生物多样性 ›› 2018, Vol. 26 ›› Issue (6): 545-553. DOI: 10.17520/biods.2017320
吴初平1, 韩文娟2, 江波1, 刘博文3, 袁位高1, 沈爱华1,*(), 黄玉洁1, 朱锦茹1
收稿日期:
2017-12-01
接受日期:
2018-04-02
出版日期:
2018-06-20
发布日期:
2018-09-11
通讯作者:
沈爱华
作者简介:
# 共同第一作者
基金资助:
Chuping Wu1, Wenjuan Han2, Bo Jiang1, Bowen Liu3, Weigao Yuan1, Aihua Shen1,*(), Yujie Huang1, Jinru Zhu1
Received:
2017-12-01
Accepted:
2018-04-02
Online:
2018-06-20
Published:
2018-09-11
Contact:
Shen Aihua
About author:
# Co-first authors
摘要:
迄今生物多样性与生态系统功能关系的研究主要在物种组成随机配置的人工生态系统中进行, 在自然生态系统中研究较少, 且未考虑环境因子如何影响生态系统功能及其与生物多样性的关系。本研究选取亚热带广泛分布的次生林为研究对象, 利用模型拟合的方法, 探讨亚热带次生林中物种丰富度与生物量和生产力之间的关系, 以及环境因子(海拔、坡度、坡向、土层厚度)和次生林恢复时间(林龄)对生物量、生产力、物种丰富度与生物量和生产力间关系的影响。结果表明, 当不考虑环境因子时, 物种丰富度与生物量之间存在显著的线性正相关关系, 而与生产力之间存在显著的二次关系(先增加后减少的驼峰型)。当考虑环境因子时, 个体密度和土层厚度对生物量具有显著影响, 而环境因子对生产力并无显著效应。在坡度较陡、坡向朝南及土层较厚的环境条件下, 物种丰富度与生物量具有显著的线性正相关关系; 而在坡度较缓、坡向朝北及土层较薄的环境条件下, 物种丰富度不影响生物量。在较高海拔环境条件下, 生产力随物种丰富度先增加后减少(驼峰形状), 而在其他环境条件下, 生产力均不响应物种丰富度。以上结果说明自然森林生态系统中物种丰富度与生物量和生产力的关系存在差异, 且其相互间的关系依赖于环境因子。
吴初平, 韩文娟, 江波, 刘博文, 袁位高, 沈爱华, 黄玉洁, 朱锦茹 (2018) 浙江定海次生林内物种丰富度与生物量和生产力关系的环境依赖性. 生物多样性, 26, 545-553. DOI: 10.17520/biods.2017320.
Chuping Wu, Wenjuan Han, Bo Jiang, Bowen Liu, Weigao Yuan, Aihua Shen, Yujie Huang, Jinru Zhu (2018) Relationships between species richness and biomass/productivity depend on environmental factors in secondary forests of Dinghai, Zhejiang Province. Biodiversity Science, 26, 545-553. DOI: 10.17520/biods.2017320.
模型 Models | F | R2 | P | AICc |
---|---|---|---|---|
BIO~S | 5.436 | 0.110 | 0.02 | 818.941 |
BIO~ S + S 2 | 2.700 | 0.116 | 0.07 | 821.261 |
∆BIO~S | 0.545 | 0.012 | 0.46 | -34.944 |
∆BIO ~ S + S 2 | 3.075 | 0.125 | 0.05 | -38.123 |
表1 物种丰富度与生物量及生产力间的最优模型分析
Table 1 Analysis of the optimal model between species richness and biomass/productivity
模型 Models | F | R2 | P | AICc |
---|---|---|---|---|
BIO~S | 5.436 | 0.110 | 0.02 | 818.941 |
BIO~ S + S 2 | 2.700 | 0.116 | 0.07 | 821.261 |
∆BIO~S | 0.545 | 0.012 | 0.46 | -34.944 |
∆BIO ~ S + S 2 | 3.075 | 0.125 | 0.05 | -38.123 |
图1 物种丰富度与群落生物量(a)和生产力(b)之间的关系。其中(a)生物量指研究样方20 m × 20 m中2015年所调查个体生物量的总和; (b)生产力指研究样方中2012年和2015年两次调查生物量的比值。虚线为95%置信区间, 实线为表1中具有最低AICc值的模型。
Fig. 1 Relationships between species richness and biomass (a) / productivity (b). The biomass in (a) means the total biomass in each plot (20 m × 20 m) in 2015, and the productivity in (b) means the ration of biomass between 2012 and 2015 in each plot. Dotted lines refer to the 95% confidence interval. Solid lines fitted by the model with lowest AICc value in the Table 1.
估计值 Estimate | 标准误 SE | t | P | ||
---|---|---|---|---|---|
生物量 Biomass (BIO) | 截距 Intercept | 8.141 | 0.073 | 111.036 | < 0.001 |
个体密度 Density (ind./ha) | 0.221 | 0.076 | 2.900 | < 0.01 | |
土壤厚度 Soil depth (cm) | 0.136 | 0.075 | 1.815 | 0.07 | |
物种丰富度 Species richness | 0.126 | 0.076 | 1.646 | 0.10 | |
生产力 Productivity (∆BIO) | 截距 Intercept | 0.147 | 0.020 | 7.665 | < 0.001 |
物种丰富度 Species richness | 0.265 | 0.103 | 2.590 | < 0.05 | |
物种丰富度的平方 Square of species richness | -0.249 | 0.102 | -2.434 | < 0.05 |
表2 显著影响生物量及生产力的环境和群落因子
Table 2 The significant environmental and community factors influencing the biomass and productivity
估计值 Estimate | 标准误 SE | t | P | ||
---|---|---|---|---|---|
生物量 Biomass (BIO) | 截距 Intercept | 8.141 | 0.073 | 111.036 | < 0.001 |
个体密度 Density (ind./ha) | 0.221 | 0.076 | 2.900 | < 0.01 | |
土壤厚度 Soil depth (cm) | 0.136 | 0.075 | 1.815 | 0.07 | |
物种丰富度 Species richness | 0.126 | 0.076 | 1.646 | 0.10 | |
生产力 Productivity (∆BIO) | 截距 Intercept | 0.147 | 0.020 | 7.665 | < 0.001 |
物种丰富度 Species richness | 0.265 | 0.103 | 2.590 | < 0.05 | |
物种丰富度的平方 Square of species richness | -0.249 | 0.102 | -2.434 | < 0.05 |
图2 不同环境条件下生物量和生产力的差异。其中生物量指研究样方20 m × 20 m中2015年所调查个体生物量的总和; 生产力指研究样方中2012和2015年两次调查生物量的比值。
Fig. 2 Variance of biomass and productivity between different environmental gradients. The biomass means the total biomass in each plot (20 m × 20 m) in 2015, and the productivity means the ration of biomass between 2012 and 2015 in each plot.
范围 Ranges | 样方数 No. of plots | 功能变量 Functions | 一次方程 Linear equation | R2 | 二次方程 Quadratic equation | R2 | ΔAICc | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
BIC | AICc | Sig. | BIC | AICc | Sig. | |||||||
海拔 Elevation (m) | ≤ 65 | 23 | BIO | 423.583 | 421.439 | + | 0.07 | 426.317 | 423.997 | +, - | 0.08 | 2.558 |
∆BIO | -3.744 | -5.887 | + | 0.02 | -3.257 | -5.577 | +, - | 0.12 | 0.310 | |||
> 65 | 23 | BIO | 403.055 | 400.912 | + | 0.20* | 405.131 | 402.811 | -, + | 0.23# | 1.899 | |
∆BIO | -23.754 | -25.897 | + | 0.02 | -26.458 | -28.778 | +, - | 0.24# | -2.881 | |||
坡度 Slope | ≤ 20° | 33 | BIO | 596.410 | 592.748 | + | 0.01 | 598.983 | 594.426 | +, - | 004 | 1.678 |
∆BIO | -15.746 | -19.408 | + | 0.03 | -14.324 | -18.882 | +, - | 0.09 | 0.526 | |||
> 20° | 13 | BIO | 227.108 | 228.079 | + | 0.59** | 227.930 | 230.671 | -, + | 0.64** | 2.592 | |
∆BIO | -10.178 | -9.206 | + | 0.01 | -11.306 | -8.566 | +, - | 0.24 | 0.640 | |||
坡向 Aspect | 南、西南 South, Southwest | 21 | BIO | 370.428 | 368.706 | + | 0.19* | 371.462 | 369.784 | -, + | 0.26# | 1.078 |
西、东南 West, Southeast | ∆BIO | -25.380 | -27.102 | + | 0.01 | -26.650 | -28.328 | +, - | 0.19 | -1.226 | ||
东、东北 East, Northeast | 25 | BIO | 456.261 | 453.747 | + | 0.07 | 457.746 | 454.871 | +, - | 0.14 | 1.124 | |
北、西北 North, Northwest | ∆BIO | -4.620 | -7.133 | + | 0.02 | -3.648 | -6.524 | +, - | 0.10 | 0.609 | ||
土层厚度 Soil depth (cm) | < 40 | 26 | BIO | 454.222 | 451.539 | + | 0.01 | 457.463 | 454.335 | +, - | 0.01 | 2.996 |
∆BIO | -14.875 | -17.559 | + | 0.04 | -11.992 | -15.119 | +, - | 0.06 | 2.440 | |||
≥ 40 | 20 | BIO | 367.197 | 365.710 | + | 0.14# | 369.428 | 368.112 | +, - | 0.17 | 2.402 | |
∆BIO | -12.855 | -14.342 | + | 0.03 | -13.070 | -14.386 | +, - | 0.17 | -0.044 | |||
林龄 Forest age | ≤ 15 | 22 | BIO | 404.116 | 402.176 | + | 0.05 | 406.959 | 404.948 | -, + | 0.06 | 2.772 |
∆BIO | -13.638 | -15.578 | - | 0.01 | -14.995 | -17.006 | +, - | 0.14 | -1.428 | |||
> 15 | 24 | BIO | 422.094 | 419.760 | + | 0.20* | 425.249 | 422.642 | -, + | 0.20# | 2.882 | |
∆BIO | -9.905 | -12.239 | + | 0.02 | -8.569 | -11.176 | +, - | 0.09 | 1.063 |
表3 不同环境条件下物种丰富度与生物量和生产力的关系
Table 3 Relationships between species richness and biomass/productivity in different environmental gradients
范围 Ranges | 样方数 No. of plots | 功能变量 Functions | 一次方程 Linear equation | R2 | 二次方程 Quadratic equation | R2 | ΔAICc | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
BIC | AICc | Sig. | BIC | AICc | Sig. | |||||||
海拔 Elevation (m) | ≤ 65 | 23 | BIO | 423.583 | 421.439 | + | 0.07 | 426.317 | 423.997 | +, - | 0.08 | 2.558 |
∆BIO | -3.744 | -5.887 | + | 0.02 | -3.257 | -5.577 | +, - | 0.12 | 0.310 | |||
> 65 | 23 | BIO | 403.055 | 400.912 | + | 0.20* | 405.131 | 402.811 | -, + | 0.23# | 1.899 | |
∆BIO | -23.754 | -25.897 | + | 0.02 | -26.458 | -28.778 | +, - | 0.24# | -2.881 | |||
坡度 Slope | ≤ 20° | 33 | BIO | 596.410 | 592.748 | + | 0.01 | 598.983 | 594.426 | +, - | 004 | 1.678 |
∆BIO | -15.746 | -19.408 | + | 0.03 | -14.324 | -18.882 | +, - | 0.09 | 0.526 | |||
> 20° | 13 | BIO | 227.108 | 228.079 | + | 0.59** | 227.930 | 230.671 | -, + | 0.64** | 2.592 | |
∆BIO | -10.178 | -9.206 | + | 0.01 | -11.306 | -8.566 | +, - | 0.24 | 0.640 | |||
坡向 Aspect | 南、西南 South, Southwest | 21 | BIO | 370.428 | 368.706 | + | 0.19* | 371.462 | 369.784 | -, + | 0.26# | 1.078 |
西、东南 West, Southeast | ∆BIO | -25.380 | -27.102 | + | 0.01 | -26.650 | -28.328 | +, - | 0.19 | -1.226 | ||
东、东北 East, Northeast | 25 | BIO | 456.261 | 453.747 | + | 0.07 | 457.746 | 454.871 | +, - | 0.14 | 1.124 | |
北、西北 North, Northwest | ∆BIO | -4.620 | -7.133 | + | 0.02 | -3.648 | -6.524 | +, - | 0.10 | 0.609 | ||
土层厚度 Soil depth (cm) | < 40 | 26 | BIO | 454.222 | 451.539 | + | 0.01 | 457.463 | 454.335 | +, - | 0.01 | 2.996 |
∆BIO | -14.875 | -17.559 | + | 0.04 | -11.992 | -15.119 | +, - | 0.06 | 2.440 | |||
≥ 40 | 20 | BIO | 367.197 | 365.710 | + | 0.14# | 369.428 | 368.112 | +, - | 0.17 | 2.402 | |
∆BIO | -12.855 | -14.342 | + | 0.03 | -13.070 | -14.386 | +, - | 0.17 | -0.044 | |||
林龄 Forest age | ≤ 15 | 22 | BIO | 404.116 | 402.176 | + | 0.05 | 406.959 | 404.948 | -, + | 0.06 | 2.772 |
∆BIO | -13.638 | -15.578 | - | 0.01 | -14.995 | -17.006 | +, - | 0.14 | -1.428 | |||
> 15 | 24 | BIO | 422.094 | 419.760 | + | 0.20* | 425.249 | 422.642 | -, + | 0.20# | 2.882 | |
∆BIO | -9.905 | -12.239 | + | 0.02 | -8.569 | -11.176 | +, - | 0.09 | 1.063 |
[1] | Ali A, Yan ER (2017) The forest strata-dependent relationship between biodiversity and aboveground biomass within a subtropical forest. Forest Ecology & Management, 401, 125-134. |
[2] | Barrufol M, Schmid B, Bruelheide H, Chi XL, Hector A, Ma KP, Michalski S, Tang ZY, Niklaus PA (2013) Biodiversity promotes tree growth during succession in subtropical forest. PLoS ONE, 8, e81246. |
[3] | Bruelheide H, Nadrowski K, Assmann T, Bauhus J, Both S, Buscot F, Chen XY, Ding BY, Durka W, Erfmeier A, Gutknecht JLM, Guo DL, Guo LD, Härdtle W, He JS, Klein AM, Kühn P, Liang Y, Liu XJ, Michalski S, Niklaus PA, Pei KQ, Scherer-Lorenzen M, Scholten T, Schuldt A, Seidler G, Trogisch S, Oheimb G, Welk E, Wirth C, Wubet T, Yang XF, Yu MJ, Zhang SR, Zhou HZ, Fischer M, Ma KP, Schmid B (2014) Designing forest biodiversity experiments: General considerations illustrated by a new large experiment in subtropical China. Methods in Ecology and Evolution, 5, 74-89. |
[4] | Burnham KP, Anderson DR (2010) Model Selection and Multi-model Inference: A Practical Information Theoretic Approach. Springer, New York. |
[5] | Caspersen JP, Pacala SW (2001) Successional diversity and forest ecosystem function. Ecological Research, 16, 895-903. |
[6] | Cavanaugh KC, Gosnell JS, Davis SL, Davis JS, Ahumada J, Boundja P, Clark DB, Mugerwa B, Jansen PA, O’Brien TG, Rovero F, Sheil D, Vasquez R, Andelman S (2014) Carbon storage in tropical forests correlates with taxonomic diversity and functional dominance on a global scale. Global Ecology Biogeography, 23, 563-573. |
[7] | Cadotte MW, Cavender-Bares J, Tilman D, Oakley TH (2009) Using phylogenetic, functional and trait diversity to understand patterns of plant community productivity. PLoS ONE, 4, e5695. |
[8] | Corlett RT (2013) Where are the subtropics? Biotropica, 45, 273-275. |
[9] | Duffy JE (2009) Why biodiversity is important to the functioning of real-world ecosystems. Frontiers in Ecology and the Environment, 7, 437-444. |
[10] | Fraser LH, Pither J, Jentsch A, Sternberg M, Zobel M, Askarizadeh D, Bartha S, Beierkuhnlein C, Bennett JA, Bittel A, Boldgiv B, Boldrini II, Bork E, Brown L, Cabido M, Cahill J, Carlyle CN, Campetella G, Chelli S, Cohen O, Csergo AM, Díaz S, Enrico L, Ensing D, Fidelis A, Fridley JD, Foster B, Garris H, Goheen JR, Henry HA, Hohn M, Jouri MH, Klironomos J, Koorem K, Lawrence-Lodge R, Long R, Manning P, Mitchell R, Moora M, Müller SC, Nabinger C, Naseri K, Overbeck GE, Palmer TM, Parsons S, Pesek M, Pillar VD, Pringle RM, Roccaforte K, Schmidt A, Shang Z, Stahlmann R, Stotz GC, Sugiyama S, Szentes S, Thompson D, Tungalag R, Undrakhbold S, van Rooyen M, Wellstein C, Wilson JB, Zupo T (2015) Worldwide evidence of a unimodal relationship between productivity and plant species richness. Science, 349, 302-305. |
[11] | Flombaum P, Sala OE (2008) Higher effect of plant species diversity on productivity in natural than artificial ecosystems. Proceedings of the National Academy of Sciences, USA, 105, 6087-6090. |
[12] | Hair JF, Anderson RE, Tatham RL, Black WC (1998) Multivariate Data Analysis, 5th edn. Prentice Hall, New Jersey. |
[13] | Hautier Y, Hector A (2009) Competition for light causes plant biodiversity loss after eutrophication. Science, 324, 636-638. |
[14] | He JS, Fang JY, Ma KP, Huang JH (2003) Biodiversity and ecosystem productivity: Why is there a discrepancy in the relationship between experimental and natural ecosystems? Acta Phytoecologica Sinica, 27, 835-843. (in Chinese with English abstract) |
[贺金生, 方精云, 马克平, 黄建辉 (2003) 生物多样性与生态系统生产力: 为什么野外观测和受控实验结果不一致?植物生态学报, 27, 835-843.] | |
[15] | Hortal J, Triantis KA, Meiri S, Sfenthourakis S (2009) Island species richness increases with habitat diversity. The American Naturalist, 174, E205. |
[16] | Huang YY, Chen YX, Castro-Izaguirre N, Baruffol M, Brezzi M, Lang AN, Li Y, Haerdtle W, von Oheimb G, Yang XF, Pei KQ, Both S, Liu XJ, Yang B, Eichenberg D, Assmann T, Bauhus J, Behrens T, Buscot F, Chen XY, Chesters D, Ding BY, Durka W, Erfmeier A, Fang JY, Fischer M, Guo LD, Guo DL, Gutknecht JLM, He JS, He CL, Hector A, Hoenig L, Hu RY, Klein, AM, Kuehn P, Liang Y, Michalski S, Scherer-Lorenzen M, Schmidt K, Scholten T, Schuldt A, Shi XZ, Tan MZ, Tang ZY, Trogisch S, Wang ZH, Welk E, Wirth C, Wubet T, Xiang WH, Yan JY, Yu MJ, Yu XD, Zhang JY, Zhang SR, Zhang NL, Zhou HZ, Zhu CD, Zhu L, Bruelheide H, Ma KP, Niklaus PA, Schmid B (2017) Strong positive biodiversity-productivity relationships in a subtropical forest experiment. bioRxiv, doi: https://doi.org/10.1101/206722. |
[17] | Jiang L, Wan S, Li L (2009) Species diversity and productivity: Why do results of diversity-manipulation experiments differ from natural patterns? Journal of Ecology, 97, 603-608. |
[18] | Lasky JR, Uriarte M, Boukili VK, Erickson DL, John Kress W, Chazdon RL (2014) The relationship between tree biodiversity and biomass dynamics changes with tropical forest succession. Ecology Letters, 17, 1158-1167. |
[19] | Liang J, Crowther TW, Picard N, Wiser S, Zhou M, Alberti G, Schulze ED, McGuire AD, Bozzato F, Pretzsch H, de-Miguel S, Paquette A, Hérault B, Scherer-Lorenzen M, Barrett CB, Glick HB, Hengeveld GM, Nabuurs GJ, Pfautsch S, Viana H, Vibrans AC, Ammer C, Schall P, Verbyla D, Tchebakova N, Fischer M, Watson JV, Chen HYH, Lei XD, Schelhaas MJ, Lu HC, Gianelle D, Parfenova EI, Salas C, Lee E, Lee B, Kim HS, Bruelheide H, Coomes DA, Piotto D, Sunderland T, Schmid B, Gourlet-Fleury S, Sonké B, Tavani R, Zhu J, Brand S, Vayreda J, Kitahara F, Searle EB, Neldner VJ, Ngugi MR, Baraloto C, Frizzera L, Bałazy R, Oleksyn J, Zawiła-Niedźwiecki T, Bouriaud O, Bussotti F, Finér L, Jaroszewicz B, Jucker T, Valladares F, Jagodzinski AM, Peri PL, Gonmadje C, Marthy W, O’Brien T, Martin EH, Marshall AR, Rovero F, Bitariho R, Niklaus PA, Alvarez-Loayza P, Chamuya N, Valencia R, Mortier F, Worte V, Engone-Obiang NL, Ferreira LV, Odeke DE, Vasquez RM, Lewis SL, Reich PB (2016) Positive biodiversity-productivity relationship predominant in global forests. Science, 354, aaf8957. |
[20] | Loreau M, Hector A (2001) Partitioning selection and complementarity in biodiversity experiments. Nature, 412, 72-76. |
[21] | Ma KP (2013) Studies on biodiversity and ecosystem function via manipulation experiments. Biodiversity Science, 21, 247-248. (in Chinese) |
[马克平 (2013) 生物多样性与生态系统功能的实验研究. 生物多样性, 21, 247-248.] | |
[22] | Ma KP, He JS, Bruelheide H, Klein AM, Liu XJ, Schmid B (2017) Biodiversity-ecosystem functioning research in Chinese subtropical forests. Journal of Plant Ecology, 10, 1-3. |
[23] | Mori AS, Osono T, Cornelissen JHC, Craine J, Uchida M (2017) Biodiversity-ecosystem function relationships change through primary succession. Oikos, 126, 1637-1649. |
[24] | Ouyang S, Xiang W, Wang XP, Zeng YL, Lei PF, Deng XW, Peng CH (2016) Significant effects of biodiversity on forest biomass during the succession of subtropical forest in South China. Forest Ecology and Management, 372, 291-302. |
[25] | Pan YD, Birdsey RA, Fang JY, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P, Jackson RB, Pacala SW, McGuire AD, Piao SL, Rautiainen A, Sitch S, Hayes D (2011) A large and persistent carbon sink in the world’s forests. Science, 333, 988-993. |
[26] | Paquette A, Messier C (2011) The effect of biodiversity on tree productivity: From temperate to boreal forests. Global Ecology Biogeography, 20, 170-180. |
[27] | Pretzsch H, Bielak K, Block J, Bruchwald A, Dieler J, Ehrhart HP, Kohnle U, Nagel J, Spellmann H, Zasada M, Zingg A (2013) Productivity of mixed versus pure stands of oak (Quercus petraea (Matt.) Liebl. and Quercus robur L.) and European beech (Fagus sylvatica L.) along an ecological gradient. European Journal of Forest Research, 132, 263-280. |
[28] | Ratcliffe S, Wirth C, Jucker T, van der Plas F, Scherer-Lorenzen M, Verheyen K, Allan E, Benavides R, Bruelheide H, Ohse B, Paquette A, Ampoorter E, Bastias C, Bauhus J, Bonal D, Bouriaud O, Bussotti F, Carnol M, Castagneyrol B, Chećko E, Dawud S, Wandeler H, Domisch T, Finér L, Fischer M, Fotelli M, Gessler A, Granier A, Grossiord C, Guyot V, Haase J, Hättenschwiler S, Jactel H, Jaroszewicz B, Joly F, Kambach S, Kolb S, Koricheva J, Liebersgesell M, Milligan H, Müller S, Muys B, Nguyen D, Nock C, Pollastrini M, Purschke O, Radoglou K, Raulund-Rasmussen K, Roger F, Ruiz-Benito P, Seidl R, Selvi F, Seiferling I, Stenlid J, Valladares F, Vesterdal L, Baeten L (2017) Biodiversity and ecosystem functioning relations in European forests depend on environmental context. Ecology Letters, 20, 1414-1426. |
[29] | Reich PB, Tilman D, Isbell F, Mueller K, Hobbie SE, Flynn D, Eisenhauer N (2012) Impacts of biodiversity loss escalate through time as redundancy fades. Science, 336, 589-592. |
[30] | Schmid B, Balvanera P, Cardinale BJ, Godbold J, Pfisterer AB, Raffaelli D, Solan M, Srivastava DS (2009) Consequences of species loss for ecosystem functioning: Meta-analyses of data from biodiversity experiments. In: Biodiversity, Ecosystem Functioning, and Human Wellbeing: An Ecological and Economic Perspective (eds Naeem S, Bunker DE, Hector A, Loreau M, Perrings C), pp. 14-29. Oxford University Press, Oxford. |
[31] | Shi L, Liu SR (2017) Methods of estimating forest biomass: A review. In: Biomass Volume Estimation and Valorization for Energy (ed. Tumuluru JS). InTech. |
[32] | Srivastava DS, Cadotte MW, MacDonald AAM, Marushia RG, Mirotchnick N (2012) Phylogenetic diversity and the functioning of ecosystems. Ecology Letters, 15, 637-648. |
[33] | Swenson NG, Anglada-Cordero P, Barone JA (2011) Deterministic tropical tree community turnover: Evidence from patterns of functional beta diversity along an elevational gradient. Proceedings of the Royal Society of London B: Biological Sciences, 278, 877-884. |
[34] | Tan SS, Wang RR, Gong XL, Cai JY, Shen GC (2017) Scale dependent effects of species diversity and structural diversity on aboveground biomass in a tropical forest on Barro Colorado Island, Panama. Biodiversity Science, 25, 1054-1064. (in Chinese with English abstract) |
[谭珊珊, 王忍忍, 龚筱羚, 蔡佳瑶, 沈国春 (2017) 群落物种及结构多样性对森林地上生物量的影响及其尺度效应: 以巴拿马BCI样地为例. 生物多样性, 25, 1054-1064. ] | |
[35] | Tilman D, Isbell F, Cowles JM (2014) Biodiversity and ecosystem functioning. Annual Review of Ecology, Evolution, and Systematics, 45, 471-493. |
[36] | Tilman D, Reich PB, Knops J, Wedin DA, Mielke T (2001) Diversity and productivity in a long-term grassland experiment. Science, 294, 843-845. |
[37] | van der Sande MT, Peña-Claros M, Ascarrunz N, Arets EJMM, Licona JC, Toledo M, Poorter L, Hector A (2017) Abiotic and biotic drivers of biomass change in a Neotropical forest. Journal of Ecology, 105, 1223-1234. |
[38] | Vellend M (2016) The Theory of Ecological Communities. Princeton University Press, Princeton, New Jersey. |
[39] | Vellend M, Baeten L, Becker-Scarpitta A, Boucher-Lalonde V, McCune JL, Messier J, Myers-Smith IH, Sax DF (2017) Plant biodiversity change across scales during the anthropocene. Annual Review of Plant Biology, 68, 563-586. |
[40] | Wacker L, Baudois O, Eichenberger-Glinz, Schmid B (2008) Environmental heterogeneity increases complementarity in experimental grassland communities. Basic and Applied Ecology, 9, 467-474. |
[41] | Wardle DA (2016) Do experiments exploring plant diversity-ecosystem functioning relationships inform how biodiversity loss impacts natural ecosystems? Journal of Vegetation Science, 27, 646-653. |
[42] | Willig MR (2011) Biodiversity and productivity. Science, 333, 1709-1710. |
[43] | Wu X, Wang XP, Tang ZY, Shen ZH, Zheng CY, Xia XL, Fang JY (2015) The relationship between species richness and biomass changes from boreal to subtropical forests in China. Ecography, 38, 602-613. |
[44] | Yan ER, Wang XH, Huang JJ (2006) Shifts in plant nutrient use strategies under secondary forest succession. Plant & Soil, 289, 187-197. |
[45] | Yang B (2014) Key Factors Affecting the Relationship Between Forest Biodiversity and Ecosystem Function in Subtropical China. PhD dissertation, Institute of Botany, Chinese Academy of Sciences, Beijing. (in Chinese with English abstract) |
[杨波 (2014) 影响亚热带森林生物多样性与生态系统功能关系的关键因子研究. 博士学位论文, 中国科学院植物研究所, 北京.] | |
[46] | Zhang QG, Zhang DY (2002) Biodiversity and ecosystem functioning: Recent advances and controversies. Biodiversity Science, 10, 49-60. (in Chinese with English abstract) |
[张全国, 张大勇 (2002) 生物多样性与生态系统功能: 进展与争论. 生物多样性, 10, 49-60.] |
[1] | 姜熠辉, 刘岳, 曾旭, 林喆滢, 王楠, 彭吉豪, 曹玲, 曾聪. 东海六个国家级海洋保护区鱼类多样性和连通性[J]. 生物多样性, 2024, 32(6): 24128-. |
[2] | 田瑜, 李俊生. 《昆明-蒙特利尔全球生物多样性框架》“3030”目标的内涵及实现路径分析[J]. 生物多样性, 2024, 32(6): 24086-. |
[3] | 连佳丽, 陈婧, 杨雪琴, 赵莹, 罗叙, 韩翠, 赵雅欣, 李建平. 荒漠草原植物多样性和微生物多样性对降水变化的响应[J]. 生物多样性, 2024, 32(6): 24044-. |
[4] | 马碧玉. 印度《生物多样性法》修订述要及对我国完善生物多样性保护法制的启示[J]. 生物多样性, 2024, 32(5): 23412-. |
[5] | 蔡颖莉, 朱洪革, 李家欣. 中国生物多样性保护政策演进、主要措施与发展趋势[J]. 生物多样性, 2024, 32(5): 23386-. |
[6] | 艾妍雨, 胡海霞, 沈婷, 莫雨轩, 杞金华, 宋亮. 附生维管植物多样性及其与宿主特征的相关性: 以哀牢山中山湿性常绿阔叶林为例[J]. 生物多样性, 2024, 32(5): 24072-. |
[7] | 鄢德奎. 中国生物多样性保护政策的共同要素、不足和优化建议[J]. 生物多样性, 2024, 32(5): 23293-. |
[8] | 赵富伟, 李颖硕, 陈慧. 新时期我国生物多样性法制建设思考[J]. 生物多样性, 2024, 32(5): 24027-. |
[9] | 刘荆州, 钱易鑫, 张燕雪丹, 崔凤. 基于潜在迪利克雷分布(LDA)模型的旗舰物种范式研究进展与启示[J]. 生物多样性, 2024, 32(4): 23439-. |
[10] | 吴乐婕, 刘泽康, 田星, 张群, 李博, 吴纪华. 海三棱藨草基因型多样性对种群营养生长和繁殖策略的影响[J]. 生物多样性, 2024, 32(4): 23478-. |
[11] | 李雪萌, 蒋际宝, 张曾鲁, 刘晓静, 王亚利, 吴宜钊, 李银生, 邱江平, 赵琦. 宝天曼国家级自然保护区蚯蚓物种多样性及其影响因素[J]. 生物多样性, 2024, 32(4): 23352-. |
[12] | 郝操, 吴东辉, 莫凌梓, 徐国良. 越冬动物肠道微生物多样性及功能研究进展[J]. 生物多样性, 2024, 32(3): 23407-. |
[13] | 刘海鸥, 杜乐山, 刘文慧, 李子圆, 潘丽波, 刘蕾. 全球生物多样性框架基金管理政策分析与启示[J]. 生物多样性, 2024, 32(3): 23334-. |
[14] | 魏嘉欣, 姜治国, 杨林森, 熊欢欢, 金胶胶, 罗方林, 李杰华, 吴浩, 徐耀粘, 乔秀娟, 魏新增, 姚辉, 余辉亮, 杨敬元, 江明喜. 湖北神农架中亚热带山地落叶阔叶林25 ha动态监测样地群落物种组成与结构特征[J]. 生物多样性, 2024, 32(3): 23338-. |
[15] | 何智荣, 吴思雨, 时莹莹, 王雨婷, 江艺欣, 张春娜, 赵娜, 王苏盆. 壶菌感染对两栖动物种群影响的研究现状与挑战[J]. 生物多样性, 2024, 32(2): 23274-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn