生物多样性 ›› 2023, Vol. 31 ›› Issue (12): 23183. DOI: 10.17520/biods.2023183
• 华莱士诞辰200周年纪念专题 • 下一篇
蔡畅1, 张雪1(), 朱晨1(), 赵郁豪2,3(), 乔格侠4,5(), 丁平1,*()
收稿日期:
2023-06-04
接受日期:
2023-08-19
出版日期:
2023-12-20
发布日期:
2023-10-08
通讯作者:
E-mail: 基金资助:
Chang Cai1, Xue Zhang1(), Chen Zhu1(), Yuhao Zhao2,3(), Gexia Qiao4,5(), Ping Ding1,*()
Received:
2023-06-04
Accepted:
2023-08-19
Online:
2023-12-20
Published:
2023-10-08
Contact:
E-mail: 摘要:
片段化生境中群落的物种分布常呈现出嵌套格局。本研究选取蚜虫作为研究对象, 分别于2020年和2021年每年的5-8月对千岛湖18个陆桥岛屿进行了蚜虫群落调查, 同时调查了各岛屿上蚜虫生境中总体植物的群落组成, 以及与蚜虫存在种间互作关系的寄主植物群落和互惠蚂蚁群落组成。探究了蚜虫群落的嵌套分布格局及其影响因素, 并利用结构方程模型探究了种间互作在其中发挥的作用。结果表明: (1)千岛湖片段化生境中的蚜虫群落呈现显著的嵌套格局; (2)随机分布模型结果显示该嵌套格局并非被动取样造成; (3)千岛湖片段化生境中蚜虫群落的岛屿嵌套序列与岛屿面积显著相关, 且各岛屿上蚜虫生境中的总体植物群落呈现显著嵌套格局, 该结果支持选择性灭绝假说和生境嵌套假说; (4)寄主植物物种丰富度对蚜虫嵌套格局存在显著正向影响, 植物与蚜虫间的互作关系促进了蚜虫群落嵌套格局的形成。因此, 在研究物种嵌套格局形成机制时, 应充分考虑种间互作等因素的影响。
蔡畅, 张雪, 朱晨, 赵郁豪, 乔格侠, 丁平 (2023) 千岛湖片段化生境中蚜虫群落嵌套格局的形成: 岛屿面积和寄主植物多样性的作用. 生物多样性, 31, 23183. DOI: 10.17520/biods.2023183.
Chang Cai, Xue Zhang, Chen Zhu, Yuhao Zhao, Gexia Qiao, Ping Ding (2023) Nested assemblages of aphid species in the Thousand Island Lake: The importance of island area and host plant diversity. Biodiversity Science, 31, 23183. DOI: 10.17520/biods.2023183.
岛屿 编号 Island code | 面积 Area (ha) | 距最近大陆距离 Distance to the nearest mainland (m) | 距最近岛屿距离 Distance to the nearest island (m) | 样带数量 Number of transect | 样带总长度 Total transect length (m) | 嵌套序列 Nested matrix rank | 蚜虫物种 丰富度 Aphid richness | 生境植物物 种丰富度 Habitat plant species richness | 寄主植物物 种丰富度 Host plant species richness | 互惠蚂蚁物 种丰富度 Mutualistic ant species richness |
---|---|---|---|---|---|---|---|---|---|---|
B2 | 128.040 | 1,452.275 | 27.072 | 5 | 2,000 | 1 | 16 | 113 | 20 | 21 |
S07 | 0.488 | 2,105.772 | 15.236 | 1 | 400 | 2 | 12 | 38 | 17 | 5 |
B6 | 51.889 | 950.346 | 31.812 | 4 | 1,600 | 3 | 11 | 67 | 18 | 18 |
B7 | 29.054 | 1,938.729 | 67.309 | 3 | 1,200 | 4 | 10 | 76 | 16 | 17 |
S30 | 4.058 | 2,588.229 | 26.041 | 2 | 800 | 5 | 10 | 41 | 15 | 14 |
S01 | 0.434 | 3,725.022 | 89.542 | 1 | 400 | 6 | 9 | 36 | 12 | 8 |
S02 | 0.623 | 3,204.960 | 71.298 | 1 | 400 | 7 | 9 | 34 | 11 | 7 |
S46 | 1.035 | 727.554 | 14.890 | 2 | 800 | 8 | 9 | 57 | 15 | 9 |
S11 | 1.560 | 1,098.858 | 53.295 | 2 | 800 | 9 | 8 | 44 | 14 | 7 |
S17 | 0.715 | 892.695 | 143.517 | 1 | 400 | 10 | 8 | 32 | 14 | 10 |
S26 | 9.729 | 2,163.768 | 135.660 | 2 | 800 | 11 | 8 | 46 | 14 | 10 |
S43 | 2.233 | 1,187.389 | 77.688 | 2 | 800 | 12 | 8 | 46 | 11 | 14 |
S05 | 0.588 | 2,320.772 | 29.648 | 1 | 400 | 13 | 7 | 36 | 12 | 8 |
S09 | 1.819 | 1,046.338 | 121.168 | 2 | 800 | 14 | 7 | 55 | 12 | 15 |
S48 | 0.887 | 356.092 | 62.151 | 1 | 400 | 15 | 7 | 41 | 11 | 8 |
S19 | 0.338 | 1,529.966 | 52.729 | 1 | 400 | 16 | 6 | 21 | 6 | 8 |
S31 | 0.079 | 2,567.282 | 47.085 | 1 | 400 | 17 | 6 | 28 | 8 | 7 |
S33 | 0.289 | 3,039.890 | 87.270 | 1 | 400 | 18 | 5 | 28 | 5 | 9 |
表1 千岛湖18个研究岛屿的特征参数
Table 1 Characteristic parameters of the 18 studied islands in the Thousand Island Lake, China
岛屿 编号 Island code | 面积 Area (ha) | 距最近大陆距离 Distance to the nearest mainland (m) | 距最近岛屿距离 Distance to the nearest island (m) | 样带数量 Number of transect | 样带总长度 Total transect length (m) | 嵌套序列 Nested matrix rank | 蚜虫物种 丰富度 Aphid richness | 生境植物物 种丰富度 Habitat plant species richness | 寄主植物物 种丰富度 Host plant species richness | 互惠蚂蚁物 种丰富度 Mutualistic ant species richness |
---|---|---|---|---|---|---|---|---|---|---|
B2 | 128.040 | 1,452.275 | 27.072 | 5 | 2,000 | 1 | 16 | 113 | 20 | 21 |
S07 | 0.488 | 2,105.772 | 15.236 | 1 | 400 | 2 | 12 | 38 | 17 | 5 |
B6 | 51.889 | 950.346 | 31.812 | 4 | 1,600 | 3 | 11 | 67 | 18 | 18 |
B7 | 29.054 | 1,938.729 | 67.309 | 3 | 1,200 | 4 | 10 | 76 | 16 | 17 |
S30 | 4.058 | 2,588.229 | 26.041 | 2 | 800 | 5 | 10 | 41 | 15 | 14 |
S01 | 0.434 | 3,725.022 | 89.542 | 1 | 400 | 6 | 9 | 36 | 12 | 8 |
S02 | 0.623 | 3,204.960 | 71.298 | 1 | 400 | 7 | 9 | 34 | 11 | 7 |
S46 | 1.035 | 727.554 | 14.890 | 2 | 800 | 8 | 9 | 57 | 15 | 9 |
S11 | 1.560 | 1,098.858 | 53.295 | 2 | 800 | 9 | 8 | 44 | 14 | 7 |
S17 | 0.715 | 892.695 | 143.517 | 1 | 400 | 10 | 8 | 32 | 14 | 10 |
S26 | 9.729 | 2,163.768 | 135.660 | 2 | 800 | 11 | 8 | 46 | 14 | 10 |
S43 | 2.233 | 1,187.389 | 77.688 | 2 | 800 | 12 | 8 | 46 | 11 | 14 |
S05 | 0.588 | 2,320.772 | 29.648 | 1 | 400 | 13 | 7 | 36 | 12 | 8 |
S09 | 1.819 | 1,046.338 | 121.168 | 2 | 800 | 14 | 7 | 55 | 12 | 15 |
S48 | 0.887 | 356.092 | 62.151 | 1 | 400 | 15 | 7 | 41 | 11 | 8 |
S19 | 0.338 | 1,529.966 | 52.729 | 1 | 400 | 16 | 6 | 21 | 6 | 8 |
S31 | 0.079 | 2,567.282 | 47.085 | 1 | 400 | 17 | 6 | 28 | 8 | 7 |
S33 | 0.289 | 3,039.890 | 87.270 | 1 | 400 | 18 | 5 | 28 | 5 | 9 |
图2 岛屿地理因素与生物因素对蚜虫群落岛屿嵌套程度影响的结构方程初始模型
Fig. 2 General structural equation model depicting relationships between island geographical and biological factors and island nestedrank of aphid communities
嵌套度量化 Nestedness metric | 观测值 Nobs | 期望值 Nexp | 标准差 SD | Z值 Z-score | P | |
---|---|---|---|---|---|---|
蚜虫 Aphid | 总NODF | 62.86 | 36.52 | 2.00 | 13.22 | < 0.001 |
岛屿NODFC | 57.78 | 37.58 | 2.31 | 8.75 | < 0.001 | |
物种NODFR | 72.03 | 41.54 | 3.28 | 9.29 | < 0.001 | |
生境植物 Habitat plant | 总NODF | 57.74 | 30.15 | 0.63 | 44.12 | < 0.001 |
表2 千岛湖18个研究岛屿蚜虫群落、生境植物群落嵌套格局分析
Table 2 Analysis of nested pattern of aphid communities and its habitat plant communities in the 18 studied islands in the Thousand Island Lake, China
嵌套度量化 Nestedness metric | 观测值 Nobs | 期望值 Nexp | 标准差 SD | Z值 Z-score | P | |
---|---|---|---|---|---|---|
蚜虫 Aphid | 总NODF | 62.86 | 36.52 | 2.00 | 13.22 | < 0.001 |
岛屿NODFC | 57.78 | 37.58 | 2.31 | 8.75 | < 0.001 | |
物种NODFR | 72.03 | 41.54 | 3.28 | 9.29 | < 0.001 | |
生境植物 Habitat plant | 总NODF | 57.74 | 30.15 | 0.63 | 44.12 | < 0.001 |
图3 千岛湖18个研究岛屿上蚜虫群落的物种-岛屿最大化排序嵌套矩阵(A)和被动取样检验结果(B)。(B)图表示实际调查值与随机分布模型预测结果的比较情况, 圆点表示观测到的物种丰富度, 蓝线表示预测值, 灰线表示相关的标准差(± SD)。
Fig. 3 Maximally nested presence-absence matrix (A) and the result of passive sampling (B) of aphid communities on the 18 islands of the Thousand Island Lake, China. (B) The passive sampling model shows the expected values (blue lines) and associated standard deviations (± SD, grey lines), and orange dots for observed species richness.
回归系数 Coefficient | 截距 Intercept | 校正决定系数 Adjusted R-squared $(R_{\mathrm{adj}}^2)$ | F | |||
---|---|---|---|---|---|---|
岛屿面积 Island area | 距最近大陆距离 Distance to the nearest mainland | 距最近岛屿距离 Distance to the nearest island | ||||
蚜虫岛屿嵌套程度 Island nestedrank of aphid communities (A'K) | 0.112** | < 0.001 | -0.002 | 0.443* | 0.479 | 6.21** |
生境植物物种丰富度 Habitat plant species richness | 0.172*** | < -0.001 | -0.001 | 3.818*** | 0.751 | 18.13*** |
寄主植物物种丰富度 Host plant speices richness | 0.119** | < -0.001 | -0.001 | 2.597*** | 0.397 | 4.731* |
互惠蚂蚁物种丰富度 Mutualistic ant species richness | 0.167*** | < -0.001 | 0.001 | 2.151*** | 0.638 | 10.98*** |
表3 岛屿地理因素对蚜虫岛屿嵌套程度和各生物类群物种丰富度影响的多元线性回归结果
Table 3 Results of the multiple linear regression models of the effects of island geographic factors on aphid island nestedrank and species richness of each biological group
回归系数 Coefficient | 截距 Intercept | 校正决定系数 Adjusted R-squared $(R_{\mathrm{adj}}^2)$ | F | |||
---|---|---|---|---|---|---|
岛屿面积 Island area | 距最近大陆距离 Distance to the nearest mainland | 距最近岛屿距离 Distance to the nearest island | ||||
蚜虫岛屿嵌套程度 Island nestedrank of aphid communities (A'K) | 0.112** | < 0.001 | -0.002 | 0.443* | 0.479 | 6.21** |
生境植物物种丰富度 Habitat plant species richness | 0.172*** | < -0.001 | -0.001 | 3.818*** | 0.751 | 18.13*** |
寄主植物物种丰富度 Host plant speices richness | 0.119** | < -0.001 | -0.001 | 2.597*** | 0.397 | 4.731* |
互惠蚂蚁物种丰富度 Mutualistic ant species richness | 0.167*** | < -0.001 | 0.001 | 2.151*** | 0.638 | 10.98*** |
图4 岛屿面积与各生物因素对蚜虫群落岛屿嵌套程度影响的结构方程最优模型结果。蓝色、红色及虚线箭头分别表示显著正、负路径及不显著路径关系, 箭头的粗细代表标准化路径系数的相对大小。
Fig. 4 Structural equation model depicting relationships between island area and biological factors and island nestedrank of aphid communities. Blue, red and dashed arrows represent significantly positive, negative or non-significant effects at the 0.05 level, respectively. Arrow thickness represents the relative magnitude of the standardized path coefficients.
[1] |
Alarcón R, Waser NM, Ollerton J (2008) Year-to-year variation in the topology of a plant-pollinator interaction network. Oikos, 117, 1796-1807.
DOI URL |
[2] |
Almeida-Neto M, Guimarães P, Guimarães PR Jr, Loyola RD, Ulrich W (2008) A consistent metric for nestedness analysis in ecological systems: Reconciling concept and measurement. Oikos, 117, 1227-1239.
DOI URL |
[3] | Almeida-Neto M, Ulrich W (2011) A straightforward computational approach for measuring nestedness using quantitative matrices. Environmental Modelling & Software, 26, 173-178. |
[4] |
Andrén H (1994) Can one use nested subset pattern to reject the random sample hypothesis? Examples from boreal bird communities. Oikos, 70, 489-491.
DOI URL |
[5] | Beckett SJ, Boulton CA, Williams HTP (2014) FALCON: A software package for analysis of nestedness in bipartite networks. F1000Research, 3, 185. |
[6] | Blackman RL, Eastop VF (1994) Aphids on the World’s Trees: An Identification and Information Guide. CAB International, Wallingford. |
[7] |
Boecklen WJ (1997) Nestedness, biogeographic theory, and the design of nature reserves. Oecologia, 112, 123-142.
DOI PMID |
[8] |
Chen CW, Xu AC, Ding P, Wang YP (2019) The small-island effect and nestedness in assemblages of medium- and large-bodied mammals on Chinese reservoir land-bridge islands. Basic and Applied Ecology, 38, 47-57.
DOI URL |
[9] |
Chen CW, Zhan CX, Wang YP (2022) Do functional and phylogenetic nestedness follow the same mechanisms as taxonomic nestedness? Evidence from amphibians in the largest archipelago of China. Journal of Animal Ecology, 91, 2424-2436.
DOI URL |
[10] |
Coleman BD, Mares MA, Willig MR, Hsieh YH (1982) Randomness, area, and species richness. Ecology, 63, 1121-1133.
DOI URL |
[11] |
Cutler AH (1994) Nested biotas and biological conservation: Metrics, mechanisms, and meaning of nestedness. Landscape and Urban Planning, 28, 73-82.
DOI URL |
[12] | Darlington PJ (1957) Zoogeography:The Geographical Distribution of Animals. John Wiley & Sons, New York. |
[13] | Dormann CF, Gruber B, Fründ J (2008) Introducing the bipartite package: Analysing ecological networks. R News, 8, 8-11. |
[14] | Eastop V (1986) Aphid-plant associations. In: Coevolution and Systematics (eds Stone AR, Hawksworth DL), pp. 35-54. Clarendon Press, Oxford. |
[15] | Fischer CY, Vanderplanck M, Lognay GC, Detrain C, Verheggen FJ (2015) Do aphids actively search for ant partners? Insect Science, 22, 283-288. |
[16] | Fornoff F, Klein AM, Blüthgen N, Staab M (2019) Tree diversity increases robustness of multi-trophic interactions. Proceedings of the Royal Society B: Biological Sciences, 286, 20182399. |
[17] |
Gao SX, Liu DG, Chen H, Meng XX (2014) Fitness traits and underlying genetic variation related to host plant specialization in the aphid Sitobion avenae. Insect Science, 21, 352-362.
DOI URL |
[18] |
Ghosh S, Roy A, Chatterjee A, Sikdar SR (2019) Effect of regional wind circulation and meteorological factors on long-range migration of mustard aphids over Indo-Gangetic plain. Scientific Reports, 9, 5626.
DOI PMID |
[19] |
Grez AA, Zaviezo T, Díaz S, Camousseigt B, Cortés G (2008) Effects of habitat loss and fragmentation on the abundance and species richness of aphidophagous beetles and aphids in experimental alfalfa landscapes. European Journal of Entomology, 105, 411-420.
DOI URL |
[20] |
Hacker SD, Gaines SD (1997) Some implications of direct positive interactions for community species diversity. Ecology, 78, 1990-2003.
DOI URL |
[21] |
Hsieh TC, Ma KH, Chao A (2016) iNEXT: An R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods in Ecology and Evolution, 7, 1451-1456.
DOI URL |
[22] | Huang XL, Qiao GX (2006) Research status and trends in Aphidology. Acta Entomologica Sinica, 49, 1017-1026. (in Chinese with English abstract) |
[黄晓磊, 乔格侠 (2006) 蚜虫学研究现状与学科发展趋势. 昆虫学报, 49, 1017-1026.] | |
[23] |
Kim S (2015) ppcor: An R package for a fast calculation to semi-partial correlation coefficients. Communications for Statistical Applications and Methods, 22, 665-674.
DOI PMID |
[24] |
Lefcheck JS (2016) piecewiseSEM: Piecewise structural equation modelling in R for ecology, evolution, and systematics. Methods in Ecology and Evolution, 7, 573-579.
DOI URL |
[25] |
Li WD, Zhu C, Grass I, Vázquez DP, Wang DR, Zhao YH, Zeng D, Kang Y, Ding P, Si XF (2022) Plant-frugivore network simplification under habitat fragmentation leaves a small core of interacting generalists. Communications Biology, 5, 1214.
DOI PMID |
[26] |
Liu JL, Matthews TJ, Zhong L, Liu JJ, Wu DH, Yu MJ (2020) Environmental filtering underpins the island species-area relationship in a subtropical anthropogenic archipelago. Journal of Ecology, 108, 424-432.
DOI URL |
[27] | Liu XD, Zhai BP, Zhang XX (2004) Advance in the studies of migration of aphids. Entomological Knowledge, 41, 301-307. (in Chinese with English abstract) |
[刘向东, 翟保平, 张孝羲 (2004) 蚜虫迁飞的研究进展. 昆虫知识, 41, 301-307.] | |
[28] |
Matthews TJ, Cottee-Jones HEW, Whittaker RJ (2015) Quantifying and interpreting nestedness in habitat islands: A synthetic analysis of multiple datasets. Diversity and Distributions, 21, 392-404.
DOI URL |
[29] |
Michel AP, Mian MA, Davila-Olivas NH, Cañas LA (2010) Detached leaf and whole plant assays for soybean aphid resistance: Differential responses among resistance sources and biotypes. Journal of Economic Entomology, 103, 949-957.
PMID |
[30] |
Mitchell MGE, Hartley E, Tsuruda M, Gonzalez A, Bennett EM (2022) Contrasting responses of soybean aphids, primary parasitoids, and hyperparasitoids to forest fragments and agricultural landscape structure. Agriculture, Ecosystems & Environment, 326, 107752.
DOI URL |
[31] |
Moreira X, Abdala-Roberts L, Rasmann S, Castagneyrol B, Mooney KA (2016) Plant diversity effects on insect herbivores and their natural enemies: Current thinking, recent findings, and future directions. Current Opinion in Insect Science, 14, 1-7.
DOI PMID |
[32] |
Nelson AS, Mooney KA (2022) The evolution and ecology of interactions between ants and honeydew-producing hemipteran insects. Annual Review of Ecology, Evolution, and Systematics, 53, 379-402.
DOI URL |
[33] |
Nelson AS, Pratt RT, Pratt JD, Smith RA, Symanski CT, Prenot C, Mooney KA (2019) Progressive sensitivity of trophic levels to warming underlies an elevational gradient in ant-aphid mutualism strength. Oikos, 128, 540-550.
DOI URL |
[34] |
Nolte D, Schuldt A, Gossner MM, Ulrich W, Assmann T (2017) Functional traits drive ground beetle community structures in Central European forests: Implications for conservation. Biological Conservation, 213, 5-12.
DOI URL |
[35] | Patefield WM (1981) Algorithm AS 159: An efficient method of generating random R × C tables with given row and column totals. Applied Statistics, 30, 91-97. |
[36] |
Patterson BD, Atmar W (1986) Nested subsets and the structure of insular mammalian faunas and archipelagos. Biological Journal of the Linnean Society, 28, 65-82.
DOI URL |
[37] | Platková H, Pyszko P, Coeur d'Acier A, Jousselin E, Drozd P (2020) Spatial distribution of aphids in the canopy of a temperate forest: Where can they be found? Agricultural and Forest Entomology, 22, 379-389. |
[38] | R Core Team (2022) R: A Language and Environment for Statistical Computing. http://www.r-project.org. (accessed on 2022-04-25) |
[39] |
Ragsdale DW, McCornack BP, Venette RC, Potter BD, MacRae IV, Hodgson EW, O’Neal ME, Johnson KD, O’Neil RJ, Difonzo CD, Hunt TE, Glogoza PA, Cullen EM (2007) Economic threshold for soybean aphid (Hemiptera: Aphididae). Journal of Economic Entomology, 100, 1258-1267.
DOI PMID |
[40] |
Schouten MA, Verweij PA, Barendregt A, Kleukers RJM, De Ruiter PC (2007) Nested assemblages of Orthoptera species in the Netherlands: The importance of habitat features and life-history traits. Journal of Biogeography, 34, 1938-1946.
DOI URL |
[41] |
Schrader J, Wright IJ, Kreft H, Westoby M (2021) A roadmap to plant functional island biogeography. Biological Reviews of the Cambridge Philosophical Society, 96, 2851-2870.
DOI PMID |
[42] |
Šeat J, Nadaždin B, Milić N, Ćuk M, Torma A (2021) How steady is the nested pattern in saline grassland true bug communities? Effects of sampling effort and data completeness on nestedness. Acta Oecologica, 110, 103670.
DOI URL |
[43] |
Shih PY, Sugio A, Simon JC (2023) Molecular mechanisms underlying host plant specificity in aphids. Annual Review of Entomology, 68, 431-450.
DOI URL |
[44] | Si XF, Baselga A, Ding P (2015) Revealing beta-diversity patterns of breeding bird and lizard communities on inundated land-bridge islands by separating the turnover and nestedness components. PLoS ONE, 10, e0127692. |
[45] |
Staab M, Blüthgen N, Klein AM (2015) Tree diversity alters the structure of a tri-trophic network in a biodiversity experiment. Oikos, 124, 827-834.
DOI URL |
[46] |
Stegner MA, Karp DS, Rominger AJ, Hadly EA (2017) Can protected areas really maintain mammalian diversity? Insights from a nestedness analysis of the Colorado Plateau. Biological Conservation, 209, 546-553.
DOI URL |
[47] |
Taimr L, Holman J, Kr̂íẑ J, Kůdelová A (1978) Large-scale radiophosphorus marking of the hop aphid (Phorodon humuli Schrank) in situ on the primary host. Zeitschrift Für Angewandte Entomologie, 86, 145-160.
DOI URL |
[48] |
Tan XW, Yang XR, Chen CW, Wang YP (2021) Nestedness and underlying processes of bird assemblages in Nanjing urban parks. Current Zoology, 67, 383-392.
DOI URL |
[49] |
Tscharntke T, Brandl R (2004) Plant-insect interactions in fragmented landscapes. Annual Review of Entomology, 49, 405-430.
PMID |
[50] |
Wang BX, Hof AR, Matson KD, van Langevelde F, Ma CS (2023) Climate change, host plant availability, and irrigation shape future region-specific distributions of the Sitobion grain aphid complex. Pest Management Science, 79, 2311-2324.
DOI URL |
[51] |
Wang RX, Yang XJ (2021) Nestedness theory suggests wetland fragments with large areas and macrophyte diversity benefit waterbirds. Ecology and Evolution, 11, 12651-12664.
DOI PMID |
[52] |
Wang YP, Bao YX, Yu MJ, Xu GF, Ding P (2010) Nestedness for different reasons: The distributions of birds, lizards and small mammals on islands of an inundated lake. Diversity and Distributions, 16, 862-873.
DOI URL |
[53] |
Wang YP, Wang X, Ding P (2012) Nestedness of snake assemblages on islands of an inundated lake. Current Zoology, 58, 828-836.
DOI URL |
[54] | Wimp GM, Whitham TG (2001) Biodiversity consequences of predation and host plant hybridization on an aphid-ant mutualism. Ecology, 82, 440-452. |
[55] |
Wisz MS, Pottier J, Kissling WD, Pellissier L, Lenoir J, Damgaard CF, Dormann CF, Forchhammer MC, Grytnes JA, Guisan A, Heikkinen RK, Høye TT, Kühn I, Luoto M, Maiorano L, Nilsson MC, Normand S, Öckinger E, Schmidt NM, Termansen M, Timmermann A, Wardle DA, Aastrup P, Svenning JC (2013) The role of biotic interactions in shaping distributions and realised assemblages of species: Implications for species distribution modelling. Biological Reviews, 88, 15-30.
DOI URL |
[56] |
Wright DH, Patterson BD, Mikkelson GM, Cutler A, Atmar W (1997) A comparative analysis of nested subset patterns of species composition. Oecologia, 113, 1-20.
DOI PMID |
[57] |
Wu YR, Si XF, Chen CW, Zeng D, Zhao YH, Li JQ, Ding P (2016) Effects of dispersal abilities on community dynamics of breeding birds on the land-bridge islands in the Thousand Island Lake, China. Biodiversity Science, 24, 1135-1145. (in Chinese with English abstract)
DOI |
[吴奕如, 斯幸峰, 陈传武, 曾頔, 赵郁豪, 李家琦, 丁平 (2016) 千岛湖陆桥岛屿繁殖鸟类的扩散能力差异对群落动态的影响. 生物多样性, 24, 1135-1145.]
DOI |
|
[58] |
Zhang JC, Wang YP, Jiang PP, Li P, Yu MJ, Ding P (2008) Nested analysis of passeriform bird assemblages in the Thousand Island Lake region. Biodiversity Science, 16, 321-331. (in Chinese with English abstract)
DOI |
[张竞成, 王彦平, 蒋萍萍, 李鹏, 于明坚, 丁平 (2008) 千岛湖雀形目鸟类群落嵌套结构分析. 生物多样性, 16, 321-331.]
DOI |
|
[59] | Zhang MC, Tang CN, Zhang Q, Zhan CX, Chen CW, Wang YP (2022) Selective extinction and habitat nestedness are the main drivers of lizard nestedness in the Zhoushan Archipelago. Current Zoology, zoac103. |
[60] |
Zhang XM, Han XF, Liu LW, Xu AC (2016) Influencing factors of the nested distribution of butterfly assemblages in the Zhoushan Archipelago, China. Biodiversity Science, 24, 321-331. (in Chinese with English abstract)
DOI |
[张雪梅, 韩徐芳, 刘立伟, 徐爱春 (2016) 舟山群岛蝶类群落嵌套分布格局及其影响因素. 生物多样性, 24, 321-331.]
DOI |
|
[61] |
Zhao YH, Dunn RR, Zhou HN, Si XF, Ding P (2020) Island area, not isolation, drives taxonomic, phylogenetic and functional diversity of ants on land-bridge islands. Journal of Biogeography, 47, 1627-1637.
DOI URL |
[62] |
Zhou HN, Zhao YH, Zeng D, Liu J, Jin TH, Ding P (2019) Spatial patterns and influencing factors of ground ant species diversity on the land-bridge islands in the Thousand Island Lake, China. Biodiversity Science, 27, 1101-1111. (in Chinese with English abstract)
DOI |
[周浩楠, 赵郁豪, 曾頔, 刘娟, 金挺浩, 丁平 (2019) 千岛湖陆桥岛屿地表蚂蚁群落物种多样性空间格局及其影响因素. 生物多样性, 27, 1101-1111.]
DOI |
|
[63] | Zhou SY (2001) Ants of Guangxi. Guangxi Normal University Press, Guilin. (in Chinese) |
周善义 (2001) 广西蚂蚁. 广西师范大学出版社, 桂林.] | |
[64] |
Zungu MM, Maseko MST, Kalle R, Ramesh T, Downs CT (2019) Fragment and life-history correlates of extinction vulnerability of forest mammals in an urban-forest mosaic in EThekwini Municipality, Durban, South Africa. Animal Conservation, 22, 362-375.
DOI |
[1] | 杜宇晨, 刘蓓萌, 陈俊峰, 王浩, 谢屹. 基于结构方程模型的农户保护意愿影响因素分析: 以东北虎豹国家公园珲春片区为例[J]. 生物多样性, 2024, 32(1): 23155-. |
[2] | 王彦平, 张敏楚, 詹成修. 嵌套分布格局研究进展: 分析方法、影响机制及保护应用[J]. 生物多样性, 2023, 31(12): 23314-. |
[3] | 卢聪聪, 刘倩, 黄晓磊. 三种蚜虫的线粒体基因组数据[J]. 生物多样性, 2022, 30(7): 22204-. |
[4] | 田璐嘉, 杨小波, 李东海, 李龙, 陈琳, 梁彩群, 张培春, 李晨笛. 海口和三亚两城市破碎化林地中鸟类群落多样性与嵌套分布格局[J]. 生物多样性, 2022, 30(6): 21424-. |
[5] | 李艳朋, 倪云龙, 许涵, 练琚愉, 叶万辉. 鼎湖山南亚热带常绿阔叶林植物功能性状变异与不同垂直层次个体生长的关联[J]. 生物多样性, 2021, 29(9): 1186-1197. |
[6] | 郑进凤, 唐蓉, 贺霜, 陈月红, 伍素, 张凯, 徐雨, 邹晓. 贵州花溪大学城破碎化林地鸟类多样性与嵌套分布格局[J]. 生物多样性, 2021, 29(5): 661-667. |
[7] | 李慢如, 张玲. 桑寄生植物繁殖物候研究概述[J]. 生物多样性, 2020, 28(7): 833-841. |
[8] | 董乙乂,彭艳琼,王波. 垂叶榕榕小蜂群落及种间互作网络季节动态[J]. 生物多样性, 2020, 28(4): 496-503. |
[9] | 侯祥, 封托, 韩宁, 王京, 陈晓宁, 安晓雷, 许磊, 刘起勇, 常罡. 气候变化和经济发展对肾综合征出血热发生的影响[J]. 生物多样性, 2020, 28(10): 1229-1237. |
[10] | 颜碧玥, 佟富春, 况露辉, 牟之建, 吴文佳, 蔡洪月, 王俊, 简曙光, 任海, 刘占锋. 有害植物孪花蟛蜞菊扩张对西沙岛屿陆生软体动物的影响[J]. 生物多样性, 2020, 28(10): 1182-1191. |
[11] | 周浩楠, 赵郁豪, 曾頔, 刘娟, 金挺浩, 丁平. 千岛湖陆桥岛屿地表蚂蚁群落物种多样性空间格局及其影响因素[J]. 生物多样性, 2019, 27(10): 1101-1111. |
[12] | 黄小波, 李帅锋, 苏建荣, 刘万德, 郎学东. 云南松天然次生林物种丰富度与生态系统多功能性的关系[J]. 生物多样性, 2017, 25(11): 1182-1191. |
[13] | 谭珊珊, 王忍忍, 龚筱羚, 蔡佳瑶, 沈国春. 群落物种及结构多样性对森林地上生物量的影响及其尺度效应: 以巴拿马BCI样地为例[J]. 生物多样性, 2017, 25(10): 1054-1064. |
[14] | 吴奕如, 斯幸峰, 陈传武, 曾頔, 赵郁豪, 李家琦, 丁平. 千岛湖陆桥岛屿繁殖鸟类的扩散能力差异 对群落动态的影响[J]. 生物多样性, 2016, 24(10): 1135-1145. |
[15] | 郭洪岭, 李志文, 肖治术. 应用结构方程模型解析影响黄连木果实产量 和种子命运的因素[J]. 生物多样性, 2014, 22(2): 174-181. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn