生物多样性 ›› 2017, Vol. 25 ›› Issue (10): 1054-1064. DOI: 10.17520/biods.2017155
谭珊珊2, 王忍忍1,2, 龚筱羚1,2, 蔡佳瑶2, 沈国春1,2,*()
收稿日期:
2017-05-26
接受日期:
2017-09-01
出版日期:
2017-10-20
发布日期:
2018-05-05
通讯作者:
沈国春
基金资助:
Shanshan Tan2, Renren Wang1,2, Xiaoling Gong1,2, Jiayao Cai2, Guochun Shen1,2,*()
Received:
2017-05-26
Accepted:
2017-09-01
Online:
2017-10-20
Published:
2018-05-05
Contact:
Shen Guochun
摘要:
随着全球物种多样性丧失速率的日益加剧, 森林群落(特别是占陆地碳储量一半的热带森林)内物种多样性与地上生物量之间的关系愈加受到关注。一般认为森林群落的物种多样性能够促进地上生物量的累积。但随着研究的深入, 研究人员发现物种多样性对地上生物量的促进作用可能会受到结构多样性和非生物环境因子的干扰或抵消, 而且对于影响地上生物量的各类因素的作用强度是否会随空间尺度的不同而发生变化也还存在争议。本文基于巴拿马Barro Colorado岛(BCI) 50 ha大型森林动态监测样地的调查数据, 采用结构方程模型对影响其地上生物量的直接及间接因素进行分析。结果表明: 随着空间尺度的增加, 物种多样性对地上生物量的作用由不显著转为显著负作用, 且强度逐渐增加; 而结构多样性对地上生物量均具有显著正作用, 且强度逐渐减弱。非生物因子与两种多样性之间均具有一定的相关性, 并进而对地上生物量产生间接影响。这一结果暗示未考虑结构多样性而得到的物种多样性与地上生物量的正相关关系可能是由结构多样性介导或受非生物因素的间接作用所致, 而在森林群落特殊的林窗及强烈的非对称性竞争中, 物种多样性与地上生物量更可能呈现负相关关系。
谭珊珊, 王忍忍, 龚筱羚, 蔡佳瑶, 沈国春 (2017) 群落物种及结构多样性对森林地上生物量的影响及其尺度效应: 以巴拿马BCI样地为例. 生物多样性, 25, 1054-1064. DOI: 10.17520/biods.2017155.
Shanshan Tan, Renren Wang, Xiaoling Gong, Jiayao Cai, Guochun Shen (2017) Scale dependent effects of species diversity and structural diversity on aboveground biomass in a tropical forest on Barro Colorado Island, Panama. Biodiversity Science, 25, 1054-1064. DOI: 10.17520/biods.2017155.
图1 热带雨林BCI样地内不同空间尺度下物种多样性与地上生物量的关系。实线及灰色区间为线性回归模型得到的最优拟合直线及其95%的置信区间, R2表示调整后的拟合系数, P值表示整个模型的显著度。
Fig. 1 Relationships between species diversity and total aboveground biomass at different spatial scales in a 50 ha tropical forest dynamics plot (BCI plot). Solid lines and their corresponding grey area are the regression lines and 95% confidence intervals from the best fitted model. R2 and P are the adjusted R2 and significance of the whole regression model, respectively.
图2 热带雨林BCI样地内不同空间尺度下结构多样性与地上生物量的关系。实线及灰色区间为线性回归模型下得到的最优拟合直线及其95%的置信区间。R2表示调整后的拟合系数, P值表示整个模型的显著度。
Fig. 2 Relationships between structural diversity and total aboveground biomass at different spatial scales in a 50 ha tropical forest dynamics plot (BCI plot). Solid lines and their corresponding grey area are the regression lines and 95% confidence intervals from the best fitted model. R2 and P are the adjusted R2 and significance of the whole regression model, respectively.
影响因子 Predictor | 对地上生物量的效应 Pathway to aboveground biomass | 空间尺度 Spatial scale | ||
---|---|---|---|---|
10 m × 10 m | 20 m × 20 m | 50 m × 50 m | ||
立木密度 Stem density | 直接效应 Direct effect | - | - | -0.210 |
间接效应 Indirect effect | 0.273 | -0.005 | -0.137 | |
总效应 Total effect | 0.273 | -0.005 | -0.347 | |
物种丰富度 Species richness | 直接效应 Direct effect | - | -0.113 | -0.284 |
间接效应 Indirect effect | 0.046 | 0.029 | - | |
总效应 Total effect | 0.046 | -0.084 | -0.284 | |
结构多样性 Structural diversity | 直接效应 Direct effect | 0.650 | 0.541 | 0.181 |
间接效应 Indirect effect | - | -0.012 | - | |
总效应 Total effect | 0.650 | 0.529 | 0.181 |
表1 最优结构方程模型中立木密度、物种丰富度和结构多样性对地上生物量的标准化影响效应
Table 1 The standardized effects of stem density, species richness and structural diversity on the aboveground biomass in our best structural equation model
影响因子 Predictor | 对地上生物量的效应 Pathway to aboveground biomass | 空间尺度 Spatial scale | ||
---|---|---|---|---|
10 m × 10 m | 20 m × 20 m | 50 m × 50 m | ||
立木密度 Stem density | 直接效应 Direct effect | - | - | -0.210 |
间接效应 Indirect effect | 0.273 | -0.005 | -0.137 | |
总效应 Total effect | 0.273 | -0.005 | -0.347 | |
物种丰富度 Species richness | 直接效应 Direct effect | - | -0.113 | -0.284 |
间接效应 Indirect effect | 0.046 | 0.029 | - | |
总效应 Total effect | 0.046 | -0.084 | -0.284 | |
结构多样性 Structural diversity | 直接效应 Direct effect | 0.650 | 0.541 | 0.181 |
间接效应 Indirect effect | - | -0.012 | - | |
总效应 Total effect | 0.650 | 0.529 | 0.181 |
图3 不同空间尺度物种多样性和结构多样性与地上生物量的最佳结构方程模型, 以及土壤养分和地形因子对地上生物量的间接影响。实线和虚线箭头分别表示显著的正负作用; 线段粗细表示作用强弱; 线上的数值表示标准通径系数。*P < 0.05; ** P < 0.01; *** P < 0.001。模型评价采用比较拟合指数(CFI)、Tucker-Lewis指数(TLI)、渐进残差均方和平方根(RMSEA)和标准化残差均方和平方根(SRMR)。不同空间尺度最佳结构方程模型评价指标的具体数值详见附录2。
Fig. 3 The best fitted structural equation models (SEM) relating aboveground biomass to species diversity, structural diversity, soil nutrient and topographic factors at different spatial scales. Solid and dashed arrow lines represent the positive and negative effects, respectively. Width of arrow line indicates the strength of the path. Number and its associated asterisks are standardized path coefficient and significant level (*P < 0.05; ** P < 0.01; *** P < 0.001) for each path. Comparative fit index (CFI), Tucker-Lewis index (TLI), Root mean square error of approximation (RMSEA) and standardized root mean square residual (SRMR) were used to compare different alternative models. The corresponding values of these indices for the best fitted model were given in Appendix 2.
[1] | Ali A, Yan ER, Chen HYH, Chang SX, Zhao YT, Yang XD, Xu MS (2016) Stand structural diversity rather than species diversity enhances aboveground carbon storage in secondary subtropical forests in Eastern China. Biogeosciences, 13, 4627-4635. |
[2] | Bracken MES, Douglass JG, Perini V, Trussell GC (2017) Spatial scale mediates the effects of biodiversity on marine primary producers. Ecology, 98, 1434-1443. |
[3] | Brokaw N, Busing RT (2000) Niche versus chance and tree diversity in forest gaps. Trends in Ecology & Evolution, 15, 183-188. |
[4] | Chave J, Muller-Landau HC, Baker TR, Easdale TA, Steege H, Webb CO (2006) Regional and phylogenetic variation of wood density across 2,456 neotropical tree species. Ecological Applications, 16, 2356-2367. |
[5] | Chave J, Réjou-Méchain M, Búrquez A, Chidumayo E, Colgan MS, Delitti WBC, Duque A, Eid T, Fearnside PM, Goodman RC, Henry M, Martínez-Yrízar A, Mugasha WA, Muller-Landau HC, Mencuccini M, Nelson BW, Ngomanda A, Nogueira EM, Ortiz-Malavassi E, Pélissier R, Ploton P, Ryan CM, Saldarriaga JG, Vieilledent G (2014) Improved allometric models to estimate the aboveground biomass of tropical trees. Global Change Biology, 20, 3177-3190. |
[6] | Chen DM, Cheng JH, Chu PF, Mi J, Hu SJ, Xie YC, Tuvshintogtokh I, Bai YF (2016) Effect of diversity on biomass across grasslands on the Mongolian Plateau: contrasting effects between plants and soil nematodes. Journal of Biogeography, 43, 955-966. |
[7] | Chisholm RA, Muller-Landau HC, Rahman KA, Bebber DP, Bin Y, BohlmanSA, Bourg NA, Brinks J, Bunyavejchewin S, Butt N, Cao HL, Cao M, Cárdenas D, Chang LW, Chiang JM, Chuyong G, Condit R, Darraraja HS, Davies S, Duque A, Fletcher C, Gunatilleke N, Gunarilleke S, Hao ZQ, Harrison RD, Howe R, Hsieh CF, Hubbell SP, Akira I, Kenfack D, Kiratiprayoon S, Larson AJ, Lian JY, Lin DM, Liu HF, Lutz JA, Ma KP, Malhi Y, McMahon S, McShea W, Meegaskumbura M, Razman SM, Morecroft MD, Nytch CJ, Oliveira A, Parker GG, Pulla S, Punchi-Manage R, Romero-Salros H, Sang WG, Schurman J, Su SH, Sukumar R, Sun IF, Suresh HS, Tan S, Thomas D, Thomas S, Thompson J, Valencia R, Woll A, Yap S, Ye WH, Yuan ZQ, Zimmerman JK (2013) Scale-dependent relationships between tree species richness and ecosystem function in forests. Journal of Ecology, 101, 1214-1224. |
[8] | Cleveland CC, Townsend AR, Taylor P, Alvarez-Clare S, Bustamante MMC, Chuyong G, Dobrowski SZ, Grierson P, Harms KE, Houlton BZ, Marklein A, Parton W, Porder S, Reed SC, Sierra CA, Silver WL, Tanner EVJ (2011) Relationships among net primary productivity, nutrients and climate in tropical rain forest: a pan-tropical analysis. Ecology Letters, 14, 939-947. |
[9] | Croat TB (1978)Flora of Barro Colorado Island. Stanford University Press, Stanford. |
[10] | Fahey RT, Fotis AT, Woods KD (2015) Quantifying canopy complexity and effects on productivity and resilience in late-successional hemlock-hardwood forests. Ecology Applications, 25, 834-847. |
[11] | Fraser LH, Pither J, Jentsch A, Sternberg M, Zobel M, Askarizadeh D, Bartha S, Beierkuhnlein C, Bennett JA, Bittel A, Boldgiv B, Boldrini I, Bork E, Brown L, Cabido M, Cahill J, Carlyle CN, Campetella G, Chelli S, Cohen O, Csergo AM, Díaza S, Enrico L, Ensing D, Fidelis A, Fridley JD, Foster B, Garris H, Goheen JR, Henry HAL, Hohn M, Jouri MH, Klironomos J, Koorem K, Lawrence-Lodge R, Long RJ, Manning P, Mitchell R, Moora M, Miiller SC, Nabinger C, Naseri K, Overbeck GE, Palmer TM, Parsons S, Pesek M, Pillar VD, Pringle RM, Roccaforte K, Schmidt A, Shang ZH, Stahlmann R, Stotz GC, Sugiyama S, Szentes S, Rooyen MV, Wellstein C, Wilson JB, Zupo T (2015) Worldwide evidence of a unimodal relationship between productivity and plant species richness. Science, 349, 302-305. |
[12] | Grace JB, Anderson TM, Seabloom EW, Borer ET, AdlerPB, Harpole WS, Hautier Y, Hillebrand H, Lind EM, P?rtel M, Bakker JD, Buckley YM, Crawley MJ, Damschen EI, Davies KF, Fay PA, Firn J, Gruner DS, Hector A, Knops JM, MacDougall AS, Melbourne BA, Morgan JW, Orrock JL, Prober SM, Smith MD (2016) Integrative modelling reveals mechanisms linking productivity and plant species richness. Nature, 529, 390-393. |
[13] | Grime JP (2001) Plant Strategies, Vegetation Processes and Ecosystem Properties. John Wiley and Sons, Chichester. |
[14] | Guo Q (2003) Temporal species richness-biomass relationships along successional gradients. Journal of Vegetation Science, 14, 121-128. |
[15] | Guo YL, Wang B, Xiang WS, Ding T, Lu SH, Huang FZ, Wen SJ, Li DX, He YL, Li XK (2016) Responses of spatial pattern of woody plants’ basal area to topographic factors in a tropical karst seasonal rainforest in Nonggang, Guangxi, southern China. Biodiversity Science, 24, 30-39. (in Chinese with English abstract) |
[郭屹立, 王斌, 向悟生, 丁涛, 陆树华, 黄甫昭, 文淑均, 李冬兴, 何运林, 李先锟 (2016) 喀斯特季节性雨林木本植物胸高断面积分布格局及其对地形因子的响应. 生物多样性, 24, 30-39.] | |
[16] | Hardiman BS, Bohrer G, Gough CM, Vogel CS, Curtisi PS (2011) The role of canopy structural complexity in wood net primary production of a maturing northern deciduous forest. Ecology, 92, 1818-1827. |
[17] | Harms KE, Condit R, Hubbell SP, Foster RB (2001) Habitat associations of trees and shrubs in a 50-ha neotropical forest plot. Journal of Ecology, 89, 947-959. |
[18] | He JS, Fang JY, Ma KP, Huang JH (2003) Biodiversity and ecosystem productivity: why is there a discrepancy in the relationship between experimental and natural ecosystems? Acta Phytoecologica Sinica, 27, 835-843. (in Chinese with English abstract) |
[贺金生, 方精云, 马克平, 黄建辉 (2003) 生物多样性与生态系统生产力: 为什么野外观测和受控实验结果不一致?植物生态学报, 27, 835-843.] | |
[19] | Hubbell SP, Condit R, Foster RB (2005) Barro Colorado Forest Census Plot Data.2005) Barro Colorado Forest Census Plot Data. (accessed on 2017-01-08) |
[20] | John R, Dalling JW, Harms KE, Yavitt JB, Stallard RF, Mirabello M, Hubbell SP, Valencia R, Navarrete H, Vallejo M, Foster RB (2007) Soil nutrients influence spatial distributions of tropical tree species. Proceeding of the National Academy of Sciences, USA, 104, 864-869. |
[21] | Lasky JR, Uriarte M, Boukili VK, Erickson DL, Kress JW, Chazdon RL (2014) The relationship between tree biodiversity and biomass dynamics changes with topical forest succession. Ecology Letters, 17, 1158-1167. |
[22] | Leigh EG, Rand AS, Windsor DM (1982) The Ecology of a Tropical Forest:Seasonal Rhythms and Long-Term Changes.Smithsonian Institution Press,Washington. |
[23] | Lin DM, Lai JS, Muller-Landau HC, Mi XC, Ma KP (2012) Topographic variation in aboveground biomass in a subtropical evergreen broad-leaved forest in China. PLoS ONE, 7(10), e48244. |
[24] | Liptzin D, Silver WL (2009) Effects of carbon additions on iron reduction and phosphorus availability in a humid tropical forest soil. Soil Biology & Biochemistry, 41, 1696-1702. |
[25] | Lohbeck M, Poorter L, Martínez-Ramos M, Bongers F (2015) Biomass is the main driver of changes in ecosystem process during tropical forest succession. Ecology, 96, 1242-1252. |
[26] | Loreau M, Naeem S, Inchausti P, Benqtsson J, Grime JP, Hector A, Hooper DU, Huston MA, Raffaelli D, Schmid B, Tilman D, Wardle DA (2001) Ecology-biodiversity and ecosystem functioning: current knowledge and future challenges. Science, 294, 804-808. |
[27] | Ma WH, He JS, Yang YH, Wang XP, Liang CZ, Anwar M, Zeng H, Fang JY, Schmid B (2010) Environmental factors covary with plant diversity-productivity relationships among Chinese grassland sites. Global Ecology and Biogeography, 19, 233-243. |
[28] | Magurran AE (1988) Ecological Diversity and Its Measurement.Princeton University Press, Princeton. |
[29] | McElhinny C, Gibbons P, Brack C, Bauhus J (2005) Forest and woodland stand structural complexity: its definition and measurement. Forest Ecology and Management, 218, 1-24. |
[30] | Medjibe VP, Putz FE, Starkey MP, Ndouna AA, Memiaghe HR (2011) Impacts of selective logging on above-ground forest biomass in the Monts de Cristal in Gabon. Forest Ecology and Management, 262, 1799-1806. |
[31] | Naeem S, Duffy JE, Zavaleta E (2012) The functions of biological diversity in an age of extinction. Science, 336, 1401-1406. |
[32] | Pach M, Podlaski R (2014) Tree diameter structural diversity in Central European forests with Abies alba and Fagus sylvatica: managed versus unmanaged forest stands. Ecological Research, 30, 367-384. |
[33] | Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P, Jackson RB, Pacala SW, McGuire AD, Piao S, Rautiainen A, Sitch S, Hayes D (2011) A large and persistent carbon sink in the world’s forests. Science, 333, 988-993. |
[34] | Pedro MS, Rammer W, Seidl R (2017) Disentangling the effects of compositional and structural diversity on forest productivity. Journal of Vegetation Science, 28, 649-658. |
[35] | Poorter L, Sande MT, Thompson J, Arets EJMM, Alarcón A, álvarez-Sánchez J, Ascarrunz N, Balvanera P, Barajas-Guzmán G, Boit A, Bongers F, Carvalho FA, Casanoves F, Cornejo-Tenorio G, Costa FRC, Castilho CV, Duivenvoorden JF, Dutrieux LP, Enquist BJ, Fernández-Méndez F, Finegan B, Gormley LHL, Healey JR, Hoosbeek MR, Ibarra-Manríquez, Junqueira AB, Levis C, Licona JC, Lisboa LS, Magnusson WE, Martínez-Yrizar A, Martorano LG, Maskell LC, Mazzei L, Meave JA, Mora F, Mu?oz R, Nytch C, Pansonato MP, Parr TW, Paz H, Pérez-García EA, Rentería LY, Rodríguez-Velazquez J, Rozendaal DMA, Ruschel AR, Sakschewski BS, Salgado-Negret B, Schietti J, Sim?es M, Sinclair FL, Souza PF, Souza FC, Stropp J, Steege HT, Swenson NG, Thonicke K, Toledo M, Uriarte M, Hout PVD, Walker P, Zamora N, Pe?a-Claros (2015) Diversity enhances carbon storage in tropical forests. Global Ecology and Biogeography, 24, 1314-1328. |
[36] | Rosseel Y (2012) lavaan: an R package for structural equation modeling. Journal of Statistical Software, 48, 1-36. |
[37] | Ryan MG, Stape JL, Binkley D, Fonseca S, Loos RA, Takahashi EN, Silva CR, Siva SR, Hakamada RE, Ferreira JM, Lima AMN, Gava JL, Leite FP, Andrade HB, Alves JM, Silva GGC (2010) Factors controlling Eucalyptus productivity: how water availability and stand structure alter production and carbon allocation. Forest Ecology and Management, 259, 1695-1703. |
[38] | Sande MT, Pe?a-Claros M, Ascarrunz N, Arets EJMM, Licona JC, Toledo M, Poorter L (2017) Abiotic and biotic drivers of biomass change in a Neotropical forest. Journal of Ecology, 105, 1223-1234. |
[39] | Schimel DS, House JI, Hibbard KA, Bousquet P, Ciais P, Peylin P, Braswell BH, Apps MJ, Baker D, Bondeau A, Canadell J, Churkina G, Cramer W, Denning AS, Field CB, Friedlingstein P, Goodale C, Heimann M, Houghton RA, Melillo JM, Moore B, Murdiyarso ID, Noble I, Pacala SW, Prentice IC, Raupach MR, Rayner PJ, Scholes RJ, Steffen WL, Wirth C (2001) Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature, 414, 169-172. |
[40] | Schnitzer SA, Carson WP (2001) Treefall gaps and the maintenance of species diversity in a tropical forest. Ecology, 82, 913-919. |
[41] | Slik JWF, Paoli G, McGuire K, Amaral I, Barroso J, Bastian M, Blanc L, Bongers F, Boundja P, Clark C, Collins M, Dauby G, Ding Y, Doucet JL, Eler E, Ferreira L, Forshed O, Fredriksson G, Gillet JF, Harris D, Leal M, Laumonier Y, Malhi Y, Mansor A, Martion E, Miyamoto K, Murakami AA, Nagamasu H, Nilus R, Nurtjahya E, Oliveira á, Onrizal O, Parada-Gutierrez A, Permana A, Poorter L, Poulsen J, Ramirez-Angulo H, Reitsma J, Rovero F, Rozak A, Sheil D, Silva-Espejo J, Silveira M, Spironelo W, Suzuki E, Tang JW, Theilade I, van der Heijden G, van Valkenburg J, Do TV, Vilanova E, Vos V, Wich S, W?ll H, Yoneda T, Zang RG, Zhang MG, Zweifel N (2013) Large trees drive forest aboveground biomass variation in moist lowland forests across the tropics. Global Ecology and Biogeography, 22, 1261-1271. |
[42] | Stephenson NL, Das AJ, Condit R, Russo SE, Baker PJ, Beckman NG, Coomes DA, Lines ER, Morris WK, Rüger N, álvarez E, Blundo C, Bunyavejchewin S, Chuyong G, Davies SJ, Duque á, Ewango CN, Flores O, Franklin JF, Grau HR, Hao Z, Harmon ME, Hubbell SP, Kenfack D, Lin Y, Makana JR, Malizia A, Malizia LR, Pabst RJ, Pongpattananurak N, Su SH, Sun IF, Tan S, Thomas D, Mantgem PJ, Wang X, Wiser SK, Zavala MA (2014) Rate of tree carbon accumulation increases continuously with tree size. Nature, 507, 90-93. |
[43] | Tilman D, Downing JA (1994) Biodiversity and stability in grasslands. Nature, 367, 363-365. |
[44] | Tilman D, Reich PB, Knops J, Wedin D, Mielke T, Lehman C (2001) Diversity and productivity in a long-term grassland experiment. Science, 294, 843-845. |
[45] | Wang WF, Lei XD, Ma ZH, Kneeshaw DD, Peng CH (2011) Positive relationship between aboveground carbon stocks and structural diversity in spruce-dominated forest stands in New Brunswick, Canada. Forest Science, 57, 506-515. |
[46] | Wilson EO (1988) The current state of biological diversity. In: Biodiversity (eds Wilson EO, Peter F), pp. 3-18. National Academies Press, Washington, DC. |
[47] | Yuan F, Wu JG, Li A, Rowe H, Bai YF, Huang JH, Han XG (2015) Spatial patterns of soil nutrients, plants diversity, and aboveground biomass in the Inner Mongolia grassland before and after a biodiversity removal experiment. Landscape Ecology, 30, 1737-1750. |
[48] | Zang RG, Yu SX, Liu JY, Yang YC (1999) The gap phase regeneration in a tropical montane rain forest in Bawangling, Hainan Island. Acta Ecologica Sinica, 19, 151-158. |
[49] | Zhang QG, Zhang DY (2003) Biodiversity and ecosystem function: recent advances and trends. Biodiversity Science, 11, 351-363. (in Chinese with English abstract) |
[张全国, 张大勇 (2003) 生物多样性与生态系统功能: 最新的进展与动向. 生物多样性, 11, 351-363.] | |
[50] | Zhang Y, Chen HYH (2015) Individual size inequality links forest diversity and above-ground biomass. Journal of Ecology, 103, 1245-1252. |
[1] | 邝起宇, 胡亮. 广东东海岛与硇洲岛海域底栖贝类物种多样性及其地理分布[J]. 生物多样性, 2024, 32(5): 24065-. |
[2] | 赵勇强, 阎玺羽, 谢加琪, 侯梦婷, 陈丹梅, 臧丽鹏, 刘庆福, 隋明浈, 张广奇. 退化喀斯特森林自然恢复中不同生活史阶段木本植物物种多样性与群落构建[J]. 生物多样性, 2024, 32(5): 23462-. |
[3] | 徐伟强, 苏强. 分形模型与一般性物种多度分布关系的检验解析:以贝类和昆虫群落为例[J]. 生物多样性, 2024, 32(4): 23410-. |
[4] | 冉辉, 杨天友, 米小其. 贵州省爬行动物更新名录[J]. 生物多样性, 2024, 32(4): 23348-. |
[5] | 王启蕃, 刘小慧, 朱紫薇, 刘磊, 王鑫雪, 汲旭阳, 周绍春, 张子栋, 董红雨, 张明海. 黑龙江北极村国家级自然保护区鸟类与兽类多样性[J]. 生物多样性, 2024, 32(4): 24024-. |
[6] | 杜宇晨, 刘蓓萌, 陈俊峰, 王浩, 谢屹. 基于结构方程模型的农户保护意愿影响因素分析: 以东北虎豹国家公园珲春片区为例[J]. 生物多样性, 2024, 32(1): 23155-. |
[7] | 刘彩莲, 张雄, 樊恩源, 王松林, 姜艳, 林柏岸, 房璐, 李玉强, 刘乐彬, 刘敏. 中国海域海马的物种多样性、生态特征及保护建议[J]. 生物多样性, 2024, 32(1): 23282-. |
[8] | 殷正, 张乃莉, 张春雨, 赵秀海. 长白山不同演替阶段温带森林木本植物菌根类型对林下草本植物多样性的影响[J]. 生物多样性, 2024, 32(1): 23337-. |
[9] | 李勇, 李三青, 王欢. 天津野生维管植物编目及分布数据集[J]. 生物多样性, 2023, 31(9): 23128-. |
[10] | 张多鹏, 刘洋, 李正飞, 葛奕豪, 张君倩, 谢志才. 长江上游支流赤水河流域底栖动物物种多样性与保护对策[J]. 生物多样性, 2023, 31(8): 22674-. |
[11] | 曹亚苏, 范敏, 彭羽, 辛嘉讯, 彭楠一. 景观格局动态对浑善达克沙地植物物种多样性和功能多样性的影响[J]. 生物多样性, 2023, 31(8): 23048-. |
[12] | 钟欣艺, 赵凡, 姚雪, 吴雨茹, 许银, 鱼舜尧, 林静芸, 郝建锋. 三星堆遗址城墙不同维护措施下草本植物物种多样性与土壤抗冲性的关系[J]. 生物多样性, 2023, 31(8): 23169-. |
[13] | 杜红. “物种”与“个体”: 究竟谁是生物多样性保护的恰当对象?[J]. 生物多样性, 2023, 31(8): 23140-. |
[14] | 邓婷婷, 魏岩, 任思远, 祝燕. 北京东灵山暖温带落叶阔叶林地形和林分结构对林下草本植物物种多样性的影响[J]. 生物多样性, 2023, 31(7): 22671-. |
[15] | 楼晨阳, 任海保, 陈小南, 米湘成, 童冉, 朱念福, 陈磊, 吴统贵, 申小莉. 钱江源国家公园森林群落的物种多样性、结构多样性及其对黑麂出现概率的影响[J]. 生物多样性, 2023, 31(6): 22518-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn