生物多样性 ›› 2020, Vol. 28 ›› Issue (7): 833-841. DOI: 10.17520/biods.2019350
所属专题: 传粉生物学
收稿日期:
2019-11-06
接受日期:
2020-01-25
出版日期:
2020-07-20
发布日期:
2020-09-29
通讯作者:
张玲
作者简介:
* E-mail: zhangl@xtbg.org.cn基金资助:
Received:
2019-11-06
Accepted:
2020-01-25
Online:
2020-07-20
Published:
2020-09-29
Contact:
Ling Zhang
摘要:
桑寄生植物是一类自身可以进行光合作用的半寄生性灌木, 作为森林和林地的关键性资源可为鸟类等动物分类群提供重要的食物资源和巢址, 并影响当地的生物多样性。桑寄生植物隶属于檀香目, 包括5科88属约1,600种, 除极地、部分高寒和干旱沙漠地区外均有分布。桑寄生植物繁殖物候的研究对于了解“寄主植物-桑寄生植物-传粉/种子散布者系统”中物种相互作用网络的维持机制、生态系统结构的稳定性具有重要意义。本文综述了桑寄生植物在景观、群落和种群尺度上繁殖物候的表现类型, 发现桑寄生植物主要通过繁殖物候异步的方式延长物候期, 维持与传粉/种子散布者持久的互惠关系以保障自身种群的繁衍。该领域经过近年的发展, 已从单一地描述繁殖物候的表现类型到探究系统中寄主植物、传粉/种子散布者以及桑寄生植物自身生物学特性等因素的分析。通过前人的研究发现桑寄生植物繁殖物候对于该系统内相互作用的双方或多方有重要的适应意义, 今后首先应该对桑寄生植物的基础生物学背景进行研究, 然后还应加强实验验证, 进行多因素综合分析等来探讨桑寄生植物繁殖物候的生态学意义。
李慢如, 张玲 (2020) 桑寄生植物繁殖物候研究概述. 生物多样性, 28, 833-841. DOI: 10.17520/biods.2019350.
Manru Li, Ling Zhang (2020) Overview of the reproductive phenology of mistletoes. Biodiversity Science, 28, 833-841. DOI: 10.17520/biods.2019350.
图1 桑寄生植物分布地图(红色星形表示文献中桑寄生植物繁殖物候表现类型的研究地点)。使用RStudio软件maptools和dismo程序包在线获取全球生物多样性信息网络数据库Global Biodiversity Information Facility (GBIF) (http:////ww.gbif.org/)桑寄生植物属一级的经纬度数据绘制。
Fig. 1 The distribution map (latitude and longitude data) of genera of mistletoes from the Global Biodiversity Information Facility (GBIF) (http:////ww.gbif.org/) is drawn by using maptols and dismo packages in R Studio software.
[1] | Aizen MA (2003) Influences of animal pollination and seed dispersal on winter flowering in a temperate mistletoe. Ecology, 84, 2613-2627. |
[2] | Amico GC, Aizen MA (2000) Mistletoe seed dispersal by a marsupial. Nature, 408, 929-930. |
[3] | Amico GC, Sasal Y, Vidal-Russell R, Aizen MA, Manuel MJ (2017) Consequences of disperser behaviour for seedling establishment of a mistletoe species. Austral Ecology, 42, 900-907. |
[4] | Ashton PS, Givnish TJ, Appanah S (1988) Staggered flowering in the Dipterocarpaceae: New insights into floral induction and the evolution of mast fruiting in the aseasonal tropics. The American Naturalist, 132, 44-66. |
[5] | Augspurger CK (1983) Phenology, flowering synchrony, and fruit set of six neotropical shrubs. Biotropica, 15, 257-267. |
[6] | Aukema JE (2003) Vectors, viscin, and Viscaceae: Mistletoes as parasites, mutualists, and resources. Frontiers in Ecology and the Environment, 1, 212-219. |
[7] |
Bannister P, Strong GL (2001) Carbon and nitrogen isotope ratios, nitrogen content and heterotrophy in New Zealand mistletoes. Oecologia, 126, 10-20.
URL PMID |
[8] | Barney CW, Hawksworth FG, Geils BW (1998) Hosts of Viscum album. European Journal of Forest Pathology, 28, 187-208. |
[9] | Bolmgren K (1998) The use of synchronization measures in studies of plant reproductive phenology. Oikos, 82, 411-415. |
[10] | Bolmgren K, Cowan PD (2008) Time-size tradeoffs: A phylogenetic comparative study of flowering time, plant height and seed mass in a north-temperate flora. Oikos, 117, 424-429. |
[11] | Burkhardt F, Smith S (1990) The Correspondence of Charles Darwin. Cambridge University Press, Cambridge, |
[12] | Candia AB, Medel R, Fonturbel FE (2014) Indirect positive effects of a parasitic plant on host pollination and seed dispersal. Oikos, 123, 1371-1376. |
[13] |
Caraballo-Ortiz MA, Gonzalez-Castro A, Yang S, dePamphilis CW, Carlo TA (2017) Dissecting the contributions of dispersal and host properties to the local abundance of a tropical mistletoe. Journal of Ecology, 105, 1657-1667.
DOI URL |
[14] | Clark RM, Thompson R (2011) Estimation and comparison of flowering curves. Plant Ecology & Diversity, 4, 189-200. |
[15] | Craine JM, Wolkovich EM, Towne EG, Kembel SW (2012) Flowering phenology as a functional trait in a tallgrass prairie. New Phytologist, 193, 673-682. |
[16] | Davidar P (1983a) Birds and neotropical mistletoes: Effects on seedling recruitment. Oecologia, 60, 271-273. |
[17] | Davidar P (1983b) Similarity between flowers and fruits in some flowerpecker pollinated mistletoes. Biotropica, 15, 32-37. |
[18] | Davis CC, Willis CG, Primack RB, Miller-Rushing AJ (2010) The importance of phylogeny to the study of phenological response to global climate change. Philosophical Transactions of the Royal Society B: Biological Sciences, 365, 3201-3213. |
[19] | Delectis Flora Reipubicae Popularis Sinicae Agendae Academiae Sinicae Edita(1998) Flora Reipublicae Popularis Sinicae, Tomus 24, Science Press, Beijing. (in Chinese) |
[ 中国科学院中国植物志编辑委员会(1998) 中国植物志(第二十四卷). 科学出版社, 北京.] | |
[20] | Du YJ, Mao LF, Queenborough SA, Freckleton RP, Chen B, Ma KP (2015) Phylogenetic constraints and trait correlates of flowering phenology in the angiosperm flora of China. Global Ecology and Biogeography, 24, 928-938. |
[21] |
Elzinga JA, Atlan A, Biere A, Gigord L, Weis AE, Bernasconi G (2007) Time after time: Flowering phenology and biotic interactions. Trends in Ecology & Evolution, 22, 432-439.
DOI URL PMID |
[22] | Feehan J (1985) Explosive flower opening in ornithophily: A study of pollination mechanisms in some Central African Loranthaceae. Botanical Journal of the Linnean Society, 90, 129-144. |
[23] | Gill FB, Wolf LL (1975) Foraging strategies and energetics of East African sunbirds at mistletoe flowers. The American Naturalist, 109, 491-510. |
[24] | Godschalk SKB (1983) The reproductive phenology of three mistletoe species in the Loskop Dam Nature Reserve, South Africa. South African Journal of Botany, 2, 9-14. |
[25] | Gorchov DL (1988) Does asynchronous fruit ripening avoid satiation of seed dispersers?: A field test. Ecology, 69, 1545-1551. |
[26] | Jentsch A, Kreyling J, Boettcher-Treschkow J, Beierkuhnlein C (2009) Beyond gradual warming: Extreme weather events alter flower phenology of European grassland and heath species. Global Change Biology, 15, 837-849. |
[27] | Ladley JJ, Kelly D (1995) Explosive New Zealand mistletoe. Nature, 378, 766. |
[28] | Ladley JJ, Kelly D, Robertson AW (1997) Explosive flowering, nectar production, breeding systems, and pollinators of New Zealand mistletoes (Loranthaceae). New Zealand Journal of Botany, 35, 345-360. |
[29] | Larson DL (1996) Seed dispersal by specialist versus generalist foragers: The plant’s perspective. Oikos, 76, 113-120. |
[30] | Li MR, Zhang L (2019) Reproductive phenological characteristics and impact of Macrosolen cochinchinensis in Xishuangbanna. Guihaia, 39, 1252-1260. (in Chinese with English abstract) |
[ 李慢如, 张玲 (2019) 西双版纳地区鞘花的繁殖物候及影响因素. 广西植物, 39, 1252-1260.] | |
[31] |
Liu B, Chi TL, Barrett RL, Nickrent DL, Chen ZD, Lu LM, Vidal-Russell R (2018) Historical biogeography of Loranthaceae (Santalales): Diversification agrees with emergence of tropical forests and radiation of songbirds. Molecular Phylogenetics and Evolution, 124, 199-212.
DOI URL PMID |
[32] | Lomascolo SB, Levey DJ, Kimball RT, Bolker BM, Alborn HT (2010) Dispersers shape fruit diversity in Ficus (Moraceae). Proceedings of the National Academy of Sciences, USA, 107, 14668-14672. |
[33] | Luo YH, Sui Y, Gan JM, Zhang L (2016) Host compatibility interacts with seed dispersal to determine small-scale distribution of a mistletoe in Xishuangbanna, Southwest China. Journal of Plant Ecology, 9, 77-86. |
[34] |
Mathiasen RL, Nickrent DL, Shaw DC, Watson DM (2008) Mistletoes: Pathology, systematics, ecology, and management. Plant Disease, 92, 988-1006.
DOI URL PMID |
[35] | Napier KR, Mather SH, McWhorter TJ, Fleming Patricia A (2014) Do bird species richness and community structure vary with mistletoe flowering and fruiting in Western Australia? Emu, 114, 13-22. |
[36] | Newstrom LE, Frankie GW, Baker HG (1994) A new classification for plant phenology based on flowering patterns in lowland tropical rain-forest trees at La selva, Costa-rica. Biotropica, 26, 141-159. |
[37] | Nickrent DL (2002) Mistletoe phylogenetics: Current relationships gained from analysis of DNA sequences. In: Proceedings of the Western International Forest Disease Work Conference, p. 253. Waikoloa, Hawai’i. |
[38] | Nickrent DL (2011) Santalales (including mistletoes). In: Encyclopedia of Life Sciences (ELS). John Wiley & Sons, Chichester. |
[39] | Overton JM (1997) Host specialization and partial reproductive isolation in desert mistletoe (Phoradendron californicum). Southwestern Naturalist, 42, 201-209. |
[40] |
Petney TN, Andrews RH (1998) Multiparasite communities in animals and humans: Frequency, structure and pathogenic significance. International Journal for Parasitology, 28, 377-393.
DOI URL PMID |
[41] | Pettersson MW (1994) Large plant size counteracts early seed predation during the extended flowering season of a Silene uniflora (Caryophyllaceae) population. Ecography, 17, 264-271. |
[42] |
Press MC, Phoenix GK (2005) Impacts of parasitic plants on natural communities. New Phytologist, 166, 737-751.
DOI URL PMID |
[43] |
Quintana-Rodriguez E, Gamaliel RA, Ramirez-Chavez E, Molina-Torres J, Camacho-Coronel X, Esparza-Claudio J, Heil M, Orona-Tamayo D (2018) Biochemical traits in the flower lifetime of a Mexican mistletoe parasitizing mesquite biomass. Frontiers in Plant Science, 9, 1031.
DOI URL PMID |
[44] | Rathcke B, Lacey EP (1985) Phenological patterns of terrestrial plants. Annual Review of Ecology and Systematics, 16, 179-214. |
[45] | Reid N (1989) Dispersal of mistletoes by honeyeaters and flowerpeckers: Components of seed dispersal quality. Ecology, 70, 137-145. |
[46] | Reid N (1991) Coevolution of mistletoes and frugivorous birds. Australian Journal of Ecology, 16, 457-469. |
[47] |
SanMartin-Gajardo I, Morellato LPC (2003) Inter and intraspecific variation on reproductive phenology of the Brazilian Atlantic forest Rubiaceae: Ecology and phylogenetic constraints. Revista de Biologia Tropical, 51, 691-698.
URL PMID |
[48] |
Schmitt J (1983) Individual flowering phenology, plant size, and reproductive success in Linanthus androsaceus, a California annual. Oecologia, 59, 135-140.
DOI URL PMID |
[49] |
Shen H, Ye W, Hong L, Huang H, Wang Z, Deng X, Yang Q, Xu Z (2006) Progress in parasitic plant biology: Host selection and nutrient transfer. Plant Biology, 8, 175-185.
DOI URL PMID |
[50] | Sun SC, Frelich LE (2011) Flowering phenology and height growth pattern are associated with maximum plant height, relative growth rate and stem tissue mass density in herbaceous grassland species. Journal of Ecology, 99, 991-1000. |
[51] | Tanaka K, Tokuda M (2017) Phenological specialisation of two ant-dispersed sedges in relation to requirements for qualitative and quantitative dispersal effectiveness. Ecological Research, 32, 677-684. |
[52] | Teixeira-Costa L, Coelho FM, Ceccantini GCT (2017) Comparative phenology of mistletoes shows effect of different host species and temporal niche partitioning. Botany, 95, 271-282. |
[53] |
Thompson JN, Willson MF (1979) Evolution of temperate fruit-bird interactions: Phenological strategies. Evolution, 33, 973-982.
DOI URL PMID |
[54] |
Thomsen MS, Altieri AH, Angelini C, Bishop MJ, Gribben PE, Lear G, He Q, Schiel DR, Silliman BR, South PM, Watson DM, Wernberg T, Zotz G (2018) Secondary foundation species enhance biodiversity. Nature Ecology & Evolution, 2, 634-639.
DOI URL PMID |
[55] |
Twyford AD (2018) Parasitic plants. Current Biology, 28, R857-R859.
DOI URL PMID |
[56] |
Vaknin Y, Tov YY, Eisikowitch D (1996) Flowering seasonality and flower characteristics of Loranthus acaciae Zucc. (Loranthaceae): Implications for advertisement and bird- pollination. Sexual Plant Reproduction, 9, 279-285.
DOI URL |
[57] | Wang LX, Kgope B, D’Odorico P, Macko SA (2008) Carbon and nitrogen parasitism by a xylem-tapping mistletoe (Tapinanthus oleifolius) along the Kalahari Transect: A stable isotope study. African Journal of Ecology, 46, 540-546. |
[58] | Wang XN, Zhang L (2017) Species diversity and distribution of mistletoes and hosts in four different habitats in Xishuangbanna, Southwest China. Journal of Yunnan University (Natural Science), 39, 701-711. (in Chinese with English abstract) |
[ 王煊妮, 张玲 (2017) 西双版纳4种生境下的桑寄生与寄主植物多样性及分布特点. 云南大学学报(自然科学版), 39, 701-711.] | |
[59] | Watson DM (2001) Mistletoe—A keystone resource in forests and woodlands worldwide. Annual Review of Ecology and Systematics, 32, 219-249. |
[60] | Watson DM (2011) Mistletoes of Southern Australia. CSIRO Publishing, Collingwood, |
[61] |
Watson DM (2016) Fleshing out facilitation-reframing interaction networks beyond top-down versus bottom-up. New Phytologist, 211, 803-808.
DOI URL PMID |
[62] | Watson DM, Herring M (2012) Mistletoe as a keystone resource: An experimental test. Proceedings of the Royal Society B: Biological Sciences, 279, 3853-3860. |
[63] | Wright JW, Meagher TR (2003) Pollination and seed predation drive flowering phenology in Silene latifolia (Caryophyllaceae). Ecology, 84, 2062-2073. |
[64] | Wright SJ, Calderon O (1995) Phylogenetic patterns among tropical flowering phenologies. Journal of Ecology, 83, 937-948. |
[65] | Xia B, Tian CM, Luo YQ, Zhao FY, Ma JH, Wang GC, Han FZ (2010) Flowering characteristics and chemical control of the buds of Arceuthobium sichuanense. Scientia Silvae Sinicae, 46(4), 98-102. (in Chinese with English abstract) |
[ 夏博, 田呈明, 骆有庆, 赵丰钰, 马建海, 王国仓, 韩富忠 (2010) 云杉矮槲寄生开花特性及化学防控. 林业科学, 46(4), 98-102.] | |
[66] | Yan GR, Yang YQ, Tang AJ (2019) Investigating seed characteristics and parasitic relation establishment of Scurrula parasitica var. graciliflora characterized by prior selfing. Acta Ecologica Sinica, 39, 1019-1029. (in Chinese with English abstract) |
[ 严光荣, 杨永清, 唐安军 (2019) 前自交型小红花种子特性及寄生关系的建立. 生态学报, 39, 1019-1029.] | |
[67] | Yule KM, Bronstein JL (2018a) Infrapopulation size and mate availability influence reproductive success of a parasitic plant. Journal of Ecology, 106, 1972-1982. |
[68] |
Yule KM, Bronstein JL (2018b) Reproductive ecology of a parasitic plant differs by host species: Vector interactions and the maintenance of host races. Oecologia, 186, 471-482.
DOI URL PMID |
[69] |
Yule KM, Koop JAH, Alexandre NM, Johnston LR, Whiteman NK (2016) Population structure of a vector-borne plant parasite. Molecular Ecology, 25, 3332-3343.
DOI URL PMID |
[70] |
Zhang GF, Li Q, Sun SC (2018) Diversity and distribution of parasitic angiosperms in China. Ecology and Evolution, 8, 4378-4386.
DOI URL PMID |
[1] | 巴苏艳, 赵春艳, 刘媛, 方强. 通过虫体花粉识别构建植物‒传粉者网络: 人工模型与AI模型高度一致[J]. 生物多样性, 2024, 32(6): 24088-. |
[2] | 丁翔, 余元钧, 宋希强, 罗毅波. 具有泛化访花者的海芋特化传粉系统[J]. 生物多样性, 2024, 32(6): 24069-. |
[3] | 蔡畅, 张雪, 朱晨, 赵郁豪, 乔格侠, 丁平. 千岛湖片段化生境中蚜虫群落嵌套格局的形成: 岛屿面积和寄主植物多样性的作用[J]. 生物多样性, 2023, 31(12): 23183-. |
[4] | 童泽宇, 徐环李, 黄双全. 探讨监测传粉者的方法[J]. 生物多样性, 2018, 26(5): 433-444. |
[5] | 田昊, 廖万金. 克隆生长对被子植物传粉过程的影响[J]. 生物多样性, 2018, 26(5): 468-475. |
[6] | 黄家兴, 安建东. 中国熊蜂多样性、人工利用与保护策略[J]. 生物多样性, 2018, 26(5): 486-497. |
[7] | 贾翔宇, 白彬, 张洁清, 黄艺. IPBES评估报告对全球生物多样性保护的影响——以美国传粉者保护政策为例[J]. 生物多样性, 2018, 26(5): 527-534. |
[8] | 黄建峰, 徐睿, 彭艳琼. 榕-传粉榕小蜂非一对一共生关系的研究进展[J]. 生物多样性, 2018, 26(3): 295-303. |
[9] | 田瑜, 兰存子, 徐靖, 李秀山, 李俊生. IPBES框架下的全球传粉评估及我国对策[J]. 生物多样性, 2016, 24(9): 1084-1090. |
[10] | 李海东, 任宗昕, 吴之坤, 许琨, 王红. 二型花柱植物海仙花报春花部性状随地理梯度的变异[J]. 生物多样性, 2015, 23(6): 747-758. |
[11] | 杜家潇, 孟璐, 孙海芹, 包颖. 盗蜜对角蒿传粉者行为和生殖成功的影响[J]. 生物多样性, 2015, 23(5): 658-664. |
[12] | 戴漂漂, 张旭珠, 刘云慧. 传粉动物多样性的保护与农业景观传粉服务的提升[J]. 生物多样性, 2015, 23(3): 408-418. |
[13] | 夏婧, 郭友好. 开花时间与伴生种对鹤首马先蒿传粉和生殖成功的影响[J]. 生物多样性, 2012, 20(3): 330-336. |
[14] | 马晓丽, 谭敦炎, 李新蓉. 蒙古沙冬青花序内性分配的变化、传粉者运动与繁殖成功[J]. 生物多样性, 2011, 19(4): 432-440. |
[15] | 龚燕兵, 黄双全. 传粉昆虫行为的研究方法探讨[J]. 生物多样性, 2007, 15(6): 576-583. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn