生物多样性 ›› 2021, Vol. 29 ›› Issue (12): 1607-1619. DOI: 10.17520/biods.2021273 cstr: 32101.14.biods.2021273
收稿日期:
2021-07-09
接受日期:
2021-11-03
出版日期:
2021-12-20
发布日期:
2021-12-16
通讯作者:
张宪春
作者简介:
*E-mail: zhangxc@ibcas.ac.cn基金资助:
Menghua Zhang1,2, Xianchun Zhang1,*()
Received:
2021-07-09
Accepted:
2021-11-03
Online:
2021-12-20
Published:
2021-12-16
Contact:
Xianchun Zhang
摘要:
卷柏属(Selaginella)是石松类植物中最大的属, 也是分类难度较大的类群之一。该属的物种划分主要基于形态特征, 但许多近缘种在形态上很难区分。近年来, 已有大量分子证据被用于各植物类群的分类学研究, 但目前未发现一套适合卷柏属物种鉴定的分子标记。薄叶卷柏复合群(S. delicatula group)是卷柏属下鉴定较为困难的类群, 包括了薄叶卷柏(S. delicatula)、黑顶卷柏(S. picta)和瓦氏卷柏(S. wallichii) 3个物种, 主要分布于亚洲的热带和亚热带地区。为了探讨薄叶卷柏复合群内物种的亲缘关系和评估不同分子标记在卷柏属分类学研究中的应用价值, 本研究对该复合群物种进行广泛取样, 共收集到73个个体, 并选取3个叶绿体基因(rbcL, psbA和atpI)和2个核基因(26S nrDNA和pgiC)片段进行系统树的构建及叶绿体单倍型分析。研究发现, 基于叶绿体和核基因构建的系统发生关系存在冲突: 叶绿体基因树上薄叶卷柏个体分为两个分支(A和B), 薄叶卷柏B分支与薄叶卷柏A-S. picta分支呈姐妹关系, 并且rbcL单倍型分析结果也表明薄叶卷柏A和B两个分支存在明显分化; 而核基因结果则支持该复合群3个物种各自的单系性, 其中, S. delicatula分支与S. picta分支为姐妹群, S. wallichii与S. delicatula-S. picta分支为姐妹关系。在对复合群分布区大量标本的观察以及野外群体调查的基础上, 评估了植株茎和枝的分枝方式、孢子叶、营养叶(侧叶、中叶和腋叶)和孢子表面纹饰等形态性状的分类学价值。结果表明, 薄叶卷柏A和B分支的样本仅在植株分枝方式和大孢子表面纹饰上存在差异, 但无法依靠小孢子表面纹饰、孢子叶穗和营养叶形态等特征进行区分。基于现有证据, 薄叶卷柏复合群至少可划分为薄叶卷柏、黑顶卷柏和瓦氏卷柏3种, 但彻底澄清该复合群的物种划分还需要获取模式标本产地的材料和细胞学证据。最后, 建议在未来卷柏属的分类学研究集中于该属分类复杂的复合群, 结合使用形态学、细胞学、分子生物学(同时使用核基因和叶绿体分子标记)及地理分布等整合证据来进行物种划分。
张梦华, 张宪春 (2021) 中国薄叶卷柏复合群的物种划分. 生物多样性, 29, 1607-1619. DOI: 10.17520/biods.2021273.
Menghua Zhang, Xianchun Zhang (2021) Species delimitation of the Selaginella delicatula group in China. Biodiversity Science, 29, 1607-1619. DOI: 10.17520/biods.2021273.
分子标记 Marker | 引物 Primer | 正反向 Direction | 序列 Sequence (5′-3′) | 参考文献 Reference |
---|---|---|---|---|
26S | 26S 60F | 正向 Forward | TTTAAGCATATCACTAAGCGGAGG | Korall & Kenrick ( |
26S | 26S 380F | 正向 Forward | CCGCGAGGGAAAGATGAAAAGGAC | Korall & Kenrick ( |
26S | 26S 1160R | 反向 Reverse | CCAGTTCTGCTTACCAAAAATGGCCC | Korall & Kenrick ( |
pgiC | SWPGIC-1666F | 正向 Forward | VTTYGCTTTYTGGGAYTGGG | Weststrand & Korall ( |
pgiC | SWPGIC-2523R | 反向 Reverse | GTCGTGGTTRCTSACAATCTC | Weststrand & Korall ( |
rbcL | rbcL-192F | 正向 Forward | CACGTGGACTACCGTTTGGA | Shalimov et al ( |
rbcL | rbcL-1324R | 反向 Reverse | TACCCTCAAGAGCGGGATCA | Shalimov et al ( |
psbA | psbA-169F | 正向 Forward | CCRGTAGATATTGACGGTATTC | Shalimov et al ( |
psbA | psbA-1026R | 反向 Reverse | ATCTRGWGGGAAGTTGTGAGC | Shalimov et al ( |
atpI | atpI-119F | 正向 Forward | CYCAGGTTCATGGACAAGTAC | Shalimov et al ( |
atpI | atpI-540R | 反向 Reverse | GRGTATYGGGGTTGGTTG | Shalimov et al ( |
表1 用于扩增和测序的引物
Table 1 Primers used in amplification and sequencing
分子标记 Marker | 引物 Primer | 正反向 Direction | 序列 Sequence (5′-3′) | 参考文献 Reference |
---|---|---|---|---|
26S | 26S 60F | 正向 Forward | TTTAAGCATATCACTAAGCGGAGG | Korall & Kenrick ( |
26S | 26S 380F | 正向 Forward | CCGCGAGGGAAAGATGAAAAGGAC | Korall & Kenrick ( |
26S | 26S 1160R | 反向 Reverse | CCAGTTCTGCTTACCAAAAATGGCCC | Korall & Kenrick ( |
pgiC | SWPGIC-1666F | 正向 Forward | VTTYGCTTTYTGGGAYTGGG | Weststrand & Korall ( |
pgiC | SWPGIC-2523R | 反向 Reverse | GTCGTGGTTRCTSACAATCTC | Weststrand & Korall ( |
rbcL | rbcL-192F | 正向 Forward | CACGTGGACTACCGTTTGGA | Shalimov et al ( |
rbcL | rbcL-1324R | 反向 Reverse | TACCCTCAAGAGCGGGATCA | Shalimov et al ( |
psbA | psbA-169F | 正向 Forward | CCRGTAGATATTGACGGTATTC | Shalimov et al ( |
psbA | psbA-1026R | 反向 Reverse | ATCTRGWGGGAAGTTGTGAGC | Shalimov et al ( |
atpI | atpI-119F | 正向 Forward | CYCAGGTTCATGGACAAGTAC | Shalimov et al ( |
atpI | atpI-540R | 反向 Reverse | GRGTATYGGGGTTGGTTG | Shalimov et al ( |
图1 基于核基因26S nrDNA + pgiC串联数据矩阵构建的薄叶卷柏复合群最大似然树。最大似然值和后验概率值分别标注在分支上(ML/PP), (-)表示无支持率。
Fig. 1 Maximum likelihood tree of the Selaginella delicatula group based on the nuclear dataset (26S nrDNA + pgiC). Maximum parsimony bootstrap values and Bayesian posterior probabilities are shown on the branches (ML/PP). A dash (-) indicates no support value.
图2 基于叶绿体基因atpI + psbA + rbcL串联数据矩阵构建的薄叶卷柏复合群最大似然树。最大似然值和后验概率值分别标注在分支上(ML/PP), (-)表示无支持率。
Fig. 2 Maximum likelihood tree of the Selaginella delicatula group based on the chloroplast dataset (atpI + psbA + rbcL). Maximum parsimony bootstrap values and Bayesian posterior probabilities are shown on the branches (ML/PP). A dash (-) indicates no support value.
图3 基于叶绿体基因rbcL构建的薄叶卷柏复合群(薄叶卷柏Selaginella delicatula、瓦氏卷柏S. wallichii和黑顶卷柏S. picta)单倍型网络关系(A)和地理分布(B)。
Fig. 3 Chloroplast rbcL gene haplotype network of the Selaginella delicatula group (A) and their distributions (B). CQ, Chongqing; FJ, Fujian; GD, Guangdong; GX, Guangxi; GZ, Guizhou; HB, Hubei; HK, Hong Kong; HN, Hainan; HuN, Hunan; SC, Sichuan; TW, Taiwan; XZ, Xizang; YN, Yunnan; MY, Myanmar; VT, Vietnam; ML, Malaysia.
图4 薄叶卷柏复合群孢子叶穗和营养叶片形态。(A-D)黑顶卷柏, 西藏, B. S. Li & S. Z. Cheng 02630 (PE); (E-H)瓦氏卷柏, 云南, X. C. Zhang & S. Y. Dong 1421 (PE); (I-L)薄叶卷柏B, 海南, S. Y. Dong 826 (PE); (M-P)薄叶卷柏A, 湖南, Y. H. Yan 7765 (PE); (A, E, I, M)孢子叶穗, 标尺 = 1 mm; (B, F, J, N)侧叶; (C, G, K, O)中叶; (D, H, L, P)腋叶。标尺 = 0.2 mm。
Fig. 4 Strobili and sterile leaves of Selaginella delicatula group. (A-D) S. picata, Xizang, B. S. Li & S. Z. Cheng 02630 (PE); (E-H) S. wallichii, Yunnan, X. C. Zhang & S. Y. Dong 1421 (PE); (I-L) S. delicatula B, Hainan, S. Y. Dong 826 (PE); (M-P) S. delicatula A, Hunan, Y. H. Yan 7765 (PE). (A, E, I, M) Strobili, Scale bars = 1 mm; (B, F, J, N) Ventral leaves; (C, G, K, O) Dorsal leaves; (D, H, L, P) Axillary leaves. Scale bars = 0.2 mm.
图5 薄叶卷柏复合群腊叶标本。(A)薄叶卷柏A, 中国贵州, X. C. Zhang et al. 6849 (PE); (B)薄叶卷柏B, 靠近新几内亚的Pisang岛, Gaudichaud 13 (Lectotype, G); (C)瓦氏卷柏, 马来西亚槟榔屿和新加坡, Dr. Wallich 128 (Isotype, E); (D)黑顶卷柏, 印度, Griffith sn (Syntype, K)。
Fig. 5 Specimens of Selaginella delicatula group. (A) S. delicatula A, Guizhou, X. C. Zhang et al. 6849 (PE); (B) S. delicatula B, Pisang Island near New Guinea, Gaudichaud 13 (Lectotype, G); (C) S. wallichii, Penang and Singapore, Dr. Wallich 128 (Isotype, E); (D) S. picta, India, Griffith sn (Syntype, K).
图6 薄叶卷柏复合群孢子形态。(A-E)薄叶卷柏A (A-C大孢子, D-E小孢子), 贵州, X. C. Zhang et al 6849 (PE); (F-K)薄叶卷柏B (F-I大孢子, J-K小孢子), 海南, X. C. Zhang 2867 (PE); (L-O)黑顶卷柏(L-M大孢子, N-O小孢子), 云南, Z. Y. Li & R. Wei WR295 (PE); (P)瓦氏卷柏(大孢子), 广西, Shiwandashan Exped. 050 (PE); (Q-R)瓦氏卷柏(小孢子), 广西, X. C. Zhang & Z. Y. Guo 7882 (PE)。
Fig. 6 Spores morphology of Selaginella delicatula group. (A-E) S. delicatula A (A-C Megaspores, D-E Microspores), Guizhou, X. C. Zhang et al. 6849 (PE); (F-K) S. delicatula B (F-I Megaspores, J-K Microspores), Hainan, X. C. Zhang 2867 (PE); (L-O) S. picta (L-M Megaspores, N-O Microspores), Yunnan, Z. Y. Li & R. Wei WR295 (PE); (P) S. wallichii (Megaspores), Guangxi, Shiwandashan Exped. 050 (PE); (Q-R) S. wallichii (Microspores), Guangxi, X. C. Zhang & Z. Y. Guo 7882 (PE).
图7 基于薄叶卷柏复合群(薄叶卷柏 Selaginella delicatula,瓦氏卷柏 S. wallichii和黑顶卷柏 S. picta) 6个形态特征的主成分分析
Fig. 7 Principal components plots based on six morphological characters of the Selaginella delicatula group
[1] |
Bandelt HJ, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution, 16, 37-48.
PMID |
[2] | Bog M, Sree KS, Fuchs J, Hoang PTN, Schubert I, Kuever J, Rabenstein A, Paolacci S, Jansen MAK, Appenroth KJ (2020) A taxonomic revision of Lemna sect. Uninerves (Lemnaceae). Taxon, 69, 56-66. |
[3] |
Buck WR (1986) A new species of Selaginella section Articulatae (Selaginellaceae) from Paraguay. Brittonia, 38, 45-47.
DOI URL |
[4] |
Du XY, Lu JM, Li DZ (2020) Extreme plastid RNA editing may confound phylogenetic reconstruction: A case study of Selaginella (lycophytes). Plant Diversity, 42, 356-361.
DOI URL |
[5] |
Edgar RC (2004) MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32, 1792-1797.
DOI URL |
[6] |
Gerbi SA (1986) The evolution of eukaryotic ribosomal DNA. Biosystems, 19, 247-258.
PMID |
[7] | Jansen RK, Cai ZQ, Raubeson LA, Daniell H, Depamphilis CW, Leebens-Mack J, Müller KF, Guisinger-Bellian M, Haberle RC, Hansen AK, Chumley TW, Lee SB, Peery R, McNeal JR, Kuehl JV, Boore JL (2007) Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genome-scale evolutionary patterns. Proceedings of the National Academy of Sciences, USA, 104, 19369-19374. |
[8] | Jermy AC (1986) Subgeneric names in Selaginella. Fern Gazette, 13, 117-118. |
[9] |
Kang JS, Zhang HR, Wang YR, Liang SQ, Mao ZY, Zhang XC, Xiang QP (2020) Distinctive evolutionary pattern of organelle genomes linked to the nuclear genome in Selaginellaceae. The Plant Journal, 104, 1657-1672.
DOI URL |
[10] |
Korall P, Kenrick P (2002) Phylogenetic relationships in Selaginellaceae based on rbcL sequences. American Journal of Botany, 89, 506-517.
DOI PMID |
[11] |
Korall P, Kenrick P (2004) The phylogenetic history of Selaginellaceae based on DNA sequences from the plastid and nucleus: Extreme substitution rates and rate heterogeneity. Molecular Phylogenetics and Evolution, 31, 852- 864.
PMID |
[12] |
Korall P, Kenrick P, Therrien JP (1999) Phylogeny of Selaginellaceae: Evaluation of generic/subgeneric relationships based on rbcL gene sequences. International Journal of Plant Sciences, 160, 585-594.
DOI URL |
[13] |
Li YC, Wen J, Ren Y, Zhang JQ (2019) From seven to three: Integrative species delimitation supports major reduction in species number in Rhodiola section Trifida (Crassulaceae) on the Qinghai-Tibetan Plateau. Taxon, 68, 268-279.
DOI URL |
[14] |
Liu BB, Campbell CS, Hong DY, Wen J (2020) Phylogenetic relationships and chloroplast capture in the Amelanchier- Malacomeles-Peraphyllum clade (Maleae, Rosaceae): Evidence from chloroplast genome and nuclear ribosomal DNA data using genome skimming. Molecular Phylogenetics and Evolution, 147, 106784.
DOI URL |
[15] |
Ma XG, Sun WG, Zhu WD, Sun H (2017) Resolving the phylogenetic relationships and evolutionary history of the East Asian endemic genus Rodgersia (Saxifragaceae) using multilocus data. Perspectives in Plant Ecology, Evolution and Systematics, 25, 20-28.
DOI URL |
[16] | Moore MJ, Bell CD, Soltis PS, Soltis DE (2007) Using plastid genome-scale data to resolve enigmatic relationships among basal angiosperms. Proceedings of the National Academy of Sciences, USA, 104, 19363-19368. |
[17] | Muller K, Muller J, Quandt D (2010) PhyDE-Phylogenetic Data Editor, version 0.9971. http://www.phyde.de/docu/docu.html . (accessed on 2017-06-01) |
[18] |
Posada D (2008) jModelTest: Phylogenetic model averaging. Molecular Biology and Evolution, 25, 1253-1256.
DOI PMID |
[19] | R Core Team (2020) R: A Language and Environment for Statistical. R Foundation for Statistical Computing: Vienna. https://www.R-project.org/ . (accessed on 2021-04-21) |
[20] | Rambaut A (2014) FigTree, Version 1.4.2. https://tree.bio.ed.ac.uk/software/figtree/ . (accessed on 2018-06-06) |
[21] | Rieseberg LH, Soltis D (1991) Phylogenetic consequences of cytoplasmic gene flow in plants. Evolutionary Trends in Plants, 5, 65-84. |
[22] |
Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61, 539-542.
DOI PMID |
[23] |
Rozas J, Ferrer-Mata A, Sánchez-Delbarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE, Sánchez-Gracia A (2017) DnaSP 6: DNA sequence polymorphism analysis of large data sets. Molecular Biology and Evolution, 34, 3299-3302.
DOI URL |
[24] |
Shalimov AP, Zhu YM, Zhang MH, Zhang XC (2019) Selaginella dianzhongensis (Selaginellaceae), a new spikemoss from China. PhytoKeys, 118, 75-87.
DOI URL |
[25] |
Shao YZ, Chen Y, Zhang XC, Xiang QP (2020) Species delimitation and phylogeography of Abies delavayi complex: Inferred from morphological, molecular, and climatic data. Journal of Systematics and Evolution, 58, 234-246.
DOI URL |
[26] |
Stamatakis A (2006) RAxML-VI-HPC: Maximum likelihood- based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics, 22, 2688-2690.
DOI URL |
[27] |
Wei R, Yang J, He LJ, Liu HM, Hu JY, Liang SQ, Wei XP, Zhao CF, Zhang XC (2021) Plastid phylogenomics provides novel insights into the infrafamilial relationship of Polypodiaceae. Cladistics, 37, 717-727.
DOI URL |
[28] |
Weststrand S, Korall P (2016a) Phylogeny of Selaginellaceae: There is value in morphology after all!. American Journal of Botany, 103, 2136-2159.
DOI URL |
[29] |
Weststrand S, Korall P (2016b) A subgeneric classification of Selaginella (Selaginellaceae). American Journal of Botany, 103, 2160-2169.
DOI URL |
[30] |
Wu YD, Zhang HR, Zhang XC (2017) Selaginella guihaia (Selaginellaceae): A new spikemoss species from southern China and northern Vietnam around the Gulf of Tonkin. PhytoKeys, 80, 41-52.
DOI URL |
[31] |
Yang J, Zhang MH, Wang YR, Yuan LX, Zhang XC (2021) An extraordinary rosette and resurrection new spikemoss, Selaginella iridescens (Selaginellaceae) from Hainan Island, China. Taxonomy, 1, 302-312.
DOI URL |
[32] |
Ye JF, Niu YT, Feng YL, Liu B, Hai LS, Wen J, Chen ZD (2020) Taxonomy and biogeography of Diapensia (Diapensiaceae) based on chloroplast genome data. Journal of Systematics and Evolution, 58, 696-709.
DOI URL |
[33] |
Zhang HR, Wei R, Xiang QP, Zhang XC (2020) Plastome- based phylogenomics resolves the placement of the sanguinolenta group in the spikemoss of lycophyte (Selaginellaceae). Molecular Phylogenetics and Evolution, 147, 106788.
DOI URL |
[34] |
Zhang HR, Xiang QP, Zhang XC (2019a) The unique evolutionary trajectory and dynamic conformations of DR and IR/DR-coexisting plastomes of the early vascular plant Selaginellaceae (lycophyte). Genome Biology and Evolution, 11, 1258-1274.
DOI URL |
[35] |
Zhang HR, Zhang XC, Xiang QP (2019b) Directed repeats co-occur with few short-dispersed repeats in plastid genome of a spikemoss, Selaginella vardei (Selaginellaceae, Lycopodiopsida). BMC Genomics, 20, 484.
DOI URL |
[36] |
Zhang MH, Wei R, Xiang QP, Ebihara A, Zhang XC (2021) Integrative taxonomy of the Selaginella helvetica group based on morphological, molecular and ecological data. Taxon, 70, 1163-1187.
DOI URL |
[37] | Zhang XC (2004) Selaginellaceae. In: Flora Reipublicae Popularis Sinicae, Tomus 6(3). Science Press, Beijing. (in Chinese) |
[ 张宪春 (2004) 卷柏科. 见:中国植物志第六卷(第三分册). 科学出版社, 北京.] | |
[38] | Zhang XC (2018) Some new records of Selaginella from China. Philippine Journal of Systematic Biology, 12, 22-23. |
[39] | Zhang XC, Nooteboom HP, Kato M (2013) Selaginellaceae. In: Flora of China (eds Wu ZY, Raven PH, Hong DY). Science Press, Beijing & Missouri Botanical Garden Press, St. Louis. |
[40] | Zhang XC, Shalimov AP, Kang JS, Zhang MH (2020) Selaginella subvaginata (Selaginellaceae), a new spikemoss from China. Journal of Species Research, 9, 221-232. |
[41] |
Zhou XM, He ZR, Zhang L, Zhang LB (2015) Selaginella chuweimingii (Selaginellaceae) sp. nov. from Yunnan, China. Phytotaxa, 231, 283-288.
DOI URL |
[42] |
Zhou XM, Zhang LB (2015) A classification of Selaginella (Selaginellaceae) based on molecular (chloroplast and nuclear), macromorphological, and spore features. Taxon, 64, 1117-1140.
DOI URL |
[43] | Zhu WM (2006) Selaginellacea. In: Flora Yunnanica, Tomus 20 (Pterisophyta)(ed. Zhu WM). Science Press, Beijing. (in Chinese) |
[ 朱维明 (2006) 卷柏科. 云南植物志, 第二十卷 (蕨类植物). 科学出版社, 北京.] |
[1] | 张淑梅, 李微, 李丁男. 辽宁省高等植物多样性编目[J]. 生物多样性, 2022, 30(6): 22038-. |
[2] | 杜维波, 卢元. 黄土高原石松类和蕨类植物的多样性与地理分布[J]. 生物多样性, 2019, 27(11): 1260-1267. |
[3] | 梁思琪, 张宪春, 卫然. 利用整合分类学方法进行蕨类植物复合体的物种划分: 以线裂铁角蕨复合体为例[J]. 生物多样性, 2019, 27(11): 1205-1220. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn