生物多样性 ›› 2024, Vol. 32 ›› Issue (12): 24199. DOI: 10.17520/biods.2024199 cstr: 32101.14.biods.2024199
陈越1,2,3(), 毛子昆1,2(
), 王绪高1,2,*(
)(
)
收稿日期:
2024-05-27
接受日期:
2024-06-21
出版日期:
2024-12-20
发布日期:
2024-07-16
通讯作者:
E-mail: 基金资助:
Yue Chen1,2,3(), Zikun Mao1,2(
), Xugao Wang1,2,*(
)(
)
Received:
2024-05-27
Accepted:
2024-06-21
Online:
2024-12-20
Published:
2024-07-16
Contact:
E-mail: Supported by:
摘要:
生态独特性(ecological uniqueness)作为β多样性的关键组分, 主要表征不同地点群落组成的相对特殊性, 对生物多样性保护和恢复具有重要意义。近10年来, 生态独特性受到生态学家和保护生物学家的广泛关注, 并在其时空格局、驱动机制、生态功能与生物多样性保护应用等方面取得了一系列重要研究进展, 但缺乏系统性的研究综述。本文首先总结了生态独特性的主要计算方法, 并对2013-2023年间基于物种分类的生态独特性相关研究文献进行计量分析, 在此基础上进一步梳理了不同生物类群生态独特性的时空格局及其主要驱动机制, 探讨了生态独特性对生态系统功能的潜在影响及其对生物多样性保护的指示意义。目前, 生态独特性的计算方式主要有两种: 基于群落整体组成数据和基于不同取样地点的相异性矩阵数据, 相关研究主要集中于欧洲、美洲和亚洲地区, 重点关注动物和植物类群。研究发现: (1)生态独特性存在明显的纬度和海拔梯度格局, 但在不同生物类群和研究区域间存在差异; (2)气候、土壤以及群落特征等生物非生物因素主要通过影响物种分布范围、群落的丰富度以及物种组成, 进而塑造不同生物类群的生态独特性格局; (3)生态独特性可以抑制或促进生态系统功能, 这取决于物种组合或特定物种比率的具体变化情况; (4)生态独特性较高的区域往往存在更高比率的稀有物种或濒危物种, 是生物多样性保护的关键区域。最后, 本文总结了以往研究的不足, 并对生态独特性的未来研究进行了展望, 特别强调: (1)深入开展多维度(物种、功能和系统发育)生态独特性研究; (2)关注生态独特性的时空尺度变异规律及其驱动机制; (3)探索新技术和新方法在生态独特性未来评估中的应用。
陈越, 毛子昆, 王绪高 (2024) 基于生态独特性的β多样性研究进展与未来展望. 生物多样性, 32, 24199. DOI: 10.17520/biods.2024199.
Yue Chen, Zikun Mao, Xugao Wang (2024) Research advances and prospects on β diversity based on ecological uniqueness. Biodiversity Science, 32, 24199. DOI: 10.17520/biods.2024199.
图3 2013-2023年间不同类群生态独特性研究案例统计(括号内数字为案例数量)
Fig. 3 Number of studies for each biological taxon in the field of ecological uniqueness from 2013 to 2023 (the number in parentheses represents the number of studies)
影响途径 Pathways | 影响因素 Factors | 过程 Processes | 主要案例 Cases |
---|---|---|---|
物种分布范围 Species range size | 气候稳定性、海拔、 土壤 Climate stability, elevation, and soil | 温度或降水的稳定性影响不同物种的分布范围或特有性(区域气候过滤假说) Regional climate stability influences ecological uniqueness by shaping species range sizes or endemism (regional climate filtering hypothesis) 海拔通过影响水热条件进而影响特定物种的分布范围; 土壤养分条件影响稀有物种的分布范围(局域环境过滤假说) Ecological uniqueness are influenced by distinct hydrological and temperature conditions along elevational gradients that determine the range size of rare species; soil properties may determine ecological uniqueness through altering the abundance of rare species (local environment filtering hypothesis) | Yao et al, Guo et al, Chen et al, |
群落丰富度 Community richness | 历史气候、干扰强度 Historical climate and disturbance intensity | 历史气候的波动通过物种形成、灭绝、扩散事件对区域物种库的大小产生遗留效应, 影响不同区域的物种数量(区域气候过滤假说) Historical climate fluctuations could impose long-lasting effects on species pool via their effects on habitat refugia, migration, range shifting or extinction events (regional climate filtering hypothesis) 人为干扰(火干扰或采伐)通过影响不同物种的资源可利用性, 影响了特定类群的物种丰富度或功能丰富度(干扰程度假说) The intensity of anthropogenic disturbance (e.g., fire or logging) influences species or functional richness through the impact on resource availability (disturbance intensity hypothesis) | Conradi et al, Wang et al, |
物种组成 Species composition | 海拔、气候 Climate and elevation | 海拔高度驱动非生物条件变化, 进一步影响物种的替换或物种丰富度的差异, 形成沿海拔梯度的不同物种组成(局域环境过滤假说) Elevation drives variations in abiotic conditions which further affect species replacement or richness differences, resulting in different species compositions along elevational gradients (local environment filtering hypothesis) 年际或季节性气候波动筛选不同的物种组合, 形成不同群落或区域间的物种组成差异性(区域气候过滤假说) Interannual or seasonal climate fluctuations might select for different combinations of species that could tolerate a wider range of environmental conditions, exhibiting differences in species composition across communities or regions (regional climate filtering hypothesis) | Wang et al, Liu et al, |
表1 影响生态独特性分布的多种潜在途径
Table 1 Multiple potential pathways underlying the distribution of ecological uniqueness
影响途径 Pathways | 影响因素 Factors | 过程 Processes | 主要案例 Cases |
---|---|---|---|
物种分布范围 Species range size | 气候稳定性、海拔、 土壤 Climate stability, elevation, and soil | 温度或降水的稳定性影响不同物种的分布范围或特有性(区域气候过滤假说) Regional climate stability influences ecological uniqueness by shaping species range sizes or endemism (regional climate filtering hypothesis) 海拔通过影响水热条件进而影响特定物种的分布范围; 土壤养分条件影响稀有物种的分布范围(局域环境过滤假说) Ecological uniqueness are influenced by distinct hydrological and temperature conditions along elevational gradients that determine the range size of rare species; soil properties may determine ecological uniqueness through altering the abundance of rare species (local environment filtering hypothesis) | Yao et al, Guo et al, Chen et al, |
群落丰富度 Community richness | 历史气候、干扰强度 Historical climate and disturbance intensity | 历史气候的波动通过物种形成、灭绝、扩散事件对区域物种库的大小产生遗留效应, 影响不同区域的物种数量(区域气候过滤假说) Historical climate fluctuations could impose long-lasting effects on species pool via their effects on habitat refugia, migration, range shifting or extinction events (regional climate filtering hypothesis) 人为干扰(火干扰或采伐)通过影响不同物种的资源可利用性, 影响了特定类群的物种丰富度或功能丰富度(干扰程度假说) The intensity of anthropogenic disturbance (e.g., fire or logging) influences species or functional richness through the impact on resource availability (disturbance intensity hypothesis) | Conradi et al, Wang et al, |
物种组成 Species composition | 海拔、气候 Climate and elevation | 海拔高度驱动非生物条件变化, 进一步影响物种的替换或物种丰富度的差异, 形成沿海拔梯度的不同物种组成(局域环境过滤假说) Elevation drives variations in abiotic conditions which further affect species replacement or richness differences, resulting in different species compositions along elevational gradients (local environment filtering hypothesis) 年际或季节性气候波动筛选不同的物种组合, 形成不同群落或区域间的物种组成差异性(区域气候过滤假说) Interannual or seasonal climate fluctuations might select for different combinations of species that could tolerate a wider range of environmental conditions, exhibiting differences in species composition across communities or regions (regional climate filtering hypothesis) | Wang et al, Liu et al, |
[1] | Ali A (2023) Biodiversity-ecosystem functioning research: Brief history, major trends and perspectives. Biological Conservation, 285, 110210. |
[2] | Allen DC, Bateman HL, Warren PS, de Albuquerque FS, Arnett-Romero S, Harding B (2019) Long-term effects of land-use change on bird communities depend on spatial scale and land-use type. Ecosphere, 10, e02952. |
[3] |
Anderson MJ, Crist TO, Chase JM, Vellend M, Inouye BD, Freestone AL, Sanders NJ, Cornell HV, Comita LS, Davies KF, Harrison SP, Kraft NJB, Stegen JC, Swenson NG (2011) Navigating the multiple meanings of β diversity: A roadmap for the practicing ecologist. Ecology Letters, 14, 19-28.
DOI PMID |
[4] | Arranz I, Fournier B, Lester NP, Shuter BJ, Peres-Neto PR (2022) Species compositions mediate biomass conservation: The case of lake fish communities. Ecology, 103, e3608. |
[5] | Bando FM, Figueiredo BRS, Moi DA, Thomaz SM, Michelan TS, García-Girón J, Heino J, Alahuhta J, Romero GQ, Mormul RP (2023) Invasion by an exotic grass species homogenizes native freshwater plant communities. Journal of Ecology, 111, 799-813. |
[6] | Barton PS, Cunningham SA, Manning AD, Gibb H, Lindenmayer DB, Didham RK (2013) The spatial scaling of beta diversity. Global Ecology and Biogeography, 22, 639-647. |
[7] | Baselga A (2010) Partitioning the turnover and nestedness components of beta diversity. Global Ecology and Biogeography, 19, 134-143. |
[8] |
Cardinale BJ, Matulich KL, Hooper DU, Byrnes JE, Duffy E, Gamfeldt L, Balvanera P, O’Connor MI, Gonzalez A (2011) The functional role of producer diversity in ecosystems. American Journal of Botany, 98, 572-592.
DOI PMID |
[9] | Casanelles-Abella J, Fontana S, Meier E, Moretti M, Fournier B (2023) Spatial mismatch between wild bee diversity hotspots and protected areas. Conservation Biology, 37, e14082. |
[10] | Chen Y, Myers JA, Ordonez A, Yu JH, Ye J, Lin F, Fang S, Mao ZK, Wang XG (2024) Multiple processes jointly determine ecological uniqueness across forest plant life-forms in Northeast China. Journal of Biogeography, 51, 1133-1147. |
[11] |
Conradi T, Van Meerbeek K, Ordonez A, Svenning JC (2020) Biogeographic historical legacies in the net primary productivity of northern hemisphere forests. Ecology Letters, 23, 800-810.
DOI PMID |
[12] | da Silva PG, Hernández MIM, Heino J, Andersen A (2018) Disentangling the correlates of species and site contributions to beta diversity in dung beetle assemblages. Diversity and Distributions, 24, 1674-1686. |
[13] | Dansereau G, Legendre P, Poisot T (2022) Evaluating ecological uniqueness over broad spatial extents using species distribution modelling. Oikos, 5, e09063. |
[14] | Duarte LDS, Debastiani VJ, Freitas AVL, Pillar VD, Peres-Neto P (2016) Dissecting phylogenetic fuzzy weighting: Theory and application in metacommunity phylogenetics. Methods in Ecology and Evolution, 7, 937-946. |
[15] | Dubois R, Proulx R, Pellerin S (2020) Ecological uniqueness of plant communities as a conservation criterion in lake-edge wetlands. Biological Conservation, 243, 108491. |
[16] | García-Navas V, Martínez-Núñez C, Tarifa R, Molina-Pardo JL, Valera F, Salido T, Camacho FM, Rey PJ (2022) Partitioning beta diversity to untangle mechanisms underlying the assembly of bird communities in Mediterranean olive groves. Diversity and Distributions, 28, 112-127. |
[17] | Gibert A, Gray EF, Westoby M, Wright IJ, Falster DS, Wilson S (2016) On the link between functional traits and growth rate: Meta-analysis shows effects change with plant size, as predicted. Journal of Ecology, 104, 1488-1503. |
[18] |
Graham CH, Fine PVA (2008) Phylogenetic beta diversity: Linking ecological and evolutionary processes across space in time. Ecology Letters, 11, 1265-1277.
DOI PMID |
[19] | Guo QF, Qian H, Zhang J (2022) On the relationship between species diversity and range size. Journal of Biogeography, 49, 1911-1919. |
[20] | Harper LM, Lefcheck JS, Whippo R, Jones MS, Foltz Z, Duffy JE (2022) Blinded by the bright: How species-poor habitats contribute to regional biodiversity across a tropical seascape. Diversity and Distributions, 28, 2272-2285. |
[21] | He R, Hu M, Shi H, Zhou Q, Shu X, Zhang KR, Zhang QF, Dang HS (2022) Patterns of species diversity and its determinants in a temperate deciduous broad-leaved forest. Forest Ecosystems, 9, 100062. |
[22] | He SW, Qin CY, Soininen J (2024) A flexible framework to assess patterns and drivers of beta diversity across spatial scales. Ecography, 2024, e06901. |
[23] |
Heino J, Grönroos M (2017) Exploring species and site contributions to beta diversity in stream insect assemblages. Oecologia, 183, 151-160.
DOI PMID |
[24] |
Heino J, Alahuhta J (2019) Knitting patterns of biodiversity, range size and body size in aquatic beetle faunas: Significant relationships but slightly divergent drivers. Ecological Entomology, 44, 413-424.
DOI |
[25] | Heino J, García Girón J, Hämäläinen H, Hellsten S, Ilmonen J, Karjalainen J, Mäkinen T, Nyholm K, Ropponen J, Takolander A, Tolonen KT (2022) Assessing the conservation priority of freshwater lake sites based on taxonomic, functional and environmental uniqueness. Diversity and Distributions, 28, 1966-1978. |
[26] | Hill MJ, White JC, Biggs J, Briers RA, Gledhill D, Ledger ME, Thornhill I, Wood PJ, Hassall C (2021) Local contributions to beta diversity in urban pond networks: Implications for biodiversity conservation and management. Diversity and Distributions, 27, 887-900. |
[27] | Huang SC, Stoof-Leichsenring KR, Liu SS, Courtin J, Andreev AA, Pestryakova LA, Herzschuh U (2021) Plant sedimentary ancient DNA from Far East Russia covering the last 28,000 years reveals different assembly rules in cold and warm climates. Frontiers in Ecology and Evolution, 9, 763747. |
[28] |
Ingala MR, Simmons NB, Wultsch C, Krampis K, Provost KL, Perkins SL (2021) Molecular diet analysis of neotropical bats based on fecal DNA metabarcoding. Ecology and Evolution, 11, 7474-7491.
DOI PMID |
[29] | Jansson R, Dynesius M (2002) The fate of clades in a world of recurrent climatic change: Milankovitch oscillations and evolution. Annual Review of Ecology and Systematics, 33, 741-777. |
[30] | Jiao QJ, Sun Q, Zhang B, Huang WJ, Ye HC, Zhang ZM, Zhang X, Qian BX (2021) A random forest algorithm for retrieving canopy chlorophyll content of wheat and soybean trained with PROSAIL simulations using adjusted average leaf angle. Remote Sensing, 14, 98. |
[31] | Jiménez-Alfaro B, Girardello M, Chytrý M, Svenning JC, Willner W, Gégout JC, Agrillo E, Campos JA, Jandt U, Kącki Z, Šilc U, Slezák M, Tichý L, Tsiripidis I, Turtureanu PD, Ujházyová M, Wohlgemuth T (2018) History and environment shape species pools and community diversity in European beech forests. Nature Ecology & Evolution, 2, 483-490. |
[32] | Jing X, Prager CM, Chen LT, Chu HY, Gotelli NJ, He JS, Shi Y, Yang T, Zhu B, Classen AT, Sanders NJ, Waring BG (2022) The influence of aboveground and belowground species composition on spatial turnover in nutrient pools in alpine grasslands. Global Ecology and Biogeography, 31, 486-500. |
[33] | Kang LY, Chen LY, Li ZL, Wang JJ, Xue K, Deng Y, Delgado-Baquerizo M, Song YT, Zhang DY, Yang GB, Zhou W, Liu XN, Liu FT, Yang YH (2023) Patterns and drivers of prokaryotic communities in thermokarst lake water across Northern Hemisphere. Global Ecology and Biogeography, 32, 2244-2256. |
[34] | Leão H, Siqueira T, Torres NR, de Assis Montag LF (2020) Ecological uniqueness of fish communities from streams in modified landscapes of Eastern Amazonia. Ecological Indicators, 111, 106039. |
[35] | Lefcheck JS, Innes-Gold AA, Brandl SJ, Steneck RS, Torres RE, Rasher DB (2019) Tropical fish diversity enhances coral reef functioning across multiple scales. Science Advances, 5, eaav6420. |
[36] | Legendre P (2014) Interpreting the replacement and richness difference components of beta diversity. Global Ecology and Biogeography, 23, 1324-1334. |
[37] |
Legendre P, De Cáceres M(2013) Beta diversity as the variance of community data: Dissimilarity coefficients and partitioning. Ecology Letters, 16, 951-963.
DOI PMID |
[38] | Levine JM (2016) A trail map for trait-based studies. Nature, 529, 163-164. |
[39] | Li FQ, Tonkin JD, Haase P (2020) Local contribution to beta diversity is negatively linked with community-wide dispersal capacity in stream invertebrate communities. Ecological Indicators, 108, 105715. |
[40] |
Li M, Wei TT, Shi BY, Hao XY, Xu HG, Sun HY (2019) Biodiversity monitoring of freshwater benthic macroinvertebrates using environmental DNA. Biodiversity Science, 27, 480-490. (in Chinese with English abstract)
DOI |
[李萌, 尉婷婷, 史博洋, 郝希阳, 徐海根, 孙红英 (2019) 环境DNA技术在淡水底栖大型无脊椎动物多样性监测中的应用. 生物多样性, 27, 480-490.]
DOI |
|
[41] | Li ZF, Heino J, Zhang JQ, Ge YH, Liu ZY, Xie ZC (2023) Unravelling the factors affecting multiple facets of macroinvertebrate beta diversity in the World’s Third Pole. Journal of Biogeography, 50, 792-804. |
[42] | Liang JJ, Crowther TW, Picard N, Wiser S, Zhou M, Alberti G, Schulze ED, McGuire AD, Bozzato F, Pretzsch H, de-Miguel S, Paquette A, Hérault B, Scherer-Lorenzen M, Barrett CB, Glick HB, Hengeveld GM, Nabuurs GJ, Pfautsch S, Viana H, Vibrans AC, Ammer C, Schall P, Verbyla D, Tchebakova N, Fischer M, Watson JV, Chen HYH, Lei XD, Schelhaas MJ, Lu HC, Gianelle D, Parfenova EI, Salas C, Lee E, Lee B, Kim HS, Bruelheide H, Coomes DA, Piotto D, Sunderland T, Schmid B, Gourlet-Fleury S, Sonké B, Tavani R, Zhu J, Brandl S, Vayreda J, Kitahara F, Searle EB, Neldner VJ, Ngugi MR, Baraloto C, Frizzera L, Bałazy R, Oleksyn J, Zawiła-Niedźwiecki T, Bouriaud O, Bussotti F, Finér L, Jaroszewicz B, Jucker T, Valladares F, Jagodzinski AM, Peri PL, Gonmadje C, Marthy W, O’Brien T, Martin EH, Marshall AR, Rovero F, Bitariho R, Niklaus PA, Alvarez-Loayza P, Chamuya N, Valencia R, Mortier F, Wortel V, Engone-Obiang NL, Ferreira LV, Odeke DE, Vasquez RM, Lewis SL, Reich PB (2016) Positive biodiversity-productivity relationship predominant in global forests. Science, 354, aaf8957. |
[43] | Liu JW, Zhao WQ, Ren ML, Liu YQ, Xu Y, Wang JJ (2022) Contrasting elevational patterns and underlying drivers of stream bacteria and fungi at the regional scale on the Tibetan Plateau. FEMS Microbiology Ecology, 98, fiac050. |
[44] | Liu X, Hao YS, Widagdo FRA, Xie LF, Dong LH, Li FR (2021) Predicting height to crown base of Larix olgensis in Northeast China using UAV-LiDAR data and nonlinear mixed effects models. Remote Sensing, 13, 1834. |
[45] | Maloufi S, Catherine A, Mouillot D, Louvard C, Couté A, Bernard C, Troussellier M (2016) Environmental heterogeneity among lakes promotes hyper β-diversity across phytoplankton communities. Freshwater Biology, 61, 633-645. |
[46] | Moi DA, Alves DC, Figueiredo BRS, Antiqueira PAP, Teixeira de Mello F, Jeppesen E, Romero GQ, Mormul RP, Bonecker CC (2021) Non-native fishes homogenize native fish communities and reduce ecosystem multifunctionality in tropical lakes over 16 years. Science of the Total Environment, 769, 144524. |
[47] | Myers JA, Chase JM, Crandall RM, Jiménez I, Austin A (2015) Disturbance alters beta-diversity but not the relative importance of community assembly mechanisms. Journal of Ecology, 103, 1291-1299. |
[48] | Nakamura G, Vicentin W, Súarez YR, Duarte L (2020) A multifaceted approach to analyzing taxonomic, functional, and phylogenetic beta diversity. Ecology, 101, e03122. |
[49] | Niskanen AKJ, Heikkinen RK, Väre H, Luoto M (2017) Drivers of high-latitude plant diversity hotspots and their congruence. Biological Conservation, 212, 288-299. |
[50] | Pajunen V, Luoto M, Soininen J (2017) Unravelling direct and indirect effects of hierarchical factors driving microbial stream communities. Journal of Biogeography, 44, 2376-2385. |
[51] | Paoli GD, Curran LM, Zak DR (2006) Soil nutrients and beta diversity in the Bornean Dipterocarpaceae: Evidence for niche partitioning by tropical rain forest trees. Journal of Ecology, 94, 157-170. |
[52] | Pearse WD, Legendre P, Peres-Neto PR, Davies TJ (2019) The interaction of phylogeny and community structure: Linking the community composition and trait evolution of clades. Global Ecology and Biogeography, 28, 1499-1511. |
[53] | Perez JAA, Sant’Ana R (2022) Tropicalization of demersal megafauna in the western South Atlantic since 2013. Communications Earth & Environment, 3, 227. |
[54] | Pozzobom UM, Heino J, da Silva Brito MT, Landeiro VL (2020) Untangling the determinants of macrophyte beta diversity in tropical floodplain lakes: Insights from ecological uniqueness and species contributions. Aquatic Sciences, 82, 56. |
[55] | Qian H, Chen SB, Mao LF, Ouyang ZY (2013) Drivers of β-diversity along latitudinal gradients revisited. Global Ecology and Biogeography, 22, 659-670. |
[56] | Qian H, Jin Y, Leprieur F, Wang XL, Deng T (2020) Geographic patterns and environmental correlates of taxonomic and phylogenetic beta diversity for large-scale angiosperm assemblages in China. Ecography, 43, 1706-1716. |
[57] |
Qiao X, Li Q, Jiang Q, Lu J, Franklin S, Tang Z, Wang Q, Zhang J, Lu Z, Bao D, Guo Y, Liu H, Xu Y, Jiang M (2015) Beta diversity determinants in Badagongshan, a subtropical forest in central China. Scientific Reports, 5, 17043.
DOI PMID |
[58] | Qiao XT, Zhang NL, Zhang CY, Zhang ZH, Zhao XH, von Gadow K (2021) Unravelling biodiversity-productivity relationships across a large temperate forest region. Functional Ecology, 35, 2808-2820. |
[59] |
Ren Y, Tao SL, Hu TY, Yang HT, Guan HC, Su YJ, Cheng K, Chen MX, Wan HW, Guo QH (2022) The outlook and system construction for monitoring Essential Biodiversity Variables based on remote sensing: The case of China. Biodiversity Science, 30, 22530. (in Chinese with English abstract)
DOI |
[任淯, 陶胜利, 胡天宇, 杨海涛, 关宏灿, 苏艳军, 程凯, 陈梦玺, 万华伟, 郭庆华 (2022) 中国生物多样性核心监测指标遥感产品体系构建与思考. 生物多样性. 30, 22530.] | |
[60] | Ricotta C, Carranza ML, Avena G (2002) Computing β-diversity from species-area curves. Basic and Applied Ecology, 3, 15-18. |
[61] | Rosenzweig ML (1995) Species Diversity in Space and Time. Cambridge University Press, Cambridge. |
[62] | Sasaki T, Ishii NI, Makishima D, Rui ST, Goto A, Kawai Y, Taniguchi H, Okano K, Matsuo A, Lochner A, Cesarz S, Suyama Y, Hikosaka K, Eisenhauer N (2022) Plant and microbial community composition jointly determine moorland multifunctionality. Journal of Ecology, 110, 2507-2521. |
[63] |
Si XF, Zhao YH, Chen CW, Ren P, Zeng D, Wu LB, Ding P (2017) Beta-diversity partitioning: Methods, applications and perspectives. Biodiversity Science, 25, 464-480. (in Chinese with English abstract)
DOI |
[斯幸峰, 赵郁豪, 陈传武, 任鹏, 曾頔, 吴玲兵, 丁平 (2017) Beta多样性分解: 方法、应用与展望. 生物多样性, 25, 464-480.]
DOI |
|
[64] | Soininen J, McDonald R, Hillebrand H (2007) The distance decay of similarity in ecological communities. Ecography, 30, 3-12. |
[65] | Song ZB, Zhou JC, Tan L, Tang T (2023) Altitudinal patterns of benthic algal communities in plateau rivers: A case study of Heiqu and Xuequ in Tibet. Ecology and Environmental Sciences, 32, 274-282. (in Chinese with English abstract) |
[宋志斌, 周佳诚, 谭路, 唐涛 (2023) 高原河流着生藻类群落沿海拔梯度的变化特征——以西藏黑曲、雪曲为例. 生态环境学报, 32, 274-282.]
DOI |
|
[66] | Sor R, Legendre P, Lek S (2018) Uniqueness of sampling site contributions to the total variance of macroinvertebrate communities in the Lower Mekong Basin. Ecological Indicators, 84, 425-432. |
[67] | Su YJ, Guo QH, Xue BL, Hu TY, Alvarez O, Tao SL, Fang JY (2016) Spatial distribution of forest aboveground biomass in China: Estimation through combination of spaceborne LiDAR, optical imagery, and forest inventory data. Remote Sensing of Environment, 173, 187-199. |
[68] | Suding KN, Collins SL, Gough L, Clark C, Cleland EE, Gross KL, Milchunas DG, Pennings S (2005) Functional- and abundance-based mechanisms explain diversity loss due to N fertilization. Proceedings of the National Academy of Sciences, USA, 102, 4387-4392. |
[69] | Sunday JM, Bates AE, Dulvy NK (2011) Global analysis of thermal tolerance and latitude in ectotherms. Proceedings of the Royal Society B: Biological Sciences, 278, 1823-1830. |
[70] |
Tan LZ, Fan CY, Zhang CY, von Gadow K, Fan XH (2017) How beta diversity and the underlying causes vary with sampling scales in the Changbai Mountain forests. Ecology and Evolution, 7, 10116-10123.
DOI PMID |
[71] | Tan LZ, Fan CY, Zhang CY, Zhao XH (2019) Understanding and protecting forest biodiversity in relation to species and local contributions to beta diversity. European Journal of Forest Research, 138, 1005-1013. |
[72] | Teittinen A, Wang JJ, Strömgård S, Soininen J (2017) Local and geographical factors jointly drive elevational patterns in three microbial groups across subarctic ponds. Global Ecology and Biogeography, 26, 973-982. |
[73] |
Tian J, Zhu SY, Zhang XF, He LW, Gu XD, Guan TP, Li S (2021) The diversity of large- and medium-sized terrestrial mammals and birds in the Giant Panda National Park: A meta-analysis based on camera-trapping data. Biodiversity Science, 29, 1490-1504. (in Chinese with English abstract)
DOI |
[田佳, 朱淑怡, 张晓峰, 何礼文, 古晓东, 官天培, 李晟 (2021) 大熊猫国家公园的地栖大中型鸟兽多样性现状: 基于红外相机数据的分析. 生物多样性, 29, 1490-1504.]
DOI |
|
[74] | Tilman D, Isbell F, Cowles JM (2014) Biodiversity and ecosystem functioning. Annual Review of Ecology, Evolution, and Systematics, 45, 471-493. |
[75] | Tonkin JD, Heino J, Sundermann A, Haase P, Jähnig SC (2016) Context dependency in biodiversity patterns of central German stream metacommunities. Freshwater Biology, 61, 607-620. |
[76] | Tsang TPN, Bonebrake TC, Ponisio LC, Cadotte MW (2023) Controlling for the effects of environmental availability when testing how the environment determines community compositional uniqueness. Methods in Ecology and Evolution, 14, 3112-3122. |
[77] | van der Plas F (2019) Biodiversity and ecosystem functioning in naturally assembled communities. Biological Reviews, 94, 1220-1245. |
[78] | van der Plas F, Hennecke J, Chase JM, van Ruijven J, Barry KE (2023) Universal beta-diversity-functioning relationships are neither observed nor expected. Trends in Ecology & Evolution, 38, 532-544. |
[79] | Vilmi A, Karjalainen SM, Heino J, MacIsaac H (2017) Ecological uniqueness of stream and lake diatom communities shows different macroecological patterns. Diversity and Distributions, 23, 1042-1053. |
[80] | Wang HF, Zhang R, Cai Y, Yang Q, Lv GH (2022) Ecological uniqueness and the determinants in arid desert ecosystems of Northwest China. Global Ecology and Conservation, 34, e02005. |
[81] | Wang JJ, Legendre P, Soininen J, Yeh CF, Graham E, Stegen J, Casamayor EO, Zhou JZ, Shen J, Pan FY (2020) Temperature drives local contributions to beta diversity in mountain streams: Stochastic and deterministic processes. Global Ecology and Biogeography, 29, 420-432. |
[82] | Wang SY, Jiménez-Alfaro B, Pan SA, Yu JH, Sanaei A, Sayer EJ, Ye J, Hao ZQ, Fang S, Lin F, Yuan ZQ, Wang XG (2021) Differential responses of forest strata species richness to paleoclimate and forest structure. Forest Ecology and Management, 499, 119605. |
[83] | Wang ZH, Fang JY, Tang ZY, Shi L (2012) Geographical patterns in the beta diversity of China’s woody plants: The influence of space, environment and range size. Ecography, 35, 1092-1102. |
[84] | Whittaker RH (1960) Vegetation of the Siskiyou Mountains, Oregon and California. Ecological Monographs, 30, 279-338. |
[85] |
Wu H, Xu XH, Feng XJ, Mi XC, Su YJ, Xiao ZS, Zhu CD, Cao L, Gao X, Song CY, Guo LD, Wu DH, Jiang JP, Shen H, Ma KP (2022) Progress and prospect of China biodiversity monitoring from a global perspective. Biodiversity Science, 30, 22434. (in Chinese with English abstract)
DOI |
[吴慧, 徐学红, 冯晓娟, 米湘成, 苏艳军, 肖治术, 朱朝东, 曹垒, 高欣, 宋创业, 郭良栋, 吴东辉, 江建平, 沈浩, 马克平 (2022) 全球视角下的中国生物多样性监测进展与展望. 生物多样性, 30, 22434.]
DOI |
|
[86] | Xia ZJ, Heino J, Yu FD, He YF, Liu F, Wang JW (2022) Spatial patterns of site and species contributions to beta diversity in riverine fish assemblages. Ecological Indicators, 145, 109728. |
[87] | Xu WB, Deng SS, Liang D, Cheng XJ (2021) A crown morphology-based approach to individual tree detection in subtropical mixed broadleaf urban forests using UAV LiDAR data. Remote Sensing, 13, 1278. |
[88] | Xu WB, Svenning JC, Chen GK, Chen B, Huang JH, Ma KP (2018) Plant geographical range size and climate stability in China: Growth form matters. Global Ecology and Biogeography, 27, 506-517. |
[89] | Yang XQ, Li Y, Niu B, Chen QY, Hu YL, Yang YB, Song LL, Wang JJ, Zhang GX (2022) Temperature and precipitation drive elevational patterns of microbial beta diversity in alpine grasslands. Microbial Ecology, 84, 1141-1153. |
[90] | Yao J, Huang JH, Ding Y, Xu Y, Xu H, Zang RG (2021) Ecological uniqueness of species assemblages and their determinants in forest communities. Diversity and Distributions, 27, 454-462. |
[91] |
Yuan ZQ, Ali A, Loreau M, Ding F, Liu SF, Sanaei A, Zhou WM, Ye J, Lin F, Fang S, Hao ZQ, Wang XG, Le Bagousse-Pinguet Y (2021) Divergent above- and below-ground biodiversity pathways mediate disturbance impacts on temperate forest multifunctionality. Global Change Biology, 27, 2883-2894.
DOI PMID |
[92] | Yuan ZQ, Ali A, Ruiz-Benito P, Jucker T, Mori AS, Wang SP, Zhang XK, Li H, Hao ZQ, Wang XG, Loreau M, Allan E (2020) Above- and below-ground biodiversity jointly regulate temperate forest multifunctionality along a local-scale environmental gradient. Journal of Ecology, 108, 2012-2024. |
[93] | Zhang CY, He FL, Zhang ZH, Zhao XH, von Gadow K, Field R (2020) Latitudinal gradients and ecological drivers of β-diversity vary across spatial scales in a temperate forest region. Global Ecology and Biogeography, 29, 1257-1264. |
[94] |
Zhang RY, Tian DS, Wang JS, Pan JX, Zhu JT, Li Y, Yan YJ, Song L, Wang S, Chen C, Niu SL (2022) Dryness weakens the positive effects of plant and fungal β diversities on above- and belowground biomass. Global Change Biology, 28, 6629-6639.
DOI PMID |
[95] | Zhao YH, Sanders NJ, Liu J, Jin TH, Zhou HN, Lu RS, Ding P, Si XF (2021) beta diversity among ant communities on fragmented habitat islands: The roles of species trait, phylogeny and abundance. Ecography, 44, 1568-1578. |
[96] |
Zhong YL, Chu CJ, Myers JA, Gilbert GS, Lutz JA, Stillhard J, Zhu K, Thompson J, Baltzer JL, He FL, LaManna JA, Davies SJ, Aderson-Teixeira KJ, Burslem DFRP, Alonso A, Chao KJ, Wang XG, Gao LM, Orwig DA, Yin X, Sui XH, Su ZY, Abiem I, Bissiengou P, Bourg N, Butt N, Cao M, Chang-Yang CH, Chao WC, Chapman H, Chen YY, Coomes DA, Cordell S, de Oliveira AA, Du H, Fang SQ, Giardina CP, Hao ZQ, Hector A, Hubbell SP, Janík D, Jansen PA, Jiang MX, Jin GZ, Kenfack D, Král K, Larson AJ, Li BH, Li XK, Li YD, Lian JY, Lin LX, Liu F, Liu YK, Liu Y, Luan FC, Luo YH, Ma KP, Malhi Y, McMahon SM, McShea W, Memiaghe H, Mi XC, Morecroft M, Novotny V, O’Brien MJ, den Ouden J, Parker GG, Qiao XJ, Ren HB, Reynolds G, Samonil P, Sang WG, Shen GC, Shen ZQ, Song GZM, Sun IF, Tang H, Tian SY, Uowolo AL, Uriarte M, Wang B, Wang XH, Wang YS, Weiblen GD, Wu ZH, Xi NX, Xiang WS, Xu H, Xu K, Ye WH, Yu MJ, Zeng FP, Zhang MH, Zhang YM, Zhu L, Zimmerman JK (2021) Arbuscular mycorrhizal trees influence the latitudinal beta-diversity gradient of tree communities in forests worldwide. Nature Communications, 12, 3137.
DOI PMID |
[97] | Zhou SC, Wu NC, Zhang M, Peng WQ, He FZ, Guo K, Yan SY, Zou Y, Qu XD (2020) Local environmental, geo-climatic and spatial factors interact to drive community distributions and diversity patterns of stream benthic algae, macroinvertebrates and fishes in a large basin, Northeast China. Ecological Indicators, 117, 106673. |
[98] |
Zuloaga J, Currie DJ, Kerr JT (2019) The origins and maintenance of global species endemism. Global Ecology and Biogeography, 28, 170-183.
DOI |
[1] | 郭雨桐 李素萃 王智 解焱 杨雪 周广金 尤春赫 朱萨宁 高吉喜. 全国自然保护地国家重点保护野生物种覆盖度及其分布状况分析评估[J]. 生物多样性, 2025, 33(2): 24423-. |
[2] | 宋阳 柳军 何少林 徐薇 程琛 刘博 余绩庆. 我国能源企业生物多样性保护主流化管理路径[J]. 生物多样性, 2025, 33(1): 24345-. |
[3] | 刘蕾 郝志明 杜乐山 刘海鸥. 《昆明-蒙特利尔全球生物多样性框架》视角下将性别考虑纳入中国生物多样性治理[J]. 生物多样性, 2025, 33(1): 24235-. |
[4] | 李蓉姣, 董江海, 郑文芳, 刘入源, 赵立娟, 高瑞贺. 关帝山不同海拔杨桦混交林土壤动物多样性特征及其影响因素[J]. 生物多样性, 2024, 32(9): 24070-. |
[5] | 韩永金, 梁咏亮, 佟一杰, 丁强, 田哲豪, 李露露, 李晓娟, 申昊, 朱亚超, 刘宁, 王新谱, 白明. 基于三种被动式采集方法采集的宁夏贺兰山甲虫标本照片数据集[J]. 生物多样性, 2024, 32(9): 24054-. |
[6] | 谷际岐, 陈建平, 赖江山. 大语言模型在生物多样性研究中的应用[J]. 生物多样性, 2024, 32(9): 24258-. |
[7] | 金泉泉, 向颖, 王华, 习新强. 南京仙林大学城三种绿地类型中果蝇多样性及其被寄生率[J]. 生物多样性, 2024, 32(8): 24156-. |
[8] | 苏荣菲, 陈睿山, 俞霖琳, 吴婧彬, 康燕. 基于红外相机调查的上海市长宁区社区生境花园生物多样性[J]. 生物多样性, 2024, 32(8): 24068-. |
[9] | 胡志清, 董路. 城市化对鸟类参与的种间互作的影响[J]. 生物多样性, 2024, 32(8): 24048-. |
[10] | 王艳丽, 张英, 戚春林, 张昌达, 史佑海, 杜彦君, 丁琼. 海南热带雨林国家公园生物多样性热点与保护空缺区域识别: 基于大型真菌与植物视角[J]. 生物多样性, 2024, 32(7): 24081-. |
[11] | 马骅, 李常青, 余品锋, 陈杰, 贺天耀, 王可洪. 澎溪河消落带大型土壤动物群落分布格局及其影响因素[J]. 生物多样性, 2024, 32(7): 24117-. |
[12] | 顾燚芸, 薛嘉祈, 高金会, 谢心仪, 韦铭, 雷进宇, 闻丞. 一种基于公众科学数据的区域性鸟类多样性评价方法[J]. 生物多样性, 2024, 32(7): 24080-. |
[13] | 姜熠辉, 刘岳, 曾旭, 林喆滢, 王楠, 彭吉豪, 曹玲, 曾聪. 东海六个国家级海洋保护区鱼类多样性和连通性[J]. 生物多样性, 2024, 32(6): 24128-. |
[14] | 田瑜, 李俊生. 《昆明-蒙特利尔全球生物多样性框架》“3030”目标的内涵及实现路径分析[J]. 生物多样性, 2024, 32(6): 24086-. |
[15] | 连佳丽, 陈婧, 杨雪琴, 赵莹, 罗叙, 韩翠, 赵雅欣, 李建平. 荒漠草原植物多样性和微生物多样性对降水变化的响应[J]. 生物多样性, 2024, 32(6): 24044-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn