虫成熟度 MI | -0.282 | -0.038 | -0.036 | 0.268 | -0.031 | -0.084 | -0.169 | -0.062 |
植物-寄生线虫指数 PPI | -0.231 | 0.035 | 0.034 | -0.165 | 0.043 | -0.071 | 0.210 | 0.103 |
瓦斯乐斯卡指数 WI | -0.038 | -0.004 | 0.014 | 0.240 | -0.005 | 0.140 | -0.006 | -0.032 |
食细菌线虫多度 BF | -0.169 | 0.206 | 0.230 | -0.131 | -0.015 | 0.229 | -0.354 | 0.551* |
食真菌线虫多度 FF | -0.520* | 0.305 | 0.268 | 0.339 | -0.054 | 0.210 | -0.299 | 0.281 |
植物寄生线虫多度 PF | -0.119 | 0.332 | 0.333 | 0.086 | -0.239 | 0.212 | -0.189 | 0.194 |
捕食-杂食线虫多度 OP | -0.514 | 0.110 | 0.124 | 0.326 | -0.092 | 0.075 | -0.392 | 0.216 |
线虫通道比 NCR | 0.386 | -0.185 | -0.150 | -0.428 | 0.184 | -0.102 | 0.008 | 0.181 |
指标 Index | 植物多样性指数 H2' | 平均高度 AH | 平均生物量 AB | 湿生植物重要值 P1 | 中生植物重要值 P2 | 沼生植物重要值 P3 | 植被盖度 Coverage |
---|---|---|---|---|---|---|---|
线虫多样性指数 H' | 0.366 | 0.199 | -0.058 | 0.703** | 0.239 | 0.171 | -0.058 |
线虫丰富度指数 SR | 0.420 | 0.270 | -0.103 | 0.752** | 0.341 | 0.200 | -0.103 |
结构指数 SI | 0.537* | 0.749** | 0.653** | 0.443 | 0.117 | 0.765** | 0.653** |
富集指数 EI | 0.131 | 0.657** | 0.478 | -0.507 | 0.534* | 0.508 | 0.478 |
线虫个体数 N | 0.687** | 0.301 | 0.042 | 0.817** | 0.424 | 0.260 | 0.042 |
自由生活线虫成熟度 MI | 0.314 | 0.232 | 0.200 | 0.599* | -0.325 | 0.311 | 0.200 |
植物-寄生线虫指数 PPI | -0.228 | -0.179 | -0.548* | 0.124 | 0.245 | -0.233 | -0.548* |
瓦斯乐斯卡指数 WI | 0.255 | 0.205 | 0.490 | 0.390 | -0.255 | 0.250 | 0.490 |
食细菌线虫多度 BF | 0.160 | 0.102 | -0.015 | -0.025 | 0.636* | -0.067 | -0.015 |
食真菌线虫多度 FF | 0.613* | 0.211 | 0.186 | 0.447 | -0.051 | 0.295 | 0.186 |
植物寄生线虫多度 PF | 0.070 | 0.124 | -0.031 | -0.394 | 0.447 | 0.028 | -0.031 |
捕食-杂食线虫多度 OP | 0.455 | 0.368 | 0.264 | 0.764** | -0.035 | 0.396 | 0.264 |
线虫通道比 NCR | -0.293 | -0.202 | -0.191 | -0.248 | 0.336 | -0.263 | -0.191 |
表2 松嫩平原线虫数量、营养类群、生态指数与植物生理指标的相关系数
Table 2 Correlation coefficients between nematode abundance, trophic group, ecological index and plant physiological indicators in Songnen Plain
指标 Index | 植物多样性指数 H2' | 平均高度 AH | 平均生物量 AB | 湿生植物重要值 P1 | 中生植物重要值 P2 | 沼生植物重要值 P3 | 植被盖度 Coverage |
---|---|---|---|---|---|---|---|
线虫多样性指数 H' | 0.366 | 0.199 | -0.058 | 0.703** | 0.239 | 0.171 | -0.058 |
线虫丰富度指数 SR | 0.420 | 0.270 | -0.103 | 0.752** | 0.341 | 0.200 | -0.103 |
结构指数 SI | 0.537* | 0.749** | 0.653** | 0.443 | 0.117 | 0.765** | 0.653** |
富集指数 EI | 0.131 | 0.657** | 0.478 | -0.507 | 0.534* | 0.508 | 0.478 |
线虫个体数 N | 0.687** | 0.301 | 0.042 | 0.817** | 0.424 | 0.260 | 0.042 |
自由生活线虫成熟度 MI | 0.314 | 0.232 | 0.200 | 0.599* | -0.325 | 0.311 | 0.200 |
植物-寄生线虫指数 PPI | -0.228 | -0.179 | -0.548* | 0.124 | 0.245 | -0.233 | -0.548* |
瓦斯乐斯卡指数 WI | 0.255 | 0.205 | 0.490 | 0.390 | -0.255 | 0.250 | 0.490 |
食细菌线虫多度 BF | 0.160 | 0.102 | -0.015 | -0.025 | 0.636* | -0.067 | -0.015 |
食真菌线虫多度 FF | 0.613* | 0.211 | 0.186 | 0.447 | -0.051 | 0.295 | 0.186 |
植物寄生线虫多度 PF | 0.070 | 0.124 | -0.031 | -0.394 | 0.447 | 0.028 | -0.031 |
捕食-杂食线虫多度 OP | 0.455 | 0.368 | 0.264 | 0.764** | -0.035 | 0.396 | 0.264 |
线虫通道比 NCR | -0.293 | -0.202 | -0.191 | -0.248 | 0.336 | -0.263 | -0.191 |
图7 松嫩平原不同生境中土壤线虫营养类群和总线虫群落的非度量多维尺度分析(NMDS)和ANOSIM检验结果
Fig. 7 Non-metric multidimensional scale analysis (NMDS) and ANOSIM test of soil nematode and nematode communities in five habitats in Songnen Plain. BF, Bacterivores; FF, Fungivores; PF, Plant-parasites; OP, Omnivores-predators.
[1] | Bao SD (2000) Soil Agrochemical Analysis, 3rd edn. China Agriculture Press, Beijing. (in Chinese) |
[鲍士旦 (2000) 土壤农化分析(第三版). 中国农业出版社, 北京.] | |
[2] |
Biederman LA, Boutton TW (2009) Biodiversity and trophic structure of soil nematode communities are altered following woody plant invasion of grassland. Soil Biology and Biochemistry, 41, 1943-1950.
DOI URL |
[3] |
Bongers T (1990) The maturity index: An ecological measure of environmental disturbance based on nematode species composition. Oecologia, 83, 14-19.
DOI PMID |
[4] | Chen DL, Purbu, Basang, Ma ZX, Chen LY (2014) Characterization of nematode communities in Lhalu wetlands during the summer. Chinese Journal of Zoology, 49, 744-753. (in Chinese with English abstract) |
[陈德来, 普布, 巴桑, 马正学, 陈凌云 (2014) 西藏拉鲁湿地夏季土壤线虫群落特征. 动物学杂志, 49, 744-753.] | |
[5] |
Chen DM, Xing W, Lan ZC, Saleem M, Wu Y, Hu SJ, Bai YF (2019) Direct and indirect effects of nitrogen enrichment on soil organisms and carbon and nitrogen mineralization in a semi-arid grassland. Functional Ecology, 33, 175-187.
DOI URL |
[6] |
Chen H, Yang L, Zhang FH (2021) Effects of continuous cotton monocropping on soil physicochemical properties and nematode community in Xinjiang, China. Chinese Journal of Applied Ecology, 32, 4263-4271. (in Chinese with English abstract)
DOI |
[陈虹, 杨磊, 张凤华 (2021) 新疆长期棉花连作对土壤理化性状与线虫群落的影响. 应用生态学报, 32, 4263-4271.]
DOI |
|
[7] | Chen L, Xin JN, Su Y, Li YF, Song NP, Wang L, Yang XG, Bian YY, Tian N (2019) Effects of heterogeneous habitats on community composition and niche characteristics of different plant populations in the desert steppe of China. Acta Ecologica Sinica, 39, 6187-6205. (in Chinese with English abstract) |
[陈林, 辛佳宁, 苏莹, 李月飞, 宋乃平, 王磊, 杨新国, 卞莹莹, 田娜 (2019) 异质生境对荒漠草原植物群落组成和种群生态位的影响. 生态学报, 39, 6187-6205.] | |
[8] |
Ferris H (2010) Form and function: Metabolic footprints of nematodes in the soil food web. European Journal of Soil Biology, 46, 97-104.
DOI URL |
[9] |
García-Palacios P, Maestre FT, Kattge J, Wall DH (2013) Climate and litter quality differently modulate the effects of soil fauna on litter decomposition across biomes. Ecology Letters, 16, 1045-1053.
DOI PMID |
[10] |
Hodkinson ID, Jackson JK (2005) Terrestrial and aquatic invertebrates as bioindicators for environmental monitoring, with particular reference to mountain ecosystems. Environmental Management, 35, 649-666.
PMID |
[11] |
Hooper DU, Bignell DE, Brown VK, Brussard L, Dangerfield JM, Wall DH, Wardle DA, Coleman DC, Giller KE, Lavelle P, van der Putten WH, De Ruiter PC, Rusek J, Silver WL, Tiedje JM, Wolters V (2000) Interactions between aboveground and belowground biodiversity in terrestrial ecosystems: Patterns, mechanisms, and feedbacks. BioScience, 50, 1049-1061.
DOI URL |
[12] |
Huo N, Zhao SW, Huang JH, Geng DZ, Wang N, Yang PP (2021) Seasonal stabilities of soil nematode communities and their relationships with environmental factors in different temperate forest types on the Chinese Loess Plateau. Forests, 12, 246.
DOI URL |
[13] |
Jin YL, Li BC, Geng L, Bu Y (2017) Soil fauna community in different natural vegetation types of Dajinshan Island, Shanghai. Biodiversity Science, 25, 304-311. (in Chinese with English abstract)
DOI |
[靳亚丽, 李必成, 耿龙, 卜云 (2017) 上海大金山岛不同植被类型下土壤动物群落多样性. 生物多样性, 25, 304-311.]
DOI |
|
[14] | Liang DS, Mu CC, Gao X, Lu Y (2023) Environmental gradient distribution patterns of wetland plant community diversity and controlling factors in Songnen Plain. Acta Ecologica Sinica, 43, 339-351. (in Chinese with English abstract) |
[梁道省, 牟长城, 高旭, 鲁艺 (2023) 松嫩平原湿地植物群落多样性的环境梯度分布格局及控制因子. 生态学报, 43, 339-351.] | |
[15] |
Liang WJ, Li Q, Jiang Y, Neher DA (2005) Nematode faunal analysis in an aquic brown soil fertilised with slow-release urea, Northeast China. Applied Soil Ecology, 29, 185-192.
DOI URL |
[16] |
Liu YF, Wang WY, Suo NJ, Zhou HK, Mao XF, Wang SX, Chen Z (2022) Relationship between plant community types and soil nematode communities in Haibei, Qinghai, China. Chinese Journal of Plant Ecology, 46, 27-39. (in Chinese with English abstract)
DOI URL |
[刘艳方, 王文颖, 索南吉, 周华坤, 毛旭锋, 王世雄, 陈哲 (2022) 青海海北植物群落类型与土壤线虫群落相互关系. 植物生态学报, 46, 27-39.]
DOI |
|
[17] | Margalef DR (1958) Information theory in ecology. General Systematics, 3, 36-71. |
[18] |
Martin T, Sprunger CD (2022) Soil food web structure and function in annual row-crop systems: How can nematode communities infer soil health? Applied Soil Ecology, 178, 104553.
DOI URL |
[19] |
Mejía-Madrid HH, Panesar TS, Marshall VG, Barclay HJ (2001) Abundance and diversity of soil nematodes in chronosequences of coastal Douglas-fir forests on Vancouver Island, British Columbia. Pedobiologia, 45, 193-212.
DOI URL |
[20] |
Mejía-Madrid HH, Sánchez-Moreno S (2022) Natural ecosystem heterogeneity diversity and functioning of nematode communities in a semi-desert ecosystem in Mexico. Applied Soil Ecology, 176, 104477.
DOI URL |
[21] |
Mulder C, Scherber C, Eisenhauer N, Weisser WW, Schmid B, Voigt W, Fischer M, Schulze ED, Roscher C, Weigelt A, Allan E, Beßler H, Bonkowski M, Buchmann N, Buscot F, Clement LW, Ebeling A, Engels C, Halle S, Kertscher I, Klein AM, Koller R, König S, Kowalski E, Kummer V, Kuu A, Lange M, Lauterbach D, Middelhoff C, Migunova VD, Milcu A, Müller R, Partsch S, Petermann JS, Renker C, Rottstock T, Sabais A, Scheu S, Schumacher J, Temperton VM, Tscharntke T (2010) Bottom-up effects of plant diversity on multitrophic interactions in a biodiversity experiment. Nature, 468, 553-556.
DOI |
[22] |
Paz-Ferreiro J, Fu SL (2016) Biological indices for soil quality evaluation: Perspectives and limitations. Land Degradation & Development, 27, 14-25.
DOI URL |
[23] |
Polis GA, Strong DR (1996) Food web complexity and community dynamics. The American Naturalist, 147, 813-846.
DOI URL |
[24] | Shannon CE, Weaver W (1963) The Mathematical Theory of Communication. University of Illinois, Urbana, Illinois. |
[25] |
Sikora RA (1992) Management of the antagonistic potential in agricultural ecosystems for the biological control of plant parasitic nematodes. Annual Review of Phytopathology, 30, 245-270.
DOI URL |
[26] | Sun P, Wei X, Ye WH, Shen H (2022) Differences in leaf functional trait responses to heterogeneous habitats between dominant canopy and understory tree species in a south subtropical evergreen broad-leaved forest. Guihaia, 42, 510-519. (in Chinese with English abstract) |
[孙鹏, 韦霄, 叶万辉, 沈浩 (2022) 南亚热带常绿阔叶林冠层和林下层优势种叶功能性状响应异质生境的差异. 广西植物, 42, 510-519.] | |
[27] |
Tao Y, Wang ZQ, Ma C, He HS, Xu JW, Jin YH, Wang HX, Zheng XX (2019) Vegetation heterogeneity effects on soil macro-arthropods in an alpine tundra of the Changbai Mountains, China. Plants, 8, 418.
DOI URL |
[28] |
Treseder KK, Vitousek PM (2001) Effects of soil nutrient availability on investment in acquisition of n and p in Hawaiian rain forests. Ecology, 82, 946-954.
DOI URL |
[29] |
Viketoft M, Sohlenius B (2011) Soil nematode populations in a grassland plant diversity experiment run for seven years. Applied Soil Ecology, 48, 174-184.
DOI URL |
[30] | Wang JF, Huang QY, Xie LH, Cao HJ, Wang JB, Dong HP, Zeng ZW, Ni HW (2022) Relationship between plant community species diversity and vegetation carbon storage in Songnen grassland. Chinese Journal of Grassland, 44(7), 33-42. (in Chinese with English abstract) |
[王继丰, 黄庆阳, 谢立红, 曹宏杰, 王建波, 董海鹏, 曾昭文, 倪红伟 (2022) 黑龙江松嫩草地植物群落物种多样性与植物碳储量的关系. 中国草地学报, 44(7), 33-42.] | |
[31] |
Wang JQ, Shi XZ, Li LQ, Zhang XH (2021) Changes in soil nematodes in rhizosphere and non-rhizosphere soils following combined elevated CO2 and canopy warming in a winter wheat field. Geoderma, 386, 114907.
DOI URL |
[32] |
Wang YT, Niu KC (2020) Effect of soil environment on functional diversity of soil nematodes in Tibetan alpine meadows. Biodiversity Science, 28, 707-717. (in Chinese with English abstract)
DOI |
[王宇彤, 牛克昌 (2020) 青藏高原高寒草甸土壤环境对线虫功能多样性的影响. 生物多样性, 28, 707-717.
DOI |
|
[33] | Wang ZZ, Zhang YM, Xia WS, Zheng YY, Hu JL, Xing XJ, Yan HM, Guo YC, Lai Q (1996) Effects of organophosphorus pesticide on community structure of soil animals. Acta Ecologica Sinica, 16, 357-366. (in Chinese with English abstract) |
[王振中, 张友梅, 夏卫生, 郑云友, 胡觉莲, 邢协加, 颜亨梅, 郭永灿, 赖勤 (1996) 有机磷农药对土壤动物群落结构的影响研究. 生态学报, 16, 357-366.] | |
[34] |
Wardle DA, Williamson WM, Yeates GW, Bonner KI (2005) Trickle-down effects of aboveground trophic cascades on the soil food web. Oikos, 111, 348-358.
DOI URL |
[35] | Welti E, Helzer C, Joern A (2017) Impacts of plant diversity on arthropod communities and plant-herbivore network architecture. Ecosphere, 8, e01983. |
[36] | Wu DH, Yin WY, Bu ZY (2008a) Changes among soil nematode community characteristics in relation to different vegetation restoration practices in the moderate degraded grasslands of Songnen Plain. Acta Ecologica Sinica, 28, 1-12. (in Chinese with English abstract) |
[吴东辉, 尹文英, 卜照义 (2008a) 松嫩草原中度退化草地不同植被恢复方式下土壤线虫的群落特征. 生态学报, 28, 1-12.] | |
[37] | Wu DH, Yin WY, Yan RQ (2008b) Influence of vegetation reclamation type on the characteristics of soil Collembola community in seriously alkalinized and degraded grasslands of Songnen Plain. China Environmental Science, 28, 466-470. (in Chinese with English abstract) |
[吴东辉, 尹文英, 阎日青 (2008b) 植被恢复方式对重度退化草原土壤跳虫群落的影响. 中国环境科学, 28, 466-470.] | |
[38] |
Wu HY, Li XX, Shi LB, Wang ZH, Ma FY (2008) Distribution of nematodes in wetland soils with difference distance from the Bohai Sea. Plant, Soil and Environment, 54, 359-366.
DOI URL |
[39] |
Wu WJ, Yuan Y, Zhang J, Zhou LX, Wang J, Ren H, Liu ZF (2022) Dynamics of soil nematode community during the succession of forests in southern subtropical China. Biodiversity Science, 30, 22205. (in Chinese with English abstract)
DOI |
[吴文佳, 袁也, 张静, 周丽霞, 王俊, 任海, 刘占锋 (2022) 南亚热带森林演替过程中土壤线虫群落结构变化. 生物多样性, 30, 22205.]
DOI |
|
[40] | Wu Y, Chen WJ, Entemake W, Wang J, Liu HF, Zhao ZW, Li YZ, Qiao LL, Yang B, Liu GB, Xue S (2021) Long-term vegetation restoration promotes the stability of the soil micro-food web in the Loess Plateau in North-west China. Catena, 202, 105293. |
[41] |
Xiao H, Wang B, Lu SB, Chen DM, Wu Y, Zhu YH, Hu SJ, Bai YF (2020) Soil acidification reduces the effects of short-term nutrient enrichment on plant and soil biota and their interactions in grasslands. Global Change Biology, 26, 4626-4637.
DOI URL |
[42] |
Xiao YY, Feng W, Qiao YG, Zhang YQ, Qin SG (2023) Effects of soil microbial community characteristics on soil multifunctionality in sand-fixation shrublands. Biodiversity Science, 31, 22585. (in Chinese with English abstract)
DOI |
[肖媛媛, 冯薇, 乔艳桂, 张宇清, 秦树高 (2023) 固沙灌木林地土壤微生物群落特征对土壤多功能性的影响. 生物多样性, 31, 22585.]
DOI |
|
[43] |
Yeates GW, Bongers T, De Goede RG, Freckman DW, Georgieva SS (1993) Feeding habits in soil nematode families and genera—An outline for soil ecologists. Journal of Nematology, 25, 315-331.
PMID |
[44] |
Zhang W, Liu MQ, He YQ, Fan JB, Chen Y (2014) Responses of soil nematode communities to long-term application of inorganic fertilizers in upland red soil. Chinese Journal of Applied Ecology, 25, 2361-2368. (in Chinese with English abstract)
PMID |
[张微, 刘满强, 何园球, 樊剑波, 陈晏 (2014) 长期施用不同无机肥对旱地红壤线虫群落的影响. 应用生态学报, 25, 2361-2368.] | |
[45] |
Zhang XK, Guan PT, Wang YL, Li Q, Zhang SX, Zhang ZY, Bezemer TM, Liang WJ (2015) Community composition, diversity and metabolic footprints of soil nematodes in differently-aged temperate forests. Soil Biology and Biochemistry, 80, 118-126.
DOI URL |
[46] | Zhao F, Zhang MW, Wang CW, Mei XF, Xie LN, Ma CC (2022) Effects of Caragana shrub encroachment on soil nematode community composition and metabolic footprints in steppe desert region. Acta Ecologica Sinica, 42, 4124-4136. (in Chinese with English abstract) |
[赵芳, 张明伟, 王春雯, 梅续芳, 解李娜, 马成仓 (2022) 锦鸡儿属灌丛化对草原化荒漠区土壤线虫群落组成和代谢足迹的影响. 生态学报, 42, 4124-4136.] | |
[47] |
Zhao J, Wang FM, Li J, Zou B, Wang XL, Li ZA, Fu SL (2014) Effects of experimental nitrogen and/or phosphorus additions on soil nematode communities in a secondary tropical forest. Soil Biology and Biochemistry, 75, 1-10.
DOI URL |
[1] | 姚祝, 魏雪, 马金豪, 任晓, 王玉英, 胡雷, 吴鹏飞. 气候暖湿化对高寒草甸土壤线虫群落的短期影响[J]. 生物多样性, 2024, 32(5): 23483-. |
[2] | 郑梦瑶, 李媛, 王雪蓉, 张越, 贾彤. 芦芽山不同植被类型土壤原生动物群落构建机制[J]. 生物多样性, 2024, 32(4): 23419-. |
[3] | 倪艳梅, 陈莉, 董志远, 孙德斌, 李宝泉, 王绪敏, 陈琳琳. 黄河三角洲湿地生态修复区大型底栖动物群落结构与生态健康评价[J]. 生物多样性, 2024, 32(3): 23303-. |
[4] | 曹可欣, 王敬雯, 郑国, 武鹏峰, 李英滨, 崔淑艳. 降水格局改变及氮沉降对北方典型草原土壤线虫多样性的影响[J]. 生物多样性, 2024, 32(3): 23491-. |
[5] | 魏嘉欣, 姜治国, 杨林森, 熊欢欢, 金胶胶, 罗方林, 李杰华, 吴浩, 徐耀粘, 乔秀娟, 魏新增, 姚辉, 余辉亮, 杨敬元, 江明喜. 湖北神农架中亚热带山地落叶阔叶林25 ha动态监测样地群落物种组成与结构特征[J]. 生物多样性, 2024, 32(3): 23338-. |
[6] | 刘啸林, 吴友贵, 张敏华, 陈小荣, 朱志成, 陈定云, 董舒, 李步杭, 丁炳扬, 刘宇. 浙江百山祖25 ha亚热带森林动态监测样地群落组成与结构特征[J]. 生物多样性, 2024, 32(2): 23294-. |
[7] | 王明慧, 陈昭铨, 李帅锋, 黄小波, 郎学东, 胡子涵, 尚瑞广, 刘万德. 云南普洱季风常绿阔叶林不同种子扩散方式的优势种空间点格局分析[J]. 生物多样性, 2023, 31(9): 23147-. |
[8] | 张多鹏, 刘洋, 李正飞, 葛奕豪, 张君倩, 谢志才. 长江上游支流赤水河流域底栖动物物种多样性与保护对策[J]. 生物多样性, 2023, 31(8): 22674-. |
[9] | 刘彩莲, 许庆, 王林龙, 邢衍阔, 宋稼豪, 林柏岸, 康斌, 刘敏. 闽东近海春秋季游泳动物多样性、密度及群落特征[J]. 生物多样性, 2023, 31(7): 22635-. |
[10] | 朱晓华, 高程, 王聪, 赵鹏. 尿素对土壤细菌与真菌多样性影响的研究进展[J]. 生物多样性, 2023, 31(6): 22636-. |
[11] | 毛莹儿, 周秀梅, 王楠, 李秀秀, 尤育克, 白尚斌. 毛竹扩张对杉木林土壤细菌群落的影响[J]. 生物多样性, 2023, 31(6): 22659-. |
[12] | 谢艳秋, 黄晖, 王春晓, 何雅琴, 江怡萱, 刘子琳, 邓传远, 郑郁善. 福建海岛滨海特有植物种-面积关系及物种丰富度决定因素[J]. 生物多样性, 2023, 31(5): 22345-. |
[13] | 陈哲涵, 尹进, 叶吉, 刘冬伟, 毛子昆, 房帅, 蔺菲, 王绪高. 增温对东北温带次生林草本群落季节动态的影响[J]. 生物多样性, 2023, 31(5): 23059-. |
[14] | 张鹤露, 赵美红, 孙世春, 刘晓收. 西藏那曲市高原盐湖自由生活线虫群落多样性与结构特征[J]. 生物多样性, 2023, 31(5): 22533-. |
[15] | 魏庐潞, 徐婷婷, 李媛媛, 艾喆, 马飞. 同质园环境和遗传分化影响锦鸡儿属植物根际土壤固氮菌多样性和群落结构[J]. 生物多样性, 2023, 31(4): 22477-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn