生物多样性 ›› 2025, Vol. 33 ›› Issue (3): 24341. DOI: 10.17520/biods.2024341 cstr: 32101.14.biods.2024341
莫笑梅1, 张琪1, 杨嘉欣1, 郑国1(), 胡中民2(
), 张晓珂3, 梁思维4,*(
), 崔淑艳1,5,*(
)
收稿日期:
2024-07-29
接受日期:
2024-09-15
出版日期:
2025-03-20
发布日期:
2025-03-24
通讯作者:
*E-mail: siweiliang0102@163.com; cui.shu.yan@163.com
基金资助:
Mo Xiaomei1, Zhang Qi1, Yang Jiaxin1, Zheng Guo1(), Hu Zhongmin2(
), Zhang Xiaoke3, Liang Siwei4,*(
), Cui Shuyan1,5,*(
)
Received:
2024-07-29
Accepted:
2024-09-15
Online:
2025-03-20
Published:
2025-03-24
Contact:
*E-mail: siweiliang0102@163.com; cui.shu.yan@163.com
Supported by:
摘要: 土壤线虫是一类对环境变化敏感、响应迅速的重要土壤动物, 其营养类群丰富, 横跨土壤食物网的多个营养级, 这使得土壤线虫的代谢速率和能量流动成为了衡量生态系统功能的有效指标。在全球气候变化的背景下, 我国北方温带草地在降水模式和氮沉降方面发生了巨大变化。但降水模式和氮沉降的交互作用(氮水交互)对土壤线虫的代谢速率和能量流动的影响尚不清楚。本研究通过野外试验模拟这两种全球变化因子, 在内蒙古多伦地区开展了长达8年的降水添加(降水总量相同而降水强度和频率不同, 共5个降水强度)和氮添加(10 g∙m-2∙yr-1)控制实验, 旨在探究土壤线虫代谢速率及能量流动对氮沉降和降水模式改变的响应。结果表明: 氮水交互效应对线虫的代谢速率和能量通量均有显著的消极影响。在降水模式向高强度低频率转变下, 线虫的代谢率和能量通量均呈现随降水强度增加而增加的趋势, 在高强度降水下达到峰值后降低, 而氮水交互的负效应大幅削弱了这种趋势。氮水交互下, 线虫的代谢速率和线虫食物网的能量流动可能主要由食物资源介导的上行效应控制。本研究揭示了长期氮沉降与降水模式改变的交互作用会显著抑制土壤线虫的能量代谢过程, 表明未来气候变化背景下氮水耦合效应可能通过干扰土壤微食物网能量传递削弱温带草地生态系统的功能稳定性。
莫笑梅, 张琪, 杨嘉欣, 郑国, 胡中民, 张晓珂, 梁思维, 崔淑艳 (2025) 北方典型草地土壤线虫代谢速率及能量流动对氮沉降和降水模式改变的响应. 生物多样性, 33, 24341. DOI: 10.17520/biods.2024341.
Mo Xiaomei, Zhang Qi, Yang Jiaxin, Zheng Guo, Hu Zhongmin, Zhang Xiaoke, Liang Siwei, Cui Shuyan (2025) Responses of soil nematode metabolic rate and energy flow to nitrogen addition and precipitation pattern change in a typical northern grassland. Biodiversity Science, 33, 24341. DOI: 10.17520/biods.2024341.
图2 降水模式变化和氮添加对各营养类群线虫代谢速率的影响(平均值 ± 标准误)。N: 氮添加; P: 降水模式; N × P: 氮水交互。N0和N10分别为不添加氮和添加氮的处理。不同小写字母表示不同降水模式间的差异显著性。* P < 0.05, ** P < 0.01, *** P < 0.001。
Fig. 2 Effects of precipitation pattern change and nitrogen addition on soil nematode metabolic rate of each trophic group (mean ± SE). N, Nitrogen addition; P, Precipitation pattern change; N × P, The interaction between nitrogen addition and precipitation pattern change. N0 and N10 are treatments without and with nitrogen, respectively. Different letters indicate significant differences among different precipitation patterns. * P < 0.05, ** P < 0.01, *** P < 0.001.
图3 降水模式变化和氮添加对各营养类群线虫能量通量的影响(平均值 ± 标准误)。N: 氮添加; P: 降水模式; N × P: 氮水交互。N0和N10分别为不添加氮和添加氮的处理。不同小写字母表示不同降水模式间的差异显著性。* P < 0.05, ** P < 0.01, *** P < 0.001。
Fig. 3 Effects of precipitation pattern change and nitrogen addition on soil nematode energy flux of different trophic groups (mean ± SE). N, Nitrogen addition; P, Precipitation pattern change; N × P, The interaction between nitrogen addition and precipitation pattern change. N0 and N10 are treatments without and with nitrogen, respectively. Different letters indicate significant differences among different precipitation patterns. * P < 0.05, ** P < 0.01, *** P < 0.001.
图4 降水模式变化和氮添加对线虫食物网中能量通量和鲜重分配的影响。N0和N10分别为不添加氮和添加氮的处理。R为基础资源。
Fig. 4 Effects of precipitation pattern change and nitrogen addition on energy flux and fresh biomass distribution within soil nematode food web. N0 and N10 are treatments without and with nitrogen, respectively. R indicates basal resources.
图5 环境因子与线虫代谢速率及能量通量的Mantel相关性分析结果。N0和N10分别为不添加氮和添加氮的处理。BF: 食细菌线虫; FF: 食真菌线虫; PP: 植物寄生性线虫; OP: 杂食/捕食性线虫; SM: 土壤湿度; SOC: 土壤有机碳; DOC: 溶解性有机碳; MBC: 微生物量碳; MBN: 微生物量氮; NH4+-N: 铵态氮; NO3--N: 硝态氮; AGB: 植物地上生物量; BGB: 植物地下生物量; Richness: 植物丰富度。
Fig. 5 The nematode metabolic rate and energy flux were related to environmental factors by partial Mantel tests. N0 and N10 are treatments without and with nitrogen, respectively. BF, Bacterivores; FF, Fungivores; PP, Plant parasites; OP, Omnivores/predators; SM, Soil moisture; SOC, Soil organic carbon; DOC, Dissolved organic carbon; MBC, Microbial biomass carbon; MBN, Microbial biomass nitrogen; NH4+-N, Ammonium nitrogen; NO3--N, Nitrate nitrogen; AGB, Aboveground biomass; BGB, Belowground biomass.
[1] | Bai YF, Wu JG, Clark CM, Naeem S, Pan QM, Huang JH, Zhang LX, Han XG(2010) Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: Evidence from Inner Mongolia Grasslands. Global Change Biology, 16, 358-372. |
[2] |
Bai YF, Wu JG, Xing Q, Pan QM, Huang JH, Yang DL, Han XG(2008) Primary production and rain use efficiency across a precipitation gradient on the Mongolia Plateau. Ecology, 89, 2140-2153.
PMID |
[3] | Barnes AD, Jochum M, Lefcheck JS, Eisenhauer N, Scherber C, O’Connor MI, de Ruiter P, Brose U(2018) Energy flux: The link between multitrophic biodiversity and ecosystem functioning. Trends in Ecology & Evolution, 33, 186-197. |
[4] |
Barnes AD, Jochum M, Mumme S, Haneda NF, Farajallah A, Widarto TH, Brose U(2014) Consequences of tropical land use for multitrophic biodiversity and ecosystem functioning. Nature Communications, 5, 5351.
DOI PMID |
[5] | Brookes PC, Landman A, Pruden G, Jenkinson DS(1985) Chloroform fumigation and the release of soil nitrogen: A rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biology and Biochemistry, 17, 837-842. |
[6] | Burke IC, Lauenroth WK, Parton WJ(1997) Regional and temporal variation in net primary production and nitrogen mineralization in grasslands. Ecology, 78, 1330-1340. |
[7] | Cao KX, Wang JW, Zheng G, Wu PF, Li YB, Cui SY(2024) Effects of precipitation regime change and nitrogen deposition on soil nematode diversity in the grassland of northern China. Biodiversity Science, 32, 23491. (in Chinese with English abstract) |
[ 曹可欣, 王敬雯, 郑国, 武鹏峰, 李英滨, 崔淑艳 (2024) 降水格局改变及氮沉降对北方典型草原土壤线虫多样性的影响. 生物多样性, 32, 23491.]
DOI |
|
[8] | Cui SY, Han X, Xiao YS, Wu PF, Zhang SX, Abid A, Zheng G(2022) Increase in rainfall intensity promotes soil nematode diversity but offset by nitrogen addition in a temperate grassland. Science of the Total Environment, 825, 154039. |
[9] | Cui SY, Xiao YS, Zhou Y, Wu PF, Cui LQ, Zheng G(2023) Variations in diversity, composition, and species interactions of soil microbial community in response to increased N deposition and precipitation intensity in a temperate grassland. Ecological Processes, 12, 35. |
[10] |
Easterling DR, Meehl GA, Parmesan C, Changnon SA, Karl TR, Mearns LO(2000) Climate extremes: Observations, modeling, and impacts. Science, 289, 2068-2074.
DOI PMID |
[11] | Eisenhauer N, Dobies T, Cesarz S, Hobbie SE, Meyer RJ, Worm K, Reich PB(2013) Plant diversity effects on soil food webs are stronger than those of elevated CO2 and N deposition in a long-term grassland experiment. Proceedings of the National Academy of Sciences, USA, 110, 6889-6894. |
[12] | Ferris H(2010) Form and function: Metabolic footprints of nematodes in the soil food web. European Journal of Soil Biology, 46, 97-104. |
[13] | Freckman DW(1988) Bacterivorous nematodes and organic- matter decomposition. Agriculture, Ecosystems & Environment, 24, 195-217. |
[14] | Guo Q, Hu ZM, Li XR, Li SG(2013) Effects of precipitation timing on aboveground net primary productivity in Inner Mongolia temperate steppe. Acta Ecologica Sinica, 33, 4808-4817. (in Chinese with English abstract) |
[ 郭群, 胡中民, 李轩然, 李胜功 (2013) 降水时间对内蒙古温带草原地上净初级生产力的影响. 生态学报, 33, 4808-4817.] | |
[15] | Högberg MN, Briones MJI, Keel SG, Metcalfe DB, Campbell C, Midwood AJ, Thornton B, Hurry V, Linder S, Näsholm T, Högberg P(2010) Quantification of effects of season and nitrogen supply on tree below-ground carbon transfer to ectomycorrhizal fungi and other soil organisms in a boreal pine forest. New Phytologist, 187, 485-493. |
[16] | Hu JX, Zhou SX, Tie LH, Liu X, Liu X, Zhao AJ, Lai JM, Xiao L, You CM, Huang CD(2022) Effects of nitrogen addition on soil faunal abundance: A global meta-analysis. Global Ecology and Biogeography, 31, 1655-1666. |
[17] |
Hungate BA, Hart SC, Selmants PC, Boyle SI, Gehring CA(2007) Soil responses to management, increased precipitation, and added nitrogen in ponderosa pine forests. Ecological Applications, 17, 1352-1365.
PMID |
[18] | IPCC (the Intergovernmental Panel on Climate Change) (2013) Climate Change 2013: The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge. |
[19] | Knapp AK, Beier C, Briske DD, Classen AT, Luo YQ, Reichstein M, Smith MD, Smith SD, Bell JE, Fay PA, Heisler JL, Leavitt SW, Sherry R, Smith B, Weng ES(2008) Consequences of more extreme precipitation regimes for terrestrial ecosystems. BioScience, 58, 811-821. |
[20] |
Knapp AK, Fay PA, Blair JM, Collins SL, Smith MD, Carlisle JD, Harper CW, Danner BT, Lett MS, McCarron JK(2002) Rainfall variability, carbon cycling, and plant species diversity in a mesic grassland. Science, 298, 2202-2205.
DOI PMID |
[21] | Landesman WJ, Treonis AM, Dighton J(2011) Effects of a one-year rainfall manipulation on soil nematode abundances and community composition. Pedobiologia, 54, 87-91. |
[22] | Li XW, Zhang CL, Zhang BB, Wu D, Zhu DD, Zhang W, Ye Q, Yan JH, Fu JM, Fang CL, Ha DL, Fu SL(2021) Nitrogen deposition and increased precipitation interact to affect fine root production and biomass in a temperate forest: Implications for carbon cycling. Science of the Total Environment, 765, 144497. |
[23] | Liang WJ, Lou YL, Li Q, Zhong S, Zhang XK, Wang JK(2009) Nematode faunal response to long-term application of nitrogen fertilizer and organic manure in northeast China. Soil Biology and Biochemistry, 41, 883-890. |
[24] | Liao XH, Fu SL, Zhao J(2023) Altered energy dynamics of multitrophic groups modify the patterns of soil CO2 emissions in planted forest. Soil Biology and Biochemistry, 178, 108953. |
[25] |
Liu XJ, Duan L, Mo JM, Du EZ, Shen JL, Lu XK, Zhang Y, Zhou XB, He CE, Zhang FS(2011) Nitrogen deposition and its ecological impact in China: An overview. Environmental Pollution, 159, 2251-2264.
DOI PMID |
[26] |
Manzoni S, Schimel JP, Porporato A(2012) Responses of soil microbial communities to water stress: Results from a meta-analysis. Ecology, 93, 930-938.
DOI PMID |
[27] |
Matson P, Lohse KA, Hall SJ(2002) The globalization of nitrogen deposition: Consequences for terrestrial ecosystems. Ambio, 31, 113-119.
PMID |
[28] | Midolo G, Alkemade R, Schipper AM, Benítez-López A, Perring MP,De Vries W (2019) Impacts of nitrogen addition on plant species richness and abundance: A global meta-analysis. Global Ecology and Biogeography, 28, 398-413. |
[29] |
Neher DA(2001) Role of nematodes in soil health and their use as indicators. Journal of Nematology, 33, 161-168.
PMID |
[30] |
Neher DA(2010) Ecology of plant and free-living nematodes in natural and agricultural soil. Annual Review of Phytopathology, 48, 371-394.
DOI PMID |
[31] | Niu SL, Wu MY, Han Y, Xia JY, Zhang Z, Yang HJ, Wan SQ(2010) Nitrogen effects on net ecosystem carbon exchange in a temperate steppe. Global Change Biology, 16, 144-155. |
[32] | Niu SL, Yang HJ, Zhang Z, Wu MY, Lu Q, Li LH, Han XG, Wan SQ(2009) Non-additive effects of water and nitrogen addition on ecosystem carbon exchange in a temperate steppe. Ecosystems, 12, 915-926. |
[33] | O’Gorman PA(2012) Sensitivity of tropical precipitation extremes to climate change. Nature Geoscience, 5, 697-700. |
[34] | Oostenbrink M(1960) Estimating nematode populations by some selected methods. In: Nematology (eds Sasser JN, Jenkins WR), pp. 85-102. University of North Carolina Press, Chapel Hill. |
[35] | Peng SS, Piao SL, Shen ZH, Ciais P, Sun ZZ, Chen SP, Bacour C, Peylin P, Chen AP(2013) Precipitation amount, seasonality and frequency regulate carbon cycling of a semi-arid grassland ecosystem in Inner Mongolia, China: A modeling analysis. Agricultural and Forest Meteorology, 178, 46-55. |
[36] | Potapov AM(2022) Multifunctionality of belowground food webs: Resource, size and spatial energy channels. Biological Reviews, 97, 1691-1711. |
[37] | Radu DD, Duval TP(2018) Precipitation frequency alters peatland ecosystem structure and CO2 exchange: Contrasting effects on moss, sedge, and shrub communities. Global Change Biology, 24, 2051-2065. |
[38] | Ren HY, Xu ZW, Huang JH, Lü XT, Zeng DH, Yuan ZY, Han XG, Fang YT(2015) Increased precipitation induces a positive plant-soil feedback in a semi-arid grassland. Plant and Soil, 389, 211-223. |
[39] |
Schwarz B, Barnes AD, Thakur MP, Brose U, Ciobanu M, Reich PB, Rich RL, Rosenbaum B, Stefanski A, Eisenhauer N(2017) Warming alters the energetic structure and function but not resilience of soil food webs. Nature Climate Change, 7, 895-900.
DOI PMID |
[40] | Sparks D, Page A, Helmke P, Loeppert R(1996) Methods of Soil Analysis. Part 3. Chemical Methods. Soil Science Society of America, Madison, WI. |
[41] | Sun XM, Zhang XK, Zhang SX, Dai GH, Han SJ, Liang WJ(2013) Soil nematode responses to increases in nitrogen deposition and precipitation in a temperate forest. PLoS ONE, 8, e82463. |
[42] | Throop HL, Lerdau MT(2004) Effects of nitrogen deposition on insect herbivory: Implications for community and ecosystem processes. Ecosystems, 7, 109-133. |
[43] | van den Hoogen J, Geisen S, Routh D, Ferris H, Traunspurger W, Wardle DA, de Goede RGM, Adams BJ, Ahmad W, Andriuzzi WS, Bardgett RD, Bonkowski M, Campos-Herrera R, Cares JE, Caruso T, de Brito Caixeta L, Chen XY, Costa SR, Creamer R,da Cunha Castro JM, Dam M, Djigal D, Escuer M, Griffiths BS, Gutiérrez C, Hohberg K, Kalinkina D, Kardol P, Kergunteuil A, Korthals G, Krashevska V, Kudrin AA, Li Q, Liang WJ, Magilton M, Marais M, Martín JAR, Matveeva E, Mayad EH, Mulder C, Mullin P, Neilson R, Duong Nguyen TA, Nielsen UN, Okada H, Rius JEP, Pan KW, Peneva V, Pellissier L, da Silva JCP, Pitteloud C, Powers TO, Powers K, Quist CW, Rasmann S, Moreno SS, Scheu S, Setälä H, Sushchuk A, Tiunov AV, Trap J, van der Putten W, Vestergård M, Villenave C, Waeyenberge L, Wall DH, Wilschut R, Wright DG, Yang JI, Crowther TW (2019) Soil nematode abundance and functional group composition at a global scale. Nature, 572, 194-198. |
[44] |
van der Heijden MGA, Bardgett RD, Van Straalen NM(2008) The unseen majority: Soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecology Letters, 11, 296-310.
DOI PMID |
[45] | Vance ED, Brookes PC, Jenkinson DS(1987) An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry, 19, 703-707. |
[46] | Wan BB, Hu ZK, Liu T, Yang Q, Li DM, Zhang CZ, Chen XY, Hu F, Kardol P, Griffiths BS, Liu MQ(2022a) Organic amendments increase the flow uniformity of energy across nematode food webs. Soil Biology and Biochemistry, 170, 108695. |
[47] | Wan BB, Liu T, Gong X, Zhang Y, Li CJ, Chen XY, Hu F, Griffiths BS, Liu MQ(2022b) Energy flux across multitrophic levels drives ecosystem multifunctionality: Evidence from nematode food webs. Soil Biology and Biochemistry, 169, 108656. |
[48] | Wang CH, Wan SQ, Xing XR, Zhang L, Han XG(2006) Temperature and soil moisture interactively affected soil net N mineralization in temperate grassland in Northern China. Soil Biology and Biochemistry, 38, 1101-1110. |
[49] | Wang HL, Liu GC, Huang BB, Wang XC, Xing YJ, Wang QG(2021) Long-term nitrogen addition and precipitation reduction decrease soil nematode community diversity in a temperate forest. Applied Soil Ecology, 162, 103895. |
[50] | Wei CZ, Zheng HF, Li Q, Lü XT, Yu Q, Zhang HY, Chen QS, He NP, Kardol P, Liang WJ, Han XG(2012) Nitrogen addition regulates soil nematode community composition through ammonium suppression. PLoS ONE, 7, e43384. |
[51] | Wu JH, Song CY, Chen JK(2007) Effect of microbivorous nematodes on plant growth and soil nutrient cycling: A review. Biodiversity Science, 15, 124-133. (in Chinese with English abstract) |
[ 吴纪华, 宋慈玉, 陈家宽 (2007) 食微线虫对植物生长及土壤养分循环的影响. 生物多样性, 15, 124-133.]
DOI |
|
[52] | Yang HJ, Li Y, Wu MY, Zhang Z, Li LH, Wan SQ(2011) Plant community responses to nitrogen addition and increased precipitation: The importance of water availability and species traits. Global Change Biology, 17, 2936-2944. |
[53] |
Yeates GW, Bongers T, De Goede RG, Freckman DW, Georgieva SS(1993) Feeding habits in soil nematode families and genera—An outline for soil ecologists. Journal of Nematology, 25, 315-331.
PMID |
[54] | Zeppel MJB, Wilks JV, Lewis JD(2014) Impacts of extreme precipitation and seasonal changes in precipitation on plants. Biogeosciences, 11, 3083-3093. |
[55] | Zhang CZ, Wright IJ, Nielsen UN, Geisen S, Liu MQ(2024) Linking nematodes and ecosystem function: A trait-based framework. Trends in Ecology & Evolution, 39, 644-653. |
[56] | Zhang YC, Hong M, Zhao B, Ye H, Yan J, Li J, Liang ZW(2021) Response of soil nematodes in desert steppe to nitrogen deposition and rainfall changes. China Environmental Science, 41, 2788-2797. (in Chinese with English abstract) |
[ 张宇晨, 红梅,赵巴音那木拉, 叶贺, 闫瑾, 李静, 梁志伟 (2021) 荒漠草原土壤线虫对氮沉降及降雨变化的响应. 中国环境科学, 41, 2788-2797.] | |
[57] | Zhou XQ, Chen CR, Wang YF, Xu ZH, Han HY, Li LH, Wan SQ(2013) Warming and increased precipitation have differential effects on soil extracellular enzyme activities in a temperate grassland. Science of the Total Environment, 444, 552-558. |
[58] | Zhou ZH, Wang CK, Luo YQ(2018) Response of soil microbial communities to altered precipitation: A global synthesis. Global Ecology and Biogeography, 27, 1121-1136. |
[1] | 姚祝, 魏雪, 马金豪, 任晓, 王玉英, 胡雷, 吴鹏飞. 气候暖湿化对高寒草甸土壤线虫群落的短期影响[J]. 生物多样性, 2024, 32(5): 23483-. |
[2] | 曹可欣, 王敬雯, 郑国, 武鹏峰, 李英滨, 崔淑艳. 降水格局改变及氮沉降对北方典型草原土壤线虫多样性的影响[J]. 生物多样性, 2024, 32(3): 23491-. |
[3] | 徐智超, 朱美慧, 毛子昆, 王绪高. 氮添加对东北温带阔叶红松林幼苗动态的影响[J]. 生物多样性, 2024, 32(12): 24255-. |
[4] | 赵榕江, 吴纪华, 何维明, 赵彩云, 周波, 李博, 杨强. 土壤生物多样性与外来植物入侵: 进展与展望[J]. 生物多样性, 2024, 32(11): 24243-. |
[5] | 杨舒涵, 王贺, 陈磊, 廖蓥飞, 严光, 伍一宁, 邹红菲. 松嫩平原异质生境对土壤线虫群落特征的影响[J]. 生物多样性, 2024, 32(1): 23295-. |
[6] | 牛永杰, 马全会, 朱玉, 刘海荣, 吕佳乐, 邹元春, 姜明. 氮沉降对草地昆虫多样性影响的研究进展[J]. 生物多样性, 2023, 31(9): 23130-. |
[7] | 刘金花, 李风, 田桃, 肖海峰. 土壤细菌和线虫对热带雨林优势植物凋落物特性和多样性的响应[J]. 生物多样性, 2023, 31(11): 23276-. |
[8] | 胡惠玲, 姚致远, 高世斌, 朱波. 紫色土线虫对长期不同施肥措施的响应[J]. 生物多样性, 2022, 30(12): 22189-. |
[9] | 刘笑彤, 田艺佳, 刘汉文, 梁翠影, 姜思维, 梁文举, 张晓珂. 下辽河平原农田土壤线虫群落组成的季节变化[J]. 生物多样性, 2022, 30(12): 22222-. |
[10] | 孙翌昕, 李英滨, 李玉辉, 李冰, 杜晓芳, 李琪. 高通量测序技术在线虫多样性研究中的应用[J]. 生物多样性, 2022, 30(12): 22266-. |
[11] | 肖宇珊, 杨昌娆, 郑国, 武鹏峰, 张士秀, 崔淑艳. 降水格局对北方温带草原土壤微食物网结构的影响[J]. 生物多样性, 2022, 30(12): 22208-. |
[12] | 吴文佳, 袁也, 张静, 周丽霞, 王俊, 任海, 刘占锋. 南亚热带森林演替过程中土壤线虫群落结构变化[J]. 生物多样性, 2022, 30(12): 22205-. |
[13] | 王楠, 黄菁华, 霍娜, 杨盼盼, 张欣玥, 赵世伟. 宁南山区不同植被恢复方式下土壤线虫群落特征:形态学鉴定与高通量测序法比较[J]. 生物多样性, 2021, 29(11): 1513-1529. |
[14] | 王宇彤, 牛克昌. 青藏高原高寒草甸土壤环境对线虫功能多样性的影响[J]. 生物多样性, 2020, 28(6): 707-717. |
[15] | 张晓珂, 梁文举, 李琪. 我国土壤线虫生态学研究进展和展望[J]. 生物多样性, 2018, 26(10): 1060-1073. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn