生物多样性 ›› 2022, Vol. 30 ›› Issue (12): 22189. DOI: 10.17520/biods.2022189
所属专题: 土壤生物与土壤健康
收稿日期:
2022-04-14
接受日期:
2022-06-27
出版日期:
2022-12-20
发布日期:
2022-09-29
通讯作者:
*E-mail: shibingao@163.com
基金资助:
Huiling Hu1, Zhiyuan Yao2, Shibin Gao1,*(), Bo Zhu2
Received:
2022-04-14
Accepted:
2022-06-27
Online:
2022-12-20
Published:
2022-09-29
Contact:
*E-mail: shibingao@163.com
摘要:
土壤线虫在农田生态系统中数量丰富且对土壤环境变化敏感, 可用于评估不同田间管理条件下的土壤健康。本文探究了紫色土区长期不同施肥措施及土壤团聚体粒径对线虫群落的分布及其生态功能多样性的影响。试验设置了5个施肥处理: 不施肥(对照, CK)、单施化肥(NPK)、生物炭 + 化肥(BCNPK)、商品猪粪 + 化肥(OMNPK)和秸秆 + 化肥(RSDNPK)。团聚体粒径分为: 原状土(BS)、大团聚体(> 2 mm; LA)和小团聚体(0.25-2 mm; SA)。结果表明, 与对照相比, 施肥可促进线虫数量增长, 其中单施化肥处理下增幅最小(66%); 有机物料与化肥配施对线虫数量的提升更为显著, 秸秆 + 化肥处理下增幅达206%。不同施肥处理间线虫类群相对丰度差异显著, 大小均表现为: 食细菌线虫(BA) > 杂食/捕食线虫(OP) > 植食线虫(PP) > 食真菌线虫(FU)。小团聚体较其他土壤团聚体的杂食/捕食线虫丰度更低, 食细菌线虫丰度较高。秸秆与化肥配施处理下线虫群落结构指数和富集指数显著增加, 且各施肥处理下线虫功能足迹呈现明显差异。有机肥与化肥配施(尤其是秸秆 + 化肥)可提高土壤养分供应且有利于形成稳定健康的土壤生态系统, 助推区域农业的可持续发展。
胡惠玲, 姚致远, 高世斌, 朱波 (2022) 紫色土线虫对长期不同施肥措施的响应. 生物多样性, 30, 22189. DOI: 10.17520/biods.2022189.
Huiling Hu, Zhiyuan Yao, Shibin Gao, Bo Zhu (2022) Nematode response to long-term fertilization in purple soil. Biodiversity Science, 30, 22189. DOI: 10.17520/biods.2022189.
营养类群 Trophic group | 线虫类群 Nematode group | CK (%) | NPK (%) | BCNPK (%) | OMNPK (%) | RSDNPK (%) | c-p值 c-p value |
---|---|---|---|---|---|---|---|
食细菌线虫 Bacterivores (BA) | 丽突属 Acrobeles | 0.1 | 0.9 | 0.7 | 1.1 | 0.3 | 2 |
头叶科 Cephalobidae | 0.0 | 0.4 | 0.1 | 0.4 | 0.5 | 2 | |
头叶属 Cephalobus | 0.8 | 1.0 | 0.6 | 0.8 | 0.8 | 2 | |
板唇属 Chiloplacus | 44.9 | 45.6 | 41.3 | 41.1 | 25.2 | 2 | |
真头叶属 Eucephalobus | 0.1 | 0.2 | 0.6 | 0.2 | 0.1 | 2 | |
中杆属 Mesorhabditis | 1.8 | 0.3 | 3.9 | 0.6 | 4.0 | 1 | |
Oscheius | 1.8 | 7.2 | 1.7 | 11.5 | 10.5 | 1 | |
盆咽属 Panagrolaimus | 0.5 | 0.2 | 0.8 | 2.3 | 6.0 | 1 | |
食真菌线虫 Fungivores (FU) | 滑刃属 Aphelenchoides | 0.7 | 1.7 | 1.3 | 1.1 | 6.4 | 2 |
茎属 Ditylenchus | 1.0 | 3.8 | 5.8 | 0.7 | 0.5 | 2 | |
丝尾垫刃属 Filenchus | 1.0 | 1.3 | 0.8 | 2.0 | 3.6 | 2 | |
拟滑刃属 Paraphelenchus | 4.6 | 4.3 | 6.5 | 4.2 | 4.3 | 2 | |
植食线虫 Plant parasites (PP) | 矮化属 Tylenchorhynchus | 2.0 | 6.3 | 4.9 | 5.9 | 4.7 | 3 |
伊朗垫刃属 Irantylenchus | 0.2 | 0.2 | 0.1 | 0.4 | 0.8 | 2 | |
新平滑垫刃属 Neopsilenchus | 2.8 | 2.6 | 6.0 | 1.7 | 0.7 | 2 | |
短体属 Pratylenchus | 0.4 | 1.8 | 6.6 | 2.3 | 1.0 | 3 | |
根结属 Meloidogyne | 2.6 | 3.0 | 5.4 | 3.3 | 1.3 | 3 | |
杂食/捕食线虫 Omnivores/predators (OP) | 异色矛属 Achromadora | 1.5 | 1.0 | 2.4 | 1.2 | 0.5 | 3 |
大茅属 Enchodelus | 0.0 | 0.1 | 0.1 | 0.9 | 0.2 | 4 | |
挫齿属 Mylonchulus | 0.2 | 0.6 | 0.9 | 1.7 | 0.4 | 4 | |
丝尾属 Oxydirus | 19.1 | 0.3 | 0.6 | 2.4 | 0.7 | 5 | |
Pristionchus | 2.9 | 7.5 | 2.5 | 2.0 | 12.9 | 1 | |
小三孔属 Tripylina | 10.5 | 9.5 | 5.1 | 11.0 | 14.2 | 3 | |
三裂体属 Trischistoma | 0.5 | 0.5 | 1.2 | 0.9 | 0.4 | 3 |
表1 不同施肥处理下土壤线虫的相对丰度。CK: 不施肥对照; NPK: 单施化肥; BCNPK: 生物炭 + 化肥; OMNPK: 商品猪粪 + 化肥; RSDNPK: 秸秆 + 化肥。
Table 1 Relative abundance of soil nematodes under different fertilization treatments. CK, No fertilizer; NPK, Chemical fertilizer alone; BCNPK, Biochar + chemical fertilizer; OMNPK, Commercial pig manure + chemical fertilizer; RSDNPK, Straw + chemical fertilizer.
营养类群 Trophic group | 线虫类群 Nematode group | CK (%) | NPK (%) | BCNPK (%) | OMNPK (%) | RSDNPK (%) | c-p值 c-p value |
---|---|---|---|---|---|---|---|
食细菌线虫 Bacterivores (BA) | 丽突属 Acrobeles | 0.1 | 0.9 | 0.7 | 1.1 | 0.3 | 2 |
头叶科 Cephalobidae | 0.0 | 0.4 | 0.1 | 0.4 | 0.5 | 2 | |
头叶属 Cephalobus | 0.8 | 1.0 | 0.6 | 0.8 | 0.8 | 2 | |
板唇属 Chiloplacus | 44.9 | 45.6 | 41.3 | 41.1 | 25.2 | 2 | |
真头叶属 Eucephalobus | 0.1 | 0.2 | 0.6 | 0.2 | 0.1 | 2 | |
中杆属 Mesorhabditis | 1.8 | 0.3 | 3.9 | 0.6 | 4.0 | 1 | |
Oscheius | 1.8 | 7.2 | 1.7 | 11.5 | 10.5 | 1 | |
盆咽属 Panagrolaimus | 0.5 | 0.2 | 0.8 | 2.3 | 6.0 | 1 | |
食真菌线虫 Fungivores (FU) | 滑刃属 Aphelenchoides | 0.7 | 1.7 | 1.3 | 1.1 | 6.4 | 2 |
茎属 Ditylenchus | 1.0 | 3.8 | 5.8 | 0.7 | 0.5 | 2 | |
丝尾垫刃属 Filenchus | 1.0 | 1.3 | 0.8 | 2.0 | 3.6 | 2 | |
拟滑刃属 Paraphelenchus | 4.6 | 4.3 | 6.5 | 4.2 | 4.3 | 2 | |
植食线虫 Plant parasites (PP) | 矮化属 Tylenchorhynchus | 2.0 | 6.3 | 4.9 | 5.9 | 4.7 | 3 |
伊朗垫刃属 Irantylenchus | 0.2 | 0.2 | 0.1 | 0.4 | 0.8 | 2 | |
新平滑垫刃属 Neopsilenchus | 2.8 | 2.6 | 6.0 | 1.7 | 0.7 | 2 | |
短体属 Pratylenchus | 0.4 | 1.8 | 6.6 | 2.3 | 1.0 | 3 | |
根结属 Meloidogyne | 2.6 | 3.0 | 5.4 | 3.3 | 1.3 | 3 | |
杂食/捕食线虫 Omnivores/predators (OP) | 异色矛属 Achromadora | 1.5 | 1.0 | 2.4 | 1.2 | 0.5 | 3 |
大茅属 Enchodelus | 0.0 | 0.1 | 0.1 | 0.9 | 0.2 | 4 | |
挫齿属 Mylonchulus | 0.2 | 0.6 | 0.9 | 1.7 | 0.4 | 4 | |
丝尾属 Oxydirus | 19.1 | 0.3 | 0.6 | 2.4 | 0.7 | 5 | |
Pristionchus | 2.9 | 7.5 | 2.5 | 2.0 | 12.9 | 1 | |
小三孔属 Tripylina | 10.5 | 9.5 | 5.1 | 11.0 | 14.2 | 3 | |
三裂体属 Trischistoma | 0.5 | 0.5 | 1.2 | 0.9 | 0.4 | 3 |
图1 不同施肥处理下各团聚体内的土壤线虫多度(平均值 ± 标准误)。不同大写字母表示各施肥处理差异显著(P < 0.05)。BS: 原状土; LA: 大团聚体; SA: 小团聚体。CK、NPK、BCNPK、OMNPK、RSDNPK见表1。
Fig. 1 Abundance of soil nematodes within aggregates in different fertilization treatments (mean ± SE). Different capital letters represented significant differences in nematode abundance under different fertilization treatments (P < 0.05). BS, Bulk soil; LA, Large aggregate; SA, Small aggregate. CK, NPK, BCNPK, OMNPK, RSDNPK see Table 1.
图2 线虫群落结构的主坐标分析。椭圆为均值 ± 标准差的置信区间; Adonis R2为施肥处理对线虫群落结构差异的解释量。CK、NPK、BCNPK、OMNPK、RSDNPK见表1。
Fig. 2 Principal coordinate analysis of nematode community structure. Eclipses indicate the confidence interval of mean ± standard deviation; Adonis R2 indicates the variance can be explained by fertilization regimes. CK, NPK, BCNPK, OMNPK, RSDNPK see Table 1.
图3 不同施肥处理下各团聚体内的土壤线虫营养类群相对丰度。不同大写字母表示各施肥处理下的线虫营养类群相对丰度差异显著(P < 0.05); 不同小写字母代表原状土与不同粒径团聚体下的线虫营养类群相对丰度差异显著(P < 0.05)。BS: 原状土; LA: 大团聚体; SA: 小团聚体。CK、NPK、BCNPK、OMNPK、RSDNPK、PP、OP、FU、BA见表1。
Fig. 3 Relative abundance of soil nematode trophic groups within aggregates in different fertilization treatments. Different capital letters represent significant differences in relative abundance of nematode trophic groups under different fertilization treatments (P < 0.05). Different lowercase letters represent significant differences in relative abundance of nematode trophic groups within aggregates under different fertilization treatments (P < 0.05). BS, Bulk soil; LA, Large aggregate; SA, Small aggregate. CK, NPK, BCNPK, OMNPK, RSDNPK, PP, OP, FU, BA see Table 1.
图4 不同施肥处理下各团聚体内土壤线虫的Shannon- Wiener多样性指数(平均值 ± 标准误)。不同大写字母表示各施肥处理的线虫多样性指数差异显著(P < 0.05)。BS: 原状土; LA: 大团聚体; SA: 小团聚体。CK、NPK、BCNPK、OMNPK、RSDNPK见表1。
Fig. 4 Shannon-Wiener diversity index of soil nematode communities within aggregates in different fertilization treatments (mean ± SE). Different capital letters represent significant differences in Shannon-Wiener diversity index under different fertilization treatments (P < 0.05). BS, Bulk soil; LA, Large aggregate; SA, Small aggregate. CK, NPK, BCNPK, OMNPK, RSDNPK see Table 1.
处理 Fertilization treatment | 不同粒径团聚体 Aggregates class | 丰富度指数 Margalef index (SR) | 均匀度指数 Pielou index (J) | 优势度指数 Simpson index (λ) | 营养多样性 Trophic diversity (TD) |
---|---|---|---|---|---|
CK | BS | 2.67 ± 0.29Ca | 0.48 ± 0.06Ca | 0.17 ± 0.04Aa | 2.30 ± 0.23Aa |
LA | 2.56 ± 0.18Ca | 0.48 ± 0.04Ca | 0.12 ± 0.03Aa | 2.44 ± 0.11Aa | |
SA | 2.51 ± 0.19Ca | 0.46 ± 0.07Ca | 0.11 ± 0.02Aa | 2.29 ± 0.13Ab | |
NPK | BS | 3.14 ± 0.09Aa | 0.46 ± 0.06Ca | 0.18 ± 0.03Aa | 2.52 ± 0.12Aa |
LA | 3.22 ± 0.04Aa | 0.48 ± 0.03Ca | 0.09 ± 0.02Aa | 2.98 ± 0.18Aa | |
SA | 3.30 ± 0.17Aa | 0.45 ± 0.02Ca | 0.24 ± 0.02Aa | 1.79 ± 0.07Ab | |
BCNPK | BS | 3.08 ± 0.21Ba | 0.51 ± 0.03Ba | 0.09 ± 0.02Aa | 3.04 ± 0.09Aa |
LA | 2.92 ± 0.10Ba | 0.54 ± 0.01Ba | 0.09 ± 0.01Aa | 3.09 ± 0.17Aa | |
SA | 2.89 ± 0.03Ba | 0.49 ± 0.02Ba | 0.13 ± 0.03Aa | 2.45 ± 0.22Ab | |
OMNPK | BS | 3.02 ± 0.09Aa | 0.48 ± 0.02Ca | 0.11 ± 0.02Aa | 2.62 ± 0.01Aa |
LA | 3.20 ± 0.12Aa | 0.48 ± 0.03Ca | 0.09 ± 0.03Aa | 2.83 ± 0.27Aa | |
SA | 3.06 ± 0.04Aa | 0.49 ± 0.05Ca | 0.18 ± 0.03Aa | 1.87 ± 0.25Ab | |
RSDNPK | BS | 2.96 ± 0.07Aa | 0.60 ± 0.01Aa | 0.10 ± 0.02Aa | 2.56 ± 0.29Aa |
LA | 3.07 ± 0.11Aa | 0.55 ± 0.03Aa | 0.12 ± 0.05Aa | 2.90 ± 0.28Aa | |
SA | 3.02 ± 0.11Aa | 0.62 ± 0.01Aa | 0.10 ± 0.01Aa | 2.62 ± 0.08Ab |
表2 不同施肥处理下各团聚体内的土壤线虫群落多样性(平均值 ± 标准误)。不同大写字母表示各施肥处理的线虫群落多样性差异显著(P < 0.05), 不同小写字母表示各施肥处理间各团聚体的线虫群落多样性差异显著(P < 0.05)。BS: 原状土; LA: 大团聚体; SA: 小团聚体。CK、NPK、BCNPK、OMNPK、RSDNPK见表1。
Table 2 Diversity indices of soil nematode communities within aggregates in different fertilization treatments (mean ± SE). Different capital letters indicate that there are significant differences in nematode community diversity indices under different fertilization treatments (P < 0.05), and different lowercase letters indicate that there are significant differences in nematode community diversity indices within aggregates under different fertilization treatments (P < 0.05). BS, Bulk soil; LA, Large aggregate; SA, Small aggregate. CK, NPK, BCNPK, OMNPK, RSDNPK see Table 1.
处理 Fertilization treatment | 不同粒径团聚体 Aggregates class | 丰富度指数 Margalef index (SR) | 均匀度指数 Pielou index (J) | 优势度指数 Simpson index (λ) | 营养多样性 Trophic diversity (TD) |
---|---|---|---|---|---|
CK | BS | 2.67 ± 0.29Ca | 0.48 ± 0.06Ca | 0.17 ± 0.04Aa | 2.30 ± 0.23Aa |
LA | 2.56 ± 0.18Ca | 0.48 ± 0.04Ca | 0.12 ± 0.03Aa | 2.44 ± 0.11Aa | |
SA | 2.51 ± 0.19Ca | 0.46 ± 0.07Ca | 0.11 ± 0.02Aa | 2.29 ± 0.13Ab | |
NPK | BS | 3.14 ± 0.09Aa | 0.46 ± 0.06Ca | 0.18 ± 0.03Aa | 2.52 ± 0.12Aa |
LA | 3.22 ± 0.04Aa | 0.48 ± 0.03Ca | 0.09 ± 0.02Aa | 2.98 ± 0.18Aa | |
SA | 3.30 ± 0.17Aa | 0.45 ± 0.02Ca | 0.24 ± 0.02Aa | 1.79 ± 0.07Ab | |
BCNPK | BS | 3.08 ± 0.21Ba | 0.51 ± 0.03Ba | 0.09 ± 0.02Aa | 3.04 ± 0.09Aa |
LA | 2.92 ± 0.10Ba | 0.54 ± 0.01Ba | 0.09 ± 0.01Aa | 3.09 ± 0.17Aa | |
SA | 2.89 ± 0.03Ba | 0.49 ± 0.02Ba | 0.13 ± 0.03Aa | 2.45 ± 0.22Ab | |
OMNPK | BS | 3.02 ± 0.09Aa | 0.48 ± 0.02Ca | 0.11 ± 0.02Aa | 2.62 ± 0.01Aa |
LA | 3.20 ± 0.12Aa | 0.48 ± 0.03Ca | 0.09 ± 0.03Aa | 2.83 ± 0.27Aa | |
SA | 3.06 ± 0.04Aa | 0.49 ± 0.05Ca | 0.18 ± 0.03Aa | 1.87 ± 0.25Ab | |
RSDNPK | BS | 2.96 ± 0.07Aa | 0.60 ± 0.01Aa | 0.10 ± 0.02Aa | 2.56 ± 0.29Aa |
LA | 3.07 ± 0.11Aa | 0.55 ± 0.03Aa | 0.12 ± 0.05Aa | 2.90 ± 0.28Aa | |
SA | 3.02 ± 0.11Aa | 0.62 ± 0.01Aa | 0.10 ± 0.01Aa | 2.62 ± 0.08Ab |
图5 不同施肥处理各团聚体内土壤线虫区系分析(平均值 ± 标准误)。不同大写字母代表各施肥处理间线虫功能团指数差异显著(P < 0.05)。BS: 原状土; LA: 大团聚体; SA: 小团聚体。CK、NPK、BCNPK、OMNPK、RSDNPK见表1。
Fig. 5 Nematode faunal analysis of within aggregates in different fertilization treatments (mean ± SE). Different capital letters indicate that there are significant differences in nematode functional guild indices under different fertilization treatments (P < 0.05). BS, Bulk soil; LA, Large aggregate; SA, Small aggregate. CK, NPK, BCNPK, OMNPK, RSDNPK see Table 1.
图6 不同施肥处理各团聚体内土壤线虫复合足迹(平均值 ± 标准误)。在各施肥处理间及各团聚体中的线虫复合足迹均没有显著差异。BS: 原状土; LA: 大团聚体; SA: 小团聚体。CK、NPK、BCNPK、OMNPK、RSDNPK见表1。
Fig. 6 Total soil nematode metabolic footprint within aggregates in different fertilization treatments. There are no significant differences in total nematode metabolic footprint between fertilization treatments and within aggregates. BS, Bulk soil; LA, Large aggregate; SA, Small aggregate. CK, NPK, BCNPK, OMNPK, RSDNPK see Table 1.
图7 不同施肥处理下各团聚体内土壤线虫的区系分析(基于线虫代谢足迹)。BS: 原状土; LA: 大团聚体; SA: 小团聚体。CK、NPK、BCNPK、OMNPK、RSDNPK见表1。图中实线表示均值, 虚线表示标准差。A: A象限; B: B象限; C: C象限; D: D象限。
Fig. 7 The faunal analysis of soil nematodes within aggregates in different fertilization treatments (Based on nematode metabolic footprint). BS, Bulk soil; LA, Large aggregate; SA, Small aggregate. CK, NPK, BCNPK, OMNPK, RSDNPK see Table 1. The solid line represents the mean and the dotted line represents the standard deviation. A, Quadrant A; B, Quadrant B; C, Quadrant C; D, Quadrant D.
图8 不同施肥处理下小麦产量(平均值 ± 标准误)。不同小写字母代表各施肥处理间差异显著(P < 0.05)。CK、NPK、BCNPK、OMNPK、RSDNPK见表1。
Fig. 8 Wheat yield in different fertilization treatments (mean ± SE). Different lowercase letters represent significant difference under different fertilization treatments (P < 0.05). CK, NPK, BCNPK, OMNPK, RSDNPK see Table 1.
[1] |
Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP (2016) DADA2: High-resolution sample inference from Illumina amplicon data. Nature Methods, 13, 581-583.
DOI PMID |
[2] | Chen YF, Han XM, Li YF, Hu C (2014) Approach of nematode fauna analysis indicate the structure and function of soil food web. Acta Ecologica Sinica, 34, 1072-1084. (in Chinese with English abstract) |
[ 陈云峰, 韩雪梅, 李钰飞, 胡诚 (2014) 线虫区系分析指示土壤食物网结构和功能研究进展. 生态学报, 34, 1072-1084.] | |
[3] |
Ferris H (2010) Form and function: Metabolic footprints of nematodes in the soil food web. European Journal of Soil Biology, 46, 97-104.
DOI URL |
[4] |
Ferris H, Bongers T, de Goede RGM(2001) A framework for soil food web diagnostics: Extension of the nematode faunal analysis concept. Applied Soil Ecology, 18, 13-29.
DOI URL |
[5] | Ferris H, Sánchez-Moreno S, Brennan EB (2012) Structure, functions and interguild relationships of the soil nematode assemblage in organic vegetable production. Applied Soil Ecology, 61, 16-25. |
[6] |
Forge TA, Bittman S, Kowalenko CG (2005) Responses of grassland soil nematodes and protozoa to multi-year and single-year applications of dairy manure slurry and fertilizer. Soil Biology and Biochemistry, 37, 1751-1762.
DOI URL |
[7] |
Gagic V, Kleijn D, Báldi A, Boros G, Jørgensen HB, Elek Z, Garratt MPD, de Groot GA, Hedlund K, Kovács-Hostyánszki A, Marini L, Martin E, Pevere I, Potts SG, Redlich S, Senapathi D, Steffan-Dewenter I, Świtek S, Smith HG, Takács V, Tryjanowski P, van der Putten WH, van Gils S, Bommarco R (2017) Combined effects of agrochemicals and ecosystem services on crop yield across Europe. Ecology Letters, 20, 1427-1436.
DOI PMID |
[8] |
Garcı́a-Álvarez A, Arias M, Dı́ez-Rojo MA, Bello A (2004) Effect of agricultural management on soil nematode trophic structure in a Mediterranean cereal system. Applied Soil Ecology, 27, 197-210.
DOI URL |
[9] |
Gryndler M, Larsen J, Hršelová H, Řezáčová V, Gryndlerová H, Kubát J (2006) Organic and mineral fertilization, respectively, increase and decrease the development of external mycelium of arbuscular mycorrhizal fungi in a long-term field experiment. Mycorrhiza, 16, 159-166.
DOI PMID |
[10] |
Herrera CM (1976) A trophic diversity index for presence-absence food data. Oecologia, 25, 187-191.
DOI PMID |
[11] |
Jiang YJ, Zhou H, Chen LJ, Yuan Y, Fang H, Luan L, Chen Y, Wang XY, Liu MQ, Li HX, Peng XH, Sun B (2018) Nematodes and microorganisms interactively stimulate soil organic carbon turnover in the macroaggregates. Frontiers in Microbiology, 9, 2803.
DOI PMID |
[12] | Li Q, Jiang Y, Liang WJ, Lou YL, Zhang EP, Liang CH (2010) Long-term effect of fertility management on the soil nematode community in vegetable production under greenhouse conditions. Applied Soil Ecology, 46, 111-118. |
[13] |
Li Q, Liang WJ, Jiang Y (2007) Present situation and prospect of soil nematode diversity in farmland ecosystems, Biodiversity Science, 15, 134-141. (in Chinese with English abstract)
DOI |
[ 李琪, 梁文举, 姜勇 (2007) 农田土壤线虫多样性研究现状及展望. 生物多样性, 15, 134-141.]
DOI |
|
[14] |
Li JM, Wang DC, Fan W, He RC, Yao YY, Sun L, Zhao XY, Wu JG (2018) Comparative effects of different organic materials on nematode community in continuous soybean monoculture soil. Applied Soil Ecology, 125, 12-17.
DOI URL |
[15] | Liang SW, Kou XC, Li YB, Lü XT, Wang JK, Li Q (2020) Soil nematode community composition and stability under different nitrogen additions in a semiarid grassland. Global Ecology and Conservation, 22, e00965.. |
[16] |
Liang WJ, Lou YL, Li Q, Zhong S, Zhang XK, Wang JK (2009) Nematode faunal response to long-term application of nitrogen fertilizer and organic manure in Northeast China. Soil Biology and Biochemistry, 41, 883-890.
DOI URL |
[17] |
Liu T, Chen XY, Hu F, Ran W, Shen QR, Li HX, Whalen JK (2016) Carbon-rich organic fertilizers to increase soil biodiversity: Evidence from a meta-analysis of nematode communities. Agriculture, Ecosystems & Environment, 232, 199-207.
DOI URL |
[18] |
Liu T, Hu F, Li HX (2019) Spatial ecology of soil nematodes: Perspectives from global to micro scales. Soil Biology and Biochemistry, 137, 107565.
DOI URL |
[19] |
Luan L, Jiang YJ, Cheng MH, Dini-Andreote F, Sui YY, Xu QS, Geisen S, Sun B (2020) Organism body size structures the soil microbial and nematode community assembly at a continental and global scale. Nature Communications, 11, 6406.
DOI PMID |
[20] |
Nahar MS, Grewal PS, Miller SA, Stinner D, Stinner BR, Kleinhenz MD, Wszelaki A, Doohan D (2006) Differential effects of raw and composted manure on nematode community, and its indicative value for soil microbial, physical and chemical properties. Applied Soil Ecology, 34, 140-151.
DOI URL |
[21] | Oksanen Jari, Guillaume BF, Friendly M, Kindt R, Legendre P, DanMcGlinn, Minchin RB, O’Hara, Simpson GL, Solymos P, Stevens MH, Szoecs E, Wagner H (2020) vegan: Community Ecology Package. R version 2.5-7. |
[22] |
Pan F, McLaughlin NB, Yu Q, Xue AG, Xu Y, Han X, Li C, Zhao D (2010) Responses of soil nematode community structure to different long-term fertilizer strategies in the soybean phase of a soybean-wheat-corn rotation. European Journal of Soil Biology, 46, 105-111.
DOI URL |
[23] |
Porazinska DL, Giblin-Davis RM, Faller L, Farmerie W, Thomas WK (2009) Evaluating high-throughput sequencing as a method for metagenomic analysis of nematode diversity. Molecular Ecology Resources, 9, 1439-1450.
DOI PMID |
[24] | R Core Team (2021) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. |
[25] |
Sieriebriennikov B, Ferris H,de Goede RGM (2014) NINJA: An automated calculation system for nematode-based biological monitoring. European Journal of Soil Biology, 61, 90-93.
DOI URL |
[26] |
Six J, Conant RT, Paul EA, Paustian K (2002) Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils. Plant and Soil, 241, 155-176.
DOI URL |
[27] | Sánchez-Moreno S (2018) Biodiversity and soil health: The role of the soil food web in soil fertility and suppressiveness to soil-borne diseases. Acta Horticulturae, 1196, 95-104. |
[28] |
Sun CX, Chen X, Cao MM, Li MQ, Zhang YL (2017) Growth and metabolic responses of maize roots to straw biochar application at different rates. Plant and Soil, 416, 487-502.
DOI URL |
[29] |
Viglierchio DR, Schmitt RV (1983) On the methodology of nematode extraction from field samples: Density flotation techniques. Journal of Nematology, 15, 438-444.
PMID |
[30] | Wang XL, Ma K, Fu YZ, Wang ZQ, An YY (2020) Effects of no-tillage, mulching, and organic fertilization on soil fungal community composition and diversity. Chinese Journal of Applied Ecology, 31, 890-898. (in Chinese with English abstract) |
[ 王小玲, 马琨, 伏云珍, 汪志琴, 安嫄嫄 (2020) 免耕覆盖及有机肥施用对土壤真菌群落组成及多样性的影响. 应用生态学报, 31, 890-898.]
DOI |
|
[31] |
Wickham H, Averick M, Bryan J, Chang W, McGowan L, François R, Grolemund G, Hayes A, Henry L, Hester J, Kuhn M, Pedersen T, Miller E, Bache S, Müller K, Ooms J, Robinson D, Seidel D, Spinu V, Takahashi K, Vaughan D, Wilke C, Woo K, Yutani H (2019) Welcome to the tidyverse. Journal of Open Source Software, 4, 1686.
DOI URL |
[32] |
Wu JH, Song CY, Chen JK (2007) Effect of microbivorous nematodes on plant growth and soil nutrient cycling: A review. Biodiversity Science, 15, 124-133. (in Chinese with English abstract)
DOI URL |
[ 吴纪华, 宋慈玉, 陈家宽 (2007) 食微线虫对植物生长及土壤养分循环的影响. 生物多样性, 15, 124-133.]
DOI |
|
[33] |
Zhang SX, Li Q, Lü Y, Zhang XP, Liang WJ (2013) Contributions of soil biota to C sequestration varied with aggregate fractions under different tillage systems. Soil Biology and Biochemistry, 62, 147-156.
DOI URL |
[34] |
Zhang XK, Ferris H, Mitchell J, Liang WJ (2017) Ecosystem services of the soil food web after long-term application of agricultural management practices. Soil Biology and Biochemistry, 111, 36-43.
DOI URL |
[35] |
Zhang XK, Liang WJ, Li Q (2018) Recent progress and future directions of soil nematode ecology in China. Biodiversity Science, 26, 1060-1073. (in Chinese with English abstract)
DOI |
[ 张晓珂, 梁文举, 李琪 (2018) 我国土壤线虫生态学研究进展和展望. 生物多样性, 26, 1060-1073.]
DOI |
|
[36] |
Zhang ZY, Zhang XK, Mahamood M, Zhang SQ, Huang SM, Liang WJ (2016a) Effect of long-term combined application of organic and inorganic fertilizers on soil nematode communities within aggregates. Scientific Reports, 6, 31118.
DOI URL |
[37] |
Zhang ZY, Zhang XK, Xu MG, Zhang SQ, Huang SM, Liang WJ (2016b) Responses of soil micro-food web to long-term fertilization in a wheat-maize rotation system. Applied Soil Ecology, 98, 56-64.
DOI URL |
[38] | Zhu B, Chen S, You X, Peng K, Zhang XW (2002) Soil fertility restoration on degraded upland of purple soil. Acta Pedologica Sinica, 39, 743-749. (in Chinese with English abstract) |
[ 朱波, 陈实, 游祥, 彭奎, 张先婉 (2002) 紫色土退化旱地的肥力恢复与重建. 土壤学报, 39, 743-749.] |
[1] | 姜熠辉, 刘岳, 曾旭, 林喆滢, 王楠, 彭吉豪, 曹玲, 曾聪. 东海六个国家级海洋保护区鱼类多样性和连通性[J]. 生物多样性, 2024, 32(6): 24128-. |
[2] | 田瑜, 李俊生. 《昆明-蒙特利尔全球生物多样性框架》“3030”目标的内涵及实现路径分析[J]. 生物多样性, 2024, 32(6): 24086-. |
[3] | 连佳丽, 陈婧, 杨雪琴, 赵莹, 罗叙, 韩翠, 赵雅欣, 李建平. 荒漠草原植物多样性和微生物多样性对降水变化的响应[J]. 生物多样性, 2024, 32(6): 24044-. |
[4] | 王腾, 李纯厚, 王广华, 赵金发, 石娟, 谢宏宇, 刘永, 刘玉. 西沙群岛七连屿珊瑚礁鱼类的物种组成与演替[J]. 生物多样性, 2024, 32(6): 23481-. |
[5] | 宋芬, 周芸芸, 黄太福, 杨存存, 于桂清, 田书荣, 向左甫. 基于红外相机技术的林麝行为PAE编码与多样性[J]. 生物多样性, 2024, 32(6): 24042-. |
[6] | 马碧玉. 印度《生物多样性法》修订述要及对我国完善生物多样性保护法制的启示[J]. 生物多样性, 2024, 32(5): 23412-. |
[7] | 蔡颖莉, 朱洪革, 李家欣. 中国生物多样性保护政策演进、主要措施与发展趋势[J]. 生物多样性, 2024, 32(5): 23386-. |
[8] | 邝起宇, 胡亮. 广东东海岛与硇洲岛海域底栖贝类物种多样性及其地理分布[J]. 生物多样性, 2024, 32(5): 24065-. |
[9] | 艾妍雨, 胡海霞, 沈婷, 莫雨轩, 杞金华, 宋亮. 附生维管植物多样性及其与宿主特征的相关性: 以哀牢山中山湿性常绿阔叶林为例[J]. 生物多样性, 2024, 32(5): 24072-. |
[10] | 姚祝, 魏雪, 马金豪, 任晓, 王玉英, 胡雷, 吴鹏飞. 气候暖湿化对高寒草甸土壤线虫群落的短期影响[J]. 生物多样性, 2024, 32(5): 23483-. |
[11] | 赵勇强, 阎玺羽, 谢加琪, 侯梦婷, 陈丹梅, 臧丽鹏, 刘庆福, 隋明浈, 张广奇. 退化喀斯特森林自然恢复中不同生活史阶段木本植物物种多样性与群落构建[J]. 生物多样性, 2024, 32(5): 23462-. |
[12] | 鄢德奎. 中国生物多样性保护政策的共同要素、不足和优化建议[J]. 生物多样性, 2024, 32(5): 23293-. |
[13] | 赵富伟, 李颖硕, 陈慧. 新时期我国生物多样性法制建设思考[J]. 生物多样性, 2024, 32(5): 24027-. |
[14] | 徐伟强, 苏强. 分形模型与一般性物种多度分布关系的检验解析:以贝类和昆虫群落为例[J]. 生物多样性, 2024, 32(4): 23410-. |
[15] | 郑梦瑶, 李媛, 王雪蓉, 张越, 贾彤. 芦芽山不同植被类型土壤原生动物群落构建机制[J]. 生物多样性, 2024, 32(4): 23419-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn