生物多样性 ›› 2022, Vol. 30 ›› Issue (7): 22204. DOI: 10.17520/biods.2022204 cstr: 32101.14.biods.2022204
所属专题: 昆虫多样性与生态功能; 数据论文
收稿日期:
2022-04-20
接受日期:
2022-06-13
出版日期:
2022-07-20
发布日期:
2022-06-24
通讯作者:
黄晓磊
作者简介:
*E-mail: huangxl@fafu.edu.cn基金资助:
Congcong Lu, Qian Liu, Xiaolei Huang()
Received:
2022-04-20
Accepted:
2022-06-13
Online:
2022-07-20
Published:
2022-06-24
Contact:
Xiaolei Huang
卢聪聪, 刘倩, 黄晓磊 (2022) 三种蚜虫的线粒体基因组数据. 生物多样性, 30, 22204. DOI: 10.17520/biods.2022204.
Congcong Lu, Qian Liu, Xiaolei Huang (2022) Mitochondrial genome data of three aphid species. Biodiversity Science, 30, 22204. DOI: 10.17520/biods.2022204.
亚科 Subfamily | 属数 Number of genera | 物种数 Number of species | 线粒体基因组 Number of mitogenomes | 具有线粒体基因组的物种 Number of species with mitogenome |
---|---|---|---|---|
短痣蚜亚科 Anoeciinae | 4 | 32 | - | - |
蚜亚科 Aphidinae | 283 | 3,156 | 59 | 25 |
波罗的毛蚜亚科 Baltichaitophorinae | 2 | 2 | - | - |
长角斑蚜亚科 Calaphidinae | 76 | 424 | 2 | 2 |
毛蚜亚科 Chaitophorinae | 13 | 181 | 1 | 1 |
镰管蚜亚科 Drepanosiphinae | 13 | 60 | - | - |
绵蚜亚科 Eriosomatinae | 65 | 402 | 39 | 18 |
毛管蚜亚科 Greenideinae | 18 | 189 | 11 | 6 |
扁蚜亚科 Hormaphidinae | 47 | 236 | 14 | 6 |
以斑蚜亚科 Israelaphidinae | 1 | 4 | - | - |
大蚜亚科 Lachninae | 19 | 420 | 5 | 3 |
蜥蜴斑蚜亚科 Lizeriinae | 5 | 44 | - | - |
粗腿蚜亚科 Macropodaphidinae | 1 | 7 | - | - |
纩蚜亚科 Mindarinae | 2 | 18 | 1 | 1 |
新叶蚜亚科 Neophyllaphidinae | 3 | 21 | - | - |
平翅绵蚜亚科 Phloeomyzinae | 5 | 5 | - | - |
叶蚜亚科 Phyllaphidinae | 11 | 28 | - | - |
翅斑蚜亚科 Pterastheniinae | 2 | 5 | - | - |
针蚜亚科 Spicaphidinae | 2 | 16 | - | - |
台斑蚜亚科 Taiwanaphidinae | 1 | 14 | - | - |
塔叶蚜亚科 Tamaliinae | 1 | 6 | - | - |
群蚜亚科 Thelaxinae | 6 | 21 | - | - |
总计 Total | 580 | 5,291 | 132 | 62 |
表1 GenBank已公开报道的蚜虫完整线粒体基因组
Table 1 Publicly released aphid mitogenomes in the GenBank database
亚科 Subfamily | 属数 Number of genera | 物种数 Number of species | 线粒体基因组 Number of mitogenomes | 具有线粒体基因组的物种 Number of species with mitogenome |
---|---|---|---|---|
短痣蚜亚科 Anoeciinae | 4 | 32 | - | - |
蚜亚科 Aphidinae | 283 | 3,156 | 59 | 25 |
波罗的毛蚜亚科 Baltichaitophorinae | 2 | 2 | - | - |
长角斑蚜亚科 Calaphidinae | 76 | 424 | 2 | 2 |
毛蚜亚科 Chaitophorinae | 13 | 181 | 1 | 1 |
镰管蚜亚科 Drepanosiphinae | 13 | 60 | - | - |
绵蚜亚科 Eriosomatinae | 65 | 402 | 39 | 18 |
毛管蚜亚科 Greenideinae | 18 | 189 | 11 | 6 |
扁蚜亚科 Hormaphidinae | 47 | 236 | 14 | 6 |
以斑蚜亚科 Israelaphidinae | 1 | 4 | - | - |
大蚜亚科 Lachninae | 19 | 420 | 5 | 3 |
蜥蜴斑蚜亚科 Lizeriinae | 5 | 44 | - | - |
粗腿蚜亚科 Macropodaphidinae | 1 | 7 | - | - |
纩蚜亚科 Mindarinae | 2 | 18 | 1 | 1 |
新叶蚜亚科 Neophyllaphidinae | 3 | 21 | - | - |
平翅绵蚜亚科 Phloeomyzinae | 5 | 5 | - | - |
叶蚜亚科 Phyllaphidinae | 11 | 28 | - | - |
翅斑蚜亚科 Pterastheniinae | 2 | 5 | - | - |
针蚜亚科 Spicaphidinae | 2 | 16 | - | - |
台斑蚜亚科 Taiwanaphidinae | 1 | 14 | - | - |
塔叶蚜亚科 Tamaliinae | 1 | 6 | - | - |
群蚜亚科 Thelaxinae | 6 | 21 | - | - |
总计 Total | 580 | 5,291 | 132 | 62 |
物种 Species | 样品编号 Sample number | 亚科 Subfamily | 采集时间 Date of collection | 采集地点 Locality of collection | 寄主植物 Host plant |
---|---|---|---|---|---|
榕毛管蚜 Greenidea ficicola | 20150502-4 | 毛管蚜亚科 Greenideinae | 2015/05/02 | 福建泉州 Quanzhou, Fujian | 高山榕 Ficus altissima |
橘二叉蚜 Aphis aurantii | 20160327-4 | 蚜亚科 Aphidinae | 2016/03/27 | 福建福州 Fuzhou, Fujian | 山茶 Camellia japonica |
油杉纩蚜 Mindarus keteleerifoliae | 20170609-6 | 纩蚜亚科 Mindarinae | 2017/06/09 | 福建福州 Fuzhou, Fujian | 油杉 Keteleeria fortunei |
表2 本研究中3种蚜虫的样品信息
Table 2 The sample information of three aphids in this study
物种 Species | 样品编号 Sample number | 亚科 Subfamily | 采集时间 Date of collection | 采集地点 Locality of collection | 寄主植物 Host plant |
---|---|---|---|---|---|
榕毛管蚜 Greenidea ficicola | 20150502-4 | 毛管蚜亚科 Greenideinae | 2015/05/02 | 福建泉州 Quanzhou, Fujian | 高山榕 Ficus altissima |
橘二叉蚜 Aphis aurantii | 20160327-4 | 蚜亚科 Aphidinae | 2016/03/27 | 福建福州 Fuzhou, Fujian | 山茶 Camellia japonica |
油杉纩蚜 Mindarus keteleerifoliae | 20170609-6 | 纩蚜亚科 Mindarinae | 2017/06/09 | 福建福州 Fuzhou, Fujian | 油杉 Keteleeria fortunei |
图1 榕毛管蚜、橘二叉蚜和油杉纩蚜的线粒体基因组结构图。标注在外圈的基因表示被编码在正义链(J链), 标注在内圈的基因表示被编码在负义链(N链)。tRNA基因用对应氨基酸的缩写来表示。
Fig. 1 Mitogenome circular maps of the Greenidea ficicola, Aphis aurantii and Mindarus keteleerifoliae. The genes that are labeled on the outside circle indicate that coding sequences are on the major (J) strand, while others are on the minor (N) strand. The tRNA genes are labeled with the amino acid abbreviations.
[1] |
Al Arab M, Zu Siederdissen CH, Tout K, Sahyoun AH, Stadler PF, Bernt M (2017) Accurate annotation of protein-coding genes in mitochondrial genomes. Molecular Phylogenetics and Evolution, 106, 209-216.
DOI URL |
[2] |
Bernt M, Donath A, Jühling F, Externbrink F, Florentz C, Fritzsch G, Pütz J, Middendorf M, Stadler PF (2013) MITOS: Improved de novo metazoan mitochondrial genome annotation. Molecular Phylogenetics and Evolution, 69, 313-319.
DOI URL |
[3] |
Boore JL (1999) Animal mitochondrial genomes. Nucleic Acids Research, 27, 1767-1780.
PMID |
[4] |
Burger G, Gray MW, Lang BF (2003) Mitochondrial genomes: Anything goes. Trends in Genetics, 19, 709-716.
DOI URL |
[5] |
Chen J, Wang Y, Jiang LY, Qiao GX (2017) Mitochondrial genome sequences effectively reveal deep branching events in aphids (Insecta: Hemiptera: Aphididae). Zoologica Scripta, 46, 706-717.
DOI URL |
[6] | Dierckxsens N, Mardulyn P, Smits G (2017) NOVOPlasty: de novo assembly of organelle genomes from whole genome data. Nucleic Acids Research, 45, e18. |
[7] | Favret C (2022) Aphid species file, Version 5.0/5.0. http://Aphid.SpeciesFile.org. (accessed on 2022-01-24) |
[8] |
Grant JR, Stothard P (2008) The CGView Server: A comparative genomics tool for circular genomes. Nucleic Acids Research, 36, W181-W184.
DOI URL |
[9] |
Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33, 1870-1874.
DOI URL |
[10] |
Laslett D, Canbäck B (2008) ARWEN: A program to detect tRNA genes in metazoan mitochondrial nucleotide sequences. Bioinformatics, 24, 172-175.
PMID |
[11] | Li H, Leavengood Jr JM, Chapman EG, Burkhardt D, Song F, Jiang P, Liu JP, Zhou XG, Cai WZ (2017) Mitochondrial phylogenomics of Hemiptera reveals adaptive innovations driving the diversification of true bugs. Proceedings of the Royal Society B: Biological Sciences, 284, 20171223. |
[12] |
Liu YQ, Li H, Song F, Zhao YS, Wilson JJ, Cai WZ (2019) Higher-level phylogeny and evolutionary history of Pentatomomorpha (Hemiptera: Heteroptera) inferred from mitochondrial genome sequences. Systematic Entomology, 44, 810-819.
DOI URL |
[13] | Lorenz R, Bernhart SH, Zu Siederdissen CH, Tafer H, Flamm C, Stadler PF, Hofacker IL (2011) ViennaRNA Package 2.0. Algorithms for Molecular Biology, 6, 26. |
[14] |
Ma C, Yang P, Jiang F, Chapuis MP, Shali Y, Sword GA, Kang L (2012) Mitochondrial genomes reveal the global phylogeography and dispersal routes of the migratory locust. Molecular Ecology, 21, 4344-4358.
DOI URL |
[15] |
Mueller RL (2006) Evolutionary rates, divergence dates, and the performance of mitochondrial genes in Bayesian phylogenetic analysis. Systematic Biology, 55, 289-300.
DOI URL |
[16] |
Nass MMK, Nass S (1963) Intramitochondrial fibers with DNA characteristics: I. Fixation and electron staining reactions. The Journal of Cell Biology, 19, 593-611.
DOI URL |
[17] |
Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, Cuomo CA, Zeng QD, Wortman J, Young SK, Earl AM (2014) Pilon: An integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE, 9, e112963.
DOI URL |
[18] |
Wang Y, Huang XL, Qiao GX (2014) The complete mitochondrial genome of Cervaphis quercus (Insecta: Hemiptera: Aphididae: Greenideinae). Insect Science, 21, 278-290.
DOI URL |
[19] |
Wilson AC, Cann RL, Carr SM, George M, Gyllensten UB, Helm-Bychowski KM, Higuchi RG, Palumbi SR, Prager EM, Sage RD, Stoneking M (1985) Mitochondrial DNA and two perspectives on evolutionary genetics. Biological Journal of the Linnean Society, 26, 375-400.
DOI URL |
[20] | Wolstenholme DR (1992) Animal mitochondrial DNA: Structure and evolution. International Review of Cytology, 141, 173-216. |
[21] |
Zhang B, Ma C, Edwards O, Fuller S, Kang L (2014) The mitochondrial genome of the Russian wheat aphid Diuraphis noxia: Large repetitive sequences between trnE and trnF in aphids. Gene, 533, 253-260.
DOI PMID |
[22] |
Zhang D, Gao FL, Jakovlić I, Zou H, Zhang J, Li WX, Wang GT (2020) PhyloSuite: An integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Molecular Ecology Resources, 20, 348-355.
DOI PMID |
[23] |
Zhang H, Liu Q, Lu CC, Deng J, Huang XL (2021) The first complete mitochondrial genome of Lachninae species and comparative genomics provide new insights into the evolution of gene rearrangement and the repeat region. Insects, 12, 55.
DOI URL |
[1] | 林珍, 向家宝, 蔡何佳奕, 高贝, 杨金涛, 李俊毅, 周青松, 黄晓磊, 邓鋆. 七种半翅目昆虫线粒体基因组数据[J]. 生物多样性, 2025, 33(2): 24434-. |
[2] | 邓洪, 钟占友, 寇春妮, 朱书礼, 李跃飞, 夏雨果, 武智, 李捷, 陈蔚涛. 基于线粒体全基因组揭示斑鳠的种群遗传结构与演化历史[J]. 生物多样性, 2025, 33(1): 24241-. |
[3] | 蔡畅, 张雪, 朱晨, 赵郁豪, 乔格侠, 丁平. 千岛湖片段化生境中蚜虫群落嵌套格局的形成: 岛屿面积和寄主植物多样性的作用[J]. 生物多样性, 2023, 31(12): 23183-. |
[4] | 翟俊杰, 赵慧峰, 商光申, 孙振钧, 张玉峰, 王兴. 蚯蚓基因组学的研究进展: 基于全基因组及线粒体基因组[J]. 生物多样性, 2022, 30(12): 22257-. |
[5] | 姜立云, 乔格侠. 香港地区蚜虫物种多样性[J]. 生物多样性, 2006, 14(5): 392-399. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn