Biodiversity Science ›› 2020, Vol. 28 ›› Issue (4): 504-514.doi: 10.17520/biods.2019359

• Original Papers: Animal Diversity • Previous Article     Next Article

The spatial scale dependency of elevational patterns of taxonomic and functional diversity in aquatic insects in the Lancang River, Yunnan, China

Huiyu Wei, Kai Chen(), Beixin Wang   

  1. Laboratory of Insect Taxonomy & Aquatic Insects, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095
  • Received:2019-11-08 Accepted:2020-02-10 Online:2020-06-15
  • Kai Chen E-mail:kai.chen@njau.edu.cn

Elevational patterns of taxonomic and functional diversity are important aspects of biodiversity maintenance and changes. However, the spatial scale dependency of elevational patterns on taxonomic and functional diversity of aquatic insect assemblages remains unclear. Using data collected from 149 stream sites along elevational gradients ranging between 500-3,900 m during 2013-2018 in the upper basin of Lancang River in Yunnan Province, China, we examined how elevational patterns of taxonomic and functional diversity of aquatic insect assemblages differed across local and regional scales among multiple elevational bands (i.e., 100, 150, 200, and 250 m). We used linear or quadratic regression models to explore the elevational patterns of taxonomic richness index, Simpson diversity index, evenness index, dendrogram- based functional diversity index (dbFD), Rao’s Quadratic index (RaoQ), and functional evenness index (FEve). At the local scale, taxonomic richness index and dbFD index show no significant elevational patterns; while Simpson diversity index, RaoQ index, evenness index, and FEve index show either U-shaped or monotonically decreasing trends along elevation gradients. At the regional scale with increasing elevation, taxonomic richness index decreases (NS) while dbFD index changes from U-shaped to a monotonically decreasing trend along the elevational gradient. Both Simpson diversity index and RaoQ index change from a significant U-shaped to no significant regional elevational patterns. Taxonomic evenness index and FEve index have no significant relationship with and significantly increased with regional elevations, respectively. Our results show that aquatic insect taxonomic and functional diversity are scale dependent across elevations. However, we observed a degree of consistency in elevational patterns for each taxonomic and functional diversity index across elevational bands at regional scales.

Key words: biodiversity, functional traits, elevation gradients, local scale, regional scale, stream, biogeography

Fig. 1

Locations of sampling sites in the Lancang River in Yunnan Province, China"

Table 1

Summary of environmental variables across sampling sites collected from second-, third-, and fourth-order streams"

环境变量
Environmental variables
2级 Second order 3级 Third order 4级 Fourth order
平均值 ± 标准差
Mean ± SD
范围
Range
平均值 ± 标准差
Mean ± SD
范围
Range
平均值 ± 标准差
Mean ± SD
范围
Range
海拔 Elevation (m) 1,392 ± 719 528-3,146 1,451 ± 721 502-3,935 1,311 ± 569 595-2,899
水温 Water temperature (℃)* 15.46 ± 4.69 1.10-26.10 16.63 ± 5.05 6.80-28.00 19.33 ± 4.30 10.30-26.00
泥沙含量百分比
Percent of sand (%)
8.61 ± 16.20 0.00-100.00 7.62 ± 10.79 0.00-60.00 14.09 ± 16.69 0.00-70.00
碎石含量百分比
Percent of gravel (%)
32.49 ± 24.41 0.00-100.00 30.15 ± 20.38 5.08-87.93 36.71 ± 18.25 2.78-85.00
鹅卵石含量百分比
Percent of cobbles (%)
42.82 ± 21.40 0.00-81.82 45.52 ± 17.98 0.00-72.37 39.10 ± 19.30 0.00-68.06
大石块含量百分比
Percent of boulders (%)
16.08 ± 14.53 0.00-55.00 16.71 ± 14.25 0.00-60.00 10.10 ± 11.17 0.00-45.71
农业用地占比
Percent of agricultural land (%)
1.61 ± 4.73 0.00-32.01 0.91 ± 1.51 0.00-8.44 3.11 ± 3.49 0.02-15.90
森林用地占比
Percent of forest land (%)
82.32 ± 17.73 21.58-100.00 85.89 ± 12.33 41.38-100.00 83.77 ± 11.27 54.20-96.86

Table 2

Functional trait states and scores of aquatic insects"

性状类别 Trait state 赋值 Score
外骨骼保护状况 Exoskeleton or external protection
虫体柔软 Soft-bodied forms 1
轻微骨化 Lightly sclerotized 2
骨化良好 Heavily sclerotized 3
体型 Body shape
流线型 Streamlined 1
非流线型 Not streamlined 2
呼吸方式 Respiration
体壁呼吸 Tegument 1
鳃呼吸 Gills 2
气氧呼吸(呼吸管、气泡、气盾)
Air (spiracles, tracheae, plastrons)
3
营养习性 Trophic habit
集食者 Collector-gatherer 1
滤食者 Collector-filterer 2
刮食者 Scraper 3
捕食者 Predator 4
撕食者 Shredder 5
亲流性 Rheophily
沉积型 Only depositional 1
沉积型和冲刷型 Depositional and erosional 2
冲刷型 Erosional 3
生活习性 Habit
掘穴者 Burrowers 1
攀爬者 Climbers 2
匍匐者 Sprawlers 3
附着者 Clingers 4
游泳者 Swimmers 5
滑行者 Skaters 6
个体大小 Body size
小 Small (< 9 mm) 1
中等 Medium (9-16 mm) 2
大 Large (> 16 mm) 3

Table 3

Linear and quadratic model fitting relationships of diversity indices and elevation at different spatial scales"

空间尺度
Spatial scale
多样性指数
Diversity index
线性模型 Linear model (L) 二次回归模型 Quadratic model (Q) 选择模型
Model
selection
解释量
Adjusted R2
P 赤池系数
AICc
解释量
Adjusted R2
P 赤池系数
AICc
局部尺度 Local scale
物种丰富度指数 Species richness index <0.001 0.418 1,218.2 0.01 0.166 1,217.2 NS
Simpson多样性指数 Simpson diversity index 0.04 0.010 -136.6 0.05 0.001 -137.4 Q
物种均匀度指数 Species evenness index 0.06 0.001 -152.6 0.07 0.002 -152.0 L
树状图功能多样性指数
Dendrogram-based functional diversity index (dbFD)
<0.001 0.633 364.0 <0.001 0.477 364.7 NS
Rao二次熵指数 Rao’s Quadratic index (RaoQ) 0.02 0.057 -516.4 0.02 0.074 -516.0 L
功能均匀度指数 Functional evenness index (FEve) 0.01 0.079 -284.8 0.01 0.136 -283.7 L
区域尺度 Regional scale
100 m 物种丰富度指数 Species richness index <0.001 0.68 218.7 <0.001 0.50 219.3 NS
Simpson多样性指数 Simpson diversity index 0.20 0.015 -56.6 0.28 0.011 -58.3 Q
物种均匀度指数 Species evenness index <0.001 0.450 -53.2 0.01 0.355 -52.9 NS
树状图功能多样性指数
Dendrogram-based functional diversity index (dbFD)
0.52 <0.001 70.6 0.57 <0.001 68.7 Q
Rao二次熵指数 Rao’s Quadratic index (RaoQ) 0.10 0.064 -120.5 0.24 0.020 -123.6 Q
功能均匀度指数 Functional evenness index (FEve) 0.19 0.017 -73.6 0.17 0.048 -72.2 L
150 m 物种丰富度指数 Species richness index <0.001 0.33 143.4 <0.001 0.53 145.0 NS
Simpson多样性指数 Simpson diversity index 0.10 0.116 -35.9 0.29 0.035 -39.1 Q
物种均匀度指数 Species evenness index <0.001 0.512 -40.0 0.16 0.112 -42.8 NS
树状图功能多样性指数
Dendrogram-based functional diversity index (dbFD)
0.76 <0.001 27.9 0.82 <0.001 23.8 Q
Rao二次熵指数 Rao’s Quadratic index (RaoQ) <0.001 0.351 -82.0 0.20 0.081 -85.1 Q
功能均匀度指数 Functional evenness index (FEve) 0.18 0.052 -55.2 0.12 0.153 -53.2 L
200 m 物种丰富度指数 Species richness index <0.001 0.77 116.1 <0.001 0.92 118.0 NS
Simpson多样性指数 Simpson diversity index 0.22 0.059 -27.8 0.34 0.051 -29.1 Q
物种均匀度指数 Species evenness index 0.02 0.285 -30.2 0.14 0.191 -31.1 NS
树状图功能多样性指数
Dendrogram-based functional diversity index (dbFD)
0.75 <0.001 26.4 0.80 <0.001 24.2 Q
Rao二次熵指数 Rao’s Quadratic index (RaoQ) 0.06 0.208 -62.9 0.22 0.114 -64.5 NS
功能均匀度指数 Functional evenness index (FEve) 0.31 0.027 -42.4 0.25 0.099 -40.4 L
250 m 物种丰富度指数 Species richness index <0.001 0.66 86.4 <0.001 0.91 88.4 NS
Simpson多样性指数 Simpson diversity index <0.001 0.455 -18.0 0.07 0.311 -18.5 NS
物种均匀度指数 Species evenness index <0.001 0.964 -21.1 0.02 0.381 -21.7 NS
树状图功能多样性指数
Dendrogram-based functional diversity index (dbFD)
0.82 <0.001 20.1 0.82 <0.001 20.6 L
Rao二次熵指数 Rao’s Quadratic index (RaoQ) <0.001 0.773 -49.9 0.04 0.351 -50.7 NS
功能均匀度指数 Functional evenness index (FEve) 0.26 0.062 -35.8 0.19 0.181 -33.9 L

Fig. 2

The relationship between taxonomic and functional diversity indices and elevation at local and regional (elevational band across 100 m, 150 m, 200 m, and 250 m) scales. Black solid line indicates highly significant (P < 0.01) and significant (P < 0.05) linear or quadratic relationships, grey solid line indicates marginally significant (P < 0.1) linear or quadratic relationships, and black dotted line indicates non-significant (P > 0.1) linear or quadratic relationships."

[1] Cárcamo JR, Contador T, Gañán M, Troncoso CP, Márquez AM, Convey P, Kennedy J, Rozzi R (2019) Altitudinal gradients in Magellanic sub-Antarctic lagoons: The effect of elevation on freshwater macroinvertebrate diversity and distribution. PeerJ, 7, e7128.
[2] Carvajal-Quintero JD, Escobar F, Alvarado F, Villa-Navarro FA, Jaramillo-Villa Ú, Maldonado-Ocampo JA (2015) Variation in freshwater fish assemblages along a regional elevation gradient in the northern Andes, Colombia. Ecology and Evolution, 5, 2608-2620.
doi: 10.1002/ece3.2015.5.issue-13
[3] Castro DMP, Callisto M, Solar RRC, Macedo DR, Fernandes GW (2019) Beta diversity of aquatic invertebrates increases along an altitudinal gradient in a Neotropical mountain. Biotropica, 51, 399-411.
doi: 10.1111/btp.2019.51.issue-3
[4] Cheng B, Wang X, Xu YQ, Yang ZJ, Liu DF, Ma J (2018) Bacterioplankton community structure in the Lancang River Basin and analysis of driving environmental factors. Environmental Science, 39, 186-196. (in Chinese with English abstract)
[ 程豹, 望雪, 徐雅倩, 杨正健, 刘德富, 马骏 (2018) 澜沧江流域浮游细菌群落结构特征及驱动因子分析. 环境科学, 39, 186-196.]
[5] Chen J, Jiang WX, He SS, Wang HK, Zhuo LL, Chen Q (2018) Study of macroinvertebrate species and functional diversity in the New Xue River, Shandong Province, China. Acta Ecologica Sinica, 38, 340-348. (in Chinese with English abstract)
[ 陈静, 蒋万祥, 贺诗水, 王洪凯, 卓丽玲, 陈青 (2018) 新薛河底栖动物物种多样性与功能多样性研究. 生态学报, 38, 340-348.]
[6] Colzani E, Siqueira T, Suriano MT, Roque FO (2013) Responses of aquatic insect functional diversity to landscape changes in Atlantic Forest. Biotropica, 45, 343-350.
[7] Covich AP, Palmer MA, Crowl TA (1999) The role of benthic invertebrate species in freshwater ecosystems: Zoobenthic species influence energy flows and nutrient cycling. BioScience, 49, 119-127.
[8] Cressa C, Maldonado V, Segnini S, Chacon MM (2008) Size variation with elevation in adults and larvae of some Venezuelan stoneflies (Insecta: Plecoptera: Perlidae). Aquatic Insects, 30, 127-134.
[9] de Bello F, Lepš J, Sebastià MT (2006) Variations in species and functional plant diversity along climatic and grazing gradients. Ecography, 29, 801-810.
doi: 10.1111/eco.2006.29.issue-6
[10] de Mendoza G, Traunspurger W, Palomo A, Catalan J (2017) Nematode distributions as spatial null models for macroinvertebrate species richness across environmental gradients: A case from mountain lakes. Ecology and Evolution, 7, 3016-3028.
[11] Ding N, Yang WF, Zhou YL, González-Bergonzoni I, Zhang J, Chen K, Vidal N, Jeppesen E, Liu ZW, Wang BX (2017) Different responses of functional traits and diversity of stream macroinvertebrates to environmental and spatial factors in the Xishuangbanna watershed of the upper Mekong River Basin, China. Science of the Total Environment, 574, 288-299.
[12] Dohet A, Hlúbiková D, Wetzel CE, L’Hoste L, Iffly JF, Hoffmann L, Ector L (2015) Influence of thermal regime and land use on benthic invertebrate communities inhabiting headwater streams exposed to contrasted shading. Science of the Total Environment, 505, 1112-1126.
doi: 10.1016/j.scitotenv.2014.10.077
[13] Edie SM, Jablonski D, Valentine JW (2018) Contrasting responses of functional diversity to major losses in taxonomic diversity. Proceedings of the National Academy of Sciences, USA, 115, 732-737.
[14] Feng JM, Mao GQ, Li ZG (2012) Latitudinal patterns of floristic elements of seed plants in Lancang River in Yunnan, Southwest China. Ecology and Environmental Sciences, 21, 1928-1934. (in Chinese with English abstract)
[ 冯建孟, 毛光权, 李珍贵 (2012) 澜沧江流域(云南段)种子植物区系成分的纬度分布格局. 生态环境学报, 21, 1928-1934.]
[15] Flowers RW (1991) Diversity of stream-living insects in northwestern Panamá. Journal of the North American Benthological Society, 10, 322-334.
[16] Füreder L, Ettinger R, Boggero A, Thaler B, Thies H (2006) Macroinvertebrate diversity in Alpine lakes: Effects of altitude and catchment properties. Hydrobiologia, 562, 123-144.
doi: 10.1007/s10750-005-1808-7
[17] Gaston KJ (2000) Global patterns in biodiversity. Nature, 405, 220-227.
doi: 10.1038/35012228
[18] Gill BA, Harrington RA, Kondratieff BC, Zamudio KR, LeRoy PN, Chris FW (2014) Morphological taxonomy, DNA barcoding, and species diversity in southern Rocky Mountain headwater streams. Freshwater Science, 33, 288-301.
[19] González-Maya JF, Víquez-R LR, Arias-Alzate A, Belant JL, Ceballos G (2016) Spatial patterns of species richness and functional diversity in Costa Rican terrestrial mammals: Implications for conservation. Diversity and Distributions, 22, 43-56.
[20] He YL, Zhang YP (2004) The climate characteristics and change trends on basins of Lancangjiang valley in Yunnan Province. Journal of Mountain Science, 22, 539-548. (in Chinese with English abstract)
[ 何云玲, 张一平 (2004) 澜沧江干流河谷盆地气候特征及变化趋势. 山地学报, 22, 539-548.]
[21] Hu B, Cui BS, Yang ZF, Wang J, Zhai HJ, Yao M (2006) Calculation of ecological water requirements for in-stream in the Lancang River, Yunnan Province, China. Acta Ecologica Sinica, 26, 163-173. (in Chinese with English abstract)
[ 胡波, 崔保山, 杨志峰, 王娟, 翟红娟, 姚敏 (2006) 澜沧江(云南段)河道生态需水量计算. 生态学报, 26, 163-173.]
[22] Hughes RM, Peck DV (2008) Acquiring data for large aquatic resource surveys: The art of compromise among science, logistics, and reality. Journal of the North American Benthological Society, 27, 837-859.
[23] Jacobsen D (2003) Altitudinal changes in diversity of macroinvertebrates from small streams in the Ecuadorian Andes. Archiv für Hydrobiologie, 158, 145-167.
[24] Jacobsen D (2004) Contrasting patterns in local and zonal family richness of stream invertebrates along an Andean altitudinal gradient. Freshwater Biology, 49, 1293-1305.
doi: 10.1111/fwb.2004.49.issue-10
[25] Jiang Y, Gao JX, Ou XK (2006) Change of land use pattern and analysis of environment impact of Lancang watershed in Yunnan. Research of Environmental Sciences, 19, 46-51. (in Chinese with English abstract)
[ 姜昀, 高吉喜, 欧晓昆 (2006) 澜沧江流域云南段土地利用格局变化及环境影响分析. 环境科学研究, 19, 46-51.]
[26] Jyväsjärvi J, Virtanen R, Ilmonen J, Paasivirta L, Muotka T (2018) Identifying taxonomic and functional surrogates for spring biodiversity conservation. Conservation Biology, 32, 883-893.
[27] Laiolo P, Pato J, Obeso JR (2018) Ecological and evolutionary drivers of the elevational gradient of diversity. Ecology Letters, 21, 1022-1032.
doi: 10.1111/ele.2018.21.issue-7
[28] Laiolo P, Seoane J, Obeso JR, Illera JC (2017) Ecological divergence among young lineages favours sympatry, but convergence among old ones allows coexistence in syntopy: The scale of limiting similarity. Global Ecology and Biogeography, 26, 601-608.
doi: 10.1111/geb.2017.26.issue-5
[29] Laliberté E, Legendre P (2010) A distance-based framework for measuring functional diversity from multiple traits. Ecology, 91, 299-305.
[30] Li FQ, Chung N, Bae MJ, Kwon YS, Park YS (2012) Relationships between stream macroinvertebrates and environmental variables at multiple spatial scales. Freshwater Biology, 57, 2107-2124.
[31] Li QY, Wang XP (2013) Elevational pattern of species richness in the Three Gorges region of the Yangtze River: Effect of climate, geometric constraints, area and topographical heterogeneity. Biodiversity Science, 21, 141-152. (in Chinese with English abstract)
[ 李巧燕, 王襄平 (2013) 长江三峡库区物种多样性的垂直分布格局: 气候、几何限制、面积及地形异质性的影响. 生物多样性, 21, 141-152.]
[32] Li SL, Yi MH, Chen K, Ding N, Wang BX, Yao HR (2018) Differences in responses of macroinvertebrate traits and functional diversity to environmental variables at different spatial scales between ecoregions in the Wei River basin, China. Acta Ecologica Sinica, 38, 2566-2578. (in Chinese with English abstract)
[ 李胜利, 易茂红, 陈凯, 丁宁, 王备新, 姚花荣 (2018) 渭河底栖动物性状和功能对空间尺度环境变量响应的生态区差异性. 生态学报, 38, 2566-2578.]
[33] Li ZF, Jiang XM, Wang J, Meng XJ, Heino J, Xie ZC (2019) Multiple facets of stream macroinvertebrate alpha diversity are driven by different ecological factors across an extensive altitudinal gradient. Ecology and Evolution, 9, 1306-1322.
[34] Lu MM, Huang XC, Ci XQ, Yang GP, Li J (2014) Phylogenetic community structure of subtropical forests along elevational gradients in Ailao Mountains of southwest China. Biodiversity Science, 22, 438-448. (in Chinese with English abstract)
[ 卢孟孟, 黄小翠, 慈秀芹, 杨国平, 李捷 (2014) 沿海拔梯度变化的哀牢山亚热带森林群落系统发育结构. 生物多样性, 22, 438-448.]
[35] Mason NWH, Mouillot D, Lee WG, Wilson JB (2005) Functional richness, functional evenness and functional divergence: The primary components of functional diversity. Oikos, 111, 112-118.
doi: 10.1111/oik.2005.111.issue-1
[36] Mayor J, Sanders N, Classen A, Bardgett RD, Clément JC, Fajardo A, Lavorel S, Sundqvist MK, Bahn M, Chisholm C, Cieraad E, Gedalof Z, Grigulis K, Kudol G, Oberski DL, Wardle DA (2017) Elevation alters ecosystem properties across temperate treelines globally. Nature, 542, 91-95.
[37] McConkey KR, O’Farrill G (2015) Cryptic function loss in animal populations. Trends in Ecology & Evolution, 30, 182-189.
[38] McGill BJ (2010) Matters of scale. Science, 328, 575-576.
[39] McGill BJ, Dornelas M, Gotelli NJ, Magurran AE (2015) Fifteen forms of biodiversity trend in the Anthropocene. Trends in Ecology & Evolution, 30, 104-113.
[40] Mejias TAC (2011) Benthic Macroinvertebrates of Temperate, Sub-Antarctic Streams: The Effects of Altitudinal Zoning and Temperature on the Phenology of Aquatic Insects Associated to the Robalo River, Navarino Island (55°S), Chile. PhD dissertation, University of North Texas, Denton.
[41] Mermillod-Blondin F (2011) The functional significance of bioturbation and biodeposition on biogeochemical processes at the water-sediment interface in freshwater and marine ecosystems. Journal of the North American Benthological Society, 30, 770-778.
doi: 10.1899/10-121.1
[42] Morse JC, Yang LF, Tian LX (1994) Aquatic Insects of China Useful for Monitoring Water Quality. Hohai University Press, Nanjing.
[43] Mouchet MA, Villéger S, Mason NW, Mouillot D (2010) Functional diversity measures: An overview of their redundancy and their ability to discriminate community assembly rules. Functional Ecology, 24, 867-876.
doi: 10.1111/fec.2010.24.issue-4
[44] Natalia MRC, Miguel BS, Lavariega M, Moreno CE (2019) Spatial incongruence in the species richness and functional diversity of cricetid rodents. PLoS ONE, 14, e0217154.
[45] Petchey OL, Gaston KJ (2002) Functional diversity (FD), species richness and community composition. Ecology Letters, 5, 402-411.
doi: 10.1046/j.1461-0248.2002.00339.x
[46] Pielou EC (1966) The measurement of diversity in different types of biological collections. Journal of Theoretical Biology, 13, 131-144.
doi: 10.1016/0022-5193(66)90013-0
[47] Poff NL, Olden JD, Vieira NKM, Finn DS, Simmons MP, Kondratieff BC (2006) Functional trait niches of North American lotic insects: Traits-based ecological applications in light of phylogenetic relationships. Journal of the North American Benthological Society, 25, 730-755.
[48] Rahbek C (2005) The role of spatial scale and the perception of large-scale species-richness patterns. Ecology Letters, 8, 224-239.
[49] Shimatani K (2001) On the measurement of species diversity incorporating species differences. Oikos, 93, 135-147.
[50] Simpson EH (1949) Measurement of diversity. Nature, 163, 688.
doi: 10.1038/163688a0
[51] Song PQ, Lin LS, Li Y, Zhong ZH, Zhang R (2015) Species composition and stability of nekton community structure in Sandu Bay, Fujian Province. Biodiversity Science, 23, 519-526. (in Chinese with English abstract)
doi: 10.17520/biods.2014223
[ 宋普庆, 林龙山, 李渊, 钟指挥, 张然 (2015) 福建三都澳游泳动物种类组成及群落结构稳定性. 生物多样性, 23, 519-526.]
doi: 10.17520/biods.2014223
[52] Sundqvist MK, Sanders NJ, Wardle DA (2013) Community and ecosystem responses to elevational gradients: Processes, mechanisms, and insights for global change. Annual Review of Ecology, Evolution, and Systematics, 44, 261-280.
doi: 10.1146/annurev-ecolsys-110512-135750
[53] Szava-Kovats RC, Argo R, Meelis P (2013) Pattern without bias: Local-regional richness relationship revisited. Ecology, 94, 1986-1992.
doi: 10.1890/13-0244.1
[54] Tang ZY, Fang JY (2004) A review on the elevational patterns of plant species diversity. Biodiversity Science, 12, 20-28. (in Chinese with English abstract)
[ 唐志尧, 方精云 (2004) 植物物种多样性的垂直分布格局. 生物多样性, 12, 20-28.]
[55] Tinoco BA, Santillán VE, Graham CH (2018) Land use change has stronger effects on functional diversity than taxonomic diversity in tropical Andean hummingbirds. Ecology and Evolution, 8, 3478-3490.
[56] Usseglio-Polatera P, Bournaud M, Richoux P, Tachet H (2000) Biological and ecological traits of benthic freshwater macroinvertebrates: Relationships and definition of groups with similar traits. Freshwater Biology, 43, 175-205.
[57] Vamosi SM, Naydani CJ, Vamosi JC (2007) Body size and species richness along geographical gradients in Albertan diving beetle (Coleoptera: Dytiscidae) communities. Canadian Journal of Zoology, 85, 443-449.
[58] Villéger S, Mason NWH, Mouillot D (2008) New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology, 89, 2290-2301.
[59] Villéger S, Miranda JR, Hernández DF, Mouillot D (2010) Contrasting changes in taxonomic vs. functional diversity of tropical fish communities after habitat degradation. Ecological Applications, 20, 1512-1522.
[60] Vinson MR, Hawkins CP (2003) Broad-scale geographical patterns in local stream insect genera richness. Ecography, 26, 751-767.
doi: 10.1111/eco.2003.26.issue-6
[61] Wang C, Li B, Xie SG, Jin L, Zhang YG (2013) The macrobenthic communities and distribution of the Lancang River. Freshwater Fisheries, 43, 37-43. (in Chinese with English abstract)
[ 王川, 李斌, 谢嗣光, 金丽, 张耀光 (2013) 澜沧江大型底栖动物群落结构及分布格局. 淡水渔业, 43, 37-43.]
[62] Wang JJ, Soininen J, Zhang Y, Wang BX, Yang XD, Shen J (2011) Contrasting patterns in elevational diversity between microorganisms and macroorganisms. Journal of Biogeography, 38, 595-603.
[63] Wang J, Jiang XM, Li ZF, Meng XL, Heino J, Xie ZC, Wang XM, Yu J (2018) Changes in multiple facets of macroinvertebrate alpha diversity are linked to afforestation in a subtropical riverine natural reserve. Environmental Science and Pollution Research, 25, 36124-36135.
[64] Wong MC, Dowd M (2015) Patterns in taxonomic and functional diversity of macrobenthic invertebrates across seagrass habitats: A case study in Atlantic Canada. Estuaries and Coasts, 38, 2323-2336.
[65] Yamaoka K, Nakagawa T, Uno T (1978) Application of Akaike’s information criterion (AIC) in the evaluation of linear pharmacokinetic equations. Journal of Pharmacokinetics and Biopharmaceutics, 6, 165-175.
doi: 10.1007/BF01117450
[66] Yang Y, Han J, Liu Y, Zhongyong CR, Shi SL, Sina CL, Xu Y, Ying LX, Zhang WJ, Shen ZH (2016) A comparison of the altitudinal patterns in plant species diversity within the dry valleys of the Three Parallel Rivers region, northwestern Yunnan. Biodiversity Science, 24, 440-452. (in Chinese with English abstract)
doi: 10.17520/biods.2015361
[ 杨阳, 韩杰, 刘晔, 忠永茨仁, 石松林, 斯那此里, 许玥, 应凌霄, 张婉君, 沈泽昊 (2016) 三江并流地区干旱河谷植物物种多样性海拔梯度格局比较. 生物多样性, 24, 440-452.]
doi: 10.17520/biods.2015361
[67] Zhang JH, Feng ZM, Jiang LG, Yang YZ (2015) Analysis of the correlation between NDVI and climate factors in the Lancang River basin. Journal of Natural Resources, 30, 1425-1435. (in Chinese with English abstract)
[ 张景华, 封志明, 姜鲁光, 杨艳昭 (2015) 澜沧江流域植被NDVI与气候因子的相关性分析. 自然资源学报, 30, 1425-1435.]
[1] cao xiuwen. (2020) Population structure characteristics and survival status of Picea purpurea in the Taohe river upstream . Chin J Plant Ecol, 44(预发表): 0-0.
[2] Wei Fu Hui Wu Aihua Zhao Zhipeng Hao Bao-Dong CHEN. (2020) The ecological impacts of nitrogen deposition on terrestrial ecosystems: Research progresses and prospects . Chin J Plant Ecol, 44(全球变化与生态系统专辑): 0-0.
[3] Binbin V Li. (2020) Create synergy between biodiversity conservation and Human Health — One Health . Biodiv Sci, 28(5): 0-0.
[4] Lintao Huang Hui Huang Lei Jiang. (2020) A revised taxonomy for Chinese hermatypic corals . Biodiv Sci, 28(4): 515-523.
[5] Shitong Wang,Yaozhan Xu,Teng Yang,Xinzeng Wei,Mingxi Jiang. (2020) Impacts of microhabitats on leaf functional traits of the wild population of Sinojackia huangmeiensis . Biodiv Sci, 28(3): 277-288.
[6] Kai Wang,Jinlong Ren,Hongman Chen,Zhitong Lyu,Xianguang Guo,Ke Jiang,Jinmin Chen,Jiatang Li,Peng Guo,Yingyong Wang,Jing Che. (2020) The updated checklists of amphibians and reptiles of China . Biodiv Sci, 28(2): 189-218.
[7] Xiongwei Yang,Ankang Wu,Qixian Zou,Guangrong Li,Mingming Zhang,Canshi Hu,Haijun Su. (2020) Field monitoring of mammals and birds using infrared cameras in Mayanghe National Nature Reserve, Guizhou, China . Biodiv Sci, 28(2): 219-225.
[8] Haiou Liu,Fengchun Zhang,Fuwei Zhao,Leshan Du,Dayuan Xue. (2020) Biodiversity sensitive issues from changes in the strategic objectives of the financial mechanism for the Convention on Biological Diversity . Biodiv Sci, 28(2): 244-252.
[9] Yisheng Ma,Qingqing Ma,Nianjun He,Dapeng Zhu,Kaihui Zhao,Hongcai Liu,Shuai Li,Liang Sun,Liubin Tang. (2020) Camera-trapping survey of mammals and birds in the Foping National Nature Reserve, China . Biodiv Sci, 28(2): 226-230.
[10] WANG Yu-Bing,SUN Yi-Han,DING Wei,ZHANG En-Tao,LI Wen-Huai,CHI Yong-Gang,ZHENG Shu-Xia. (2020) Effects and pathways of long-term nitrogen addition on plant diversity and primary productivity in a typical steppe . Chin J Plant Ecol, 44(1): 22-32.
[11] Wenying Zhuang,Yi Li,Huandi Zheng,Zhaoqing Zeng,Xincun Wang. (2020) Threat status of non-lichenized macro-ascomycetes in China and its threatening factors . Biodiv Sci, 28(1): 26-40.
[12] Yi Li,Zhiyao Tang,Yujing Yan,Ke Wang,Lei Cai,Jinsheng He,Song Gu,Yijian Yao. (2020) Incorporating species distribution model into the red list assessment and conservation of macrofungi: A case study with Ophiocordyceps sinensis . Biodiv Sci, 28(1): 99-106.
[13] Shun Li,Liang Zou,Yinan Gong,Haitao Yang,Tianming Wang,Limin Feng,Jianping Ge. (2019) Advances in LiDAR technology in the field of animal ecology . Biodiv Sci, 27(9): 1021-1031.
[14] Rui Yang,Qinyi Peng,Yue Cao,Le Zhong,Shuyu Hou,Zhicong Zhao,Cheng Huang. (2019) Transformative changes and paths toward biodiversity conservation in China . Biodiv Sci, 27(9): 1032-1040.
[15] Yongmin Li,Xiaobing Wu. (2019) A revised species list of amphibians and reptiles in the Anhui Province . Biodiv Sci, 27(9): 1002-1011.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed