生物多样性 ›› 2018, Vol. 26 ›› Issue (6): 545-553. DOI: 10.17520/biods.2017320 cstr: 32101.14.biods.2017320
吴初平1, 韩文娟2, 江波1, 刘博文3, 袁位高1, 沈爱华1,*(), 黄玉洁1, 朱锦茹1
收稿日期:
2017-12-01
接受日期:
2018-04-02
出版日期:
2018-06-20
发布日期:
2018-09-11
通讯作者:
沈爱华
作者简介:
# 共同第一作者
基金资助:
Chuping Wu1, Wenjuan Han2, Bo Jiang1, Bowen Liu3, Weigao Yuan1, Aihua Shen1,*(), Yujie Huang1, Jinru Zhu1
Received:
2017-12-01
Accepted:
2018-04-02
Online:
2018-06-20
Published:
2018-09-11
Contact:
Shen Aihua
About author:
# Co-first authors
摘要:
迄今生物多样性与生态系统功能关系的研究主要在物种组成随机配置的人工生态系统中进行, 在自然生态系统中研究较少, 且未考虑环境因子如何影响生态系统功能及其与生物多样性的关系。本研究选取亚热带广泛分布的次生林为研究对象, 利用模型拟合的方法, 探讨亚热带次生林中物种丰富度与生物量和生产力之间的关系, 以及环境因子(海拔、坡度、坡向、土层厚度)和次生林恢复时间(林龄)对生物量、生产力、物种丰富度与生物量和生产力间关系的影响。结果表明, 当不考虑环境因子时, 物种丰富度与生物量之间存在显著的线性正相关关系, 而与生产力之间存在显著的二次关系(先增加后减少的驼峰型)。当考虑环境因子时, 个体密度和土层厚度对生物量具有显著影响, 而环境因子对生产力并无显著效应。在坡度较陡、坡向朝南及土层较厚的环境条件下, 物种丰富度与生物量具有显著的线性正相关关系; 而在坡度较缓、坡向朝北及土层较薄的环境条件下, 物种丰富度不影响生物量。在较高海拔环境条件下, 生产力随物种丰富度先增加后减少(驼峰形状), 而在其他环境条件下, 生产力均不响应物种丰富度。以上结果说明自然森林生态系统中物种丰富度与生物量和生产力的关系存在差异, 且其相互间的关系依赖于环境因子。
吴初平, 韩文娟, 江波, 刘博文, 袁位高, 沈爱华, 黄玉洁, 朱锦茹 (2018) 浙江定海次生林内物种丰富度与生物量和生产力关系的环境依赖性. 生物多样性, 26, 545-553. DOI: 10.17520/biods.2017320.
Chuping Wu, Wenjuan Han, Bo Jiang, Bowen Liu, Weigao Yuan, Aihua Shen, Yujie Huang, Jinru Zhu (2018) Relationships between species richness and biomass/productivity depend on environmental factors in secondary forests of Dinghai, Zhejiang Province. Biodiversity Science, 26, 545-553. DOI: 10.17520/biods.2017320.
模型 Models | F | R2 | P | AICc |
---|---|---|---|---|
BIO~S | 5.436 | 0.110 | 0.02 | 818.941 |
BIO~ S + S 2 | 2.700 | 0.116 | 0.07 | 821.261 |
∆BIO~S | 0.545 | 0.012 | 0.46 | -34.944 |
∆BIO ~ S + S 2 | 3.075 | 0.125 | 0.05 | -38.123 |
表1 物种丰富度与生物量及生产力间的最优模型分析
Table 1 Analysis of the optimal model between species richness and biomass/productivity
模型 Models | F | R2 | P | AICc |
---|---|---|---|---|
BIO~S | 5.436 | 0.110 | 0.02 | 818.941 |
BIO~ S + S 2 | 2.700 | 0.116 | 0.07 | 821.261 |
∆BIO~S | 0.545 | 0.012 | 0.46 | -34.944 |
∆BIO ~ S + S 2 | 3.075 | 0.125 | 0.05 | -38.123 |
图1 物种丰富度与群落生物量(a)和生产力(b)之间的关系。其中(a)生物量指研究样方20 m × 20 m中2015年所调查个体生物量的总和; (b)生产力指研究样方中2012年和2015年两次调查生物量的比值。虚线为95%置信区间, 实线为表1中具有最低AICc值的模型。
Fig. 1 Relationships between species richness and biomass (a) / productivity (b). The biomass in (a) means the total biomass in each plot (20 m × 20 m) in 2015, and the productivity in (b) means the ration of biomass between 2012 and 2015 in each plot. Dotted lines refer to the 95% confidence interval. Solid lines fitted by the model with lowest AICc value in the Table 1.
估计值 Estimate | 标准误 SE | t | P | ||
---|---|---|---|---|---|
生物量 Biomass (BIO) | 截距 Intercept | 8.141 | 0.073 | 111.036 | < 0.001 |
个体密度 Density (ind./ha) | 0.221 | 0.076 | 2.900 | < 0.01 | |
土壤厚度 Soil depth (cm) | 0.136 | 0.075 | 1.815 | 0.07 | |
物种丰富度 Species richness | 0.126 | 0.076 | 1.646 | 0.10 | |
生产力 Productivity (∆BIO) | 截距 Intercept | 0.147 | 0.020 | 7.665 | < 0.001 |
物种丰富度 Species richness | 0.265 | 0.103 | 2.590 | < 0.05 | |
物种丰富度的平方 Square of species richness | -0.249 | 0.102 | -2.434 | < 0.05 |
表2 显著影响生物量及生产力的环境和群落因子
Table 2 The significant environmental and community factors influencing the biomass and productivity
估计值 Estimate | 标准误 SE | t | P | ||
---|---|---|---|---|---|
生物量 Biomass (BIO) | 截距 Intercept | 8.141 | 0.073 | 111.036 | < 0.001 |
个体密度 Density (ind./ha) | 0.221 | 0.076 | 2.900 | < 0.01 | |
土壤厚度 Soil depth (cm) | 0.136 | 0.075 | 1.815 | 0.07 | |
物种丰富度 Species richness | 0.126 | 0.076 | 1.646 | 0.10 | |
生产力 Productivity (∆BIO) | 截距 Intercept | 0.147 | 0.020 | 7.665 | < 0.001 |
物种丰富度 Species richness | 0.265 | 0.103 | 2.590 | < 0.05 | |
物种丰富度的平方 Square of species richness | -0.249 | 0.102 | -2.434 | < 0.05 |
图2 不同环境条件下生物量和生产力的差异。其中生物量指研究样方20 m × 20 m中2015年所调查个体生物量的总和; 生产力指研究样方中2012和2015年两次调查生物量的比值。
Fig. 2 Variance of biomass and productivity between different environmental gradients. The biomass means the total biomass in each plot (20 m × 20 m) in 2015, and the productivity means the ration of biomass between 2012 and 2015 in each plot.
范围 Ranges | 样方数 No. of plots | 功能变量 Functions | 一次方程 Linear equation | R2 | 二次方程 Quadratic equation | R2 | ΔAICc | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
BIC | AICc | Sig. | BIC | AICc | Sig. | |||||||
海拔 Elevation (m) | ≤ 65 | 23 | BIO | 423.583 | 421.439 | + | 0.07 | 426.317 | 423.997 | +, - | 0.08 | 2.558 |
∆BIO | -3.744 | -5.887 | + | 0.02 | -3.257 | -5.577 | +, - | 0.12 | 0.310 | |||
> 65 | 23 | BIO | 403.055 | 400.912 | + | 0.20* | 405.131 | 402.811 | -, + | 0.23# | 1.899 | |
∆BIO | -23.754 | -25.897 | + | 0.02 | -26.458 | -28.778 | +, - | 0.24# | -2.881 | |||
坡度 Slope | ≤ 20° | 33 | BIO | 596.410 | 592.748 | + | 0.01 | 598.983 | 594.426 | +, - | 004 | 1.678 |
∆BIO | -15.746 | -19.408 | + | 0.03 | -14.324 | -18.882 | +, - | 0.09 | 0.526 | |||
> 20° | 13 | BIO | 227.108 | 228.079 | + | 0.59** | 227.930 | 230.671 | -, + | 0.64** | 2.592 | |
∆BIO | -10.178 | -9.206 | + | 0.01 | -11.306 | -8.566 | +, - | 0.24 | 0.640 | |||
坡向 Aspect | 南、西南 South, Southwest | 21 | BIO | 370.428 | 368.706 | + | 0.19* | 371.462 | 369.784 | -, + | 0.26# | 1.078 |
西、东南 West, Southeast | ∆BIO | -25.380 | -27.102 | + | 0.01 | -26.650 | -28.328 | +, - | 0.19 | -1.226 | ||
东、东北 East, Northeast | 25 | BIO | 456.261 | 453.747 | + | 0.07 | 457.746 | 454.871 | +, - | 0.14 | 1.124 | |
北、西北 North, Northwest | ∆BIO | -4.620 | -7.133 | + | 0.02 | -3.648 | -6.524 | +, - | 0.10 | 0.609 | ||
土层厚度 Soil depth (cm) | < 40 | 26 | BIO | 454.222 | 451.539 | + | 0.01 | 457.463 | 454.335 | +, - | 0.01 | 2.996 |
∆BIO | -14.875 | -17.559 | + | 0.04 | -11.992 | -15.119 | +, - | 0.06 | 2.440 | |||
≥ 40 | 20 | BIO | 367.197 | 365.710 | + | 0.14# | 369.428 | 368.112 | +, - | 0.17 | 2.402 | |
∆BIO | -12.855 | -14.342 | + | 0.03 | -13.070 | -14.386 | +, - | 0.17 | -0.044 | |||
林龄 Forest age | ≤ 15 | 22 | BIO | 404.116 | 402.176 | + | 0.05 | 406.959 | 404.948 | -, + | 0.06 | 2.772 |
∆BIO | -13.638 | -15.578 | - | 0.01 | -14.995 | -17.006 | +, - | 0.14 | -1.428 | |||
> 15 | 24 | BIO | 422.094 | 419.760 | + | 0.20* | 425.249 | 422.642 | -, + | 0.20# | 2.882 | |
∆BIO | -9.905 | -12.239 | + | 0.02 | -8.569 | -11.176 | +, - | 0.09 | 1.063 |
表3 不同环境条件下物种丰富度与生物量和生产力的关系
Table 3 Relationships between species richness and biomass/productivity in different environmental gradients
范围 Ranges | 样方数 No. of plots | 功能变量 Functions | 一次方程 Linear equation | R2 | 二次方程 Quadratic equation | R2 | ΔAICc | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
BIC | AICc | Sig. | BIC | AICc | Sig. | |||||||
海拔 Elevation (m) | ≤ 65 | 23 | BIO | 423.583 | 421.439 | + | 0.07 | 426.317 | 423.997 | +, - | 0.08 | 2.558 |
∆BIO | -3.744 | -5.887 | + | 0.02 | -3.257 | -5.577 | +, - | 0.12 | 0.310 | |||
> 65 | 23 | BIO | 403.055 | 400.912 | + | 0.20* | 405.131 | 402.811 | -, + | 0.23# | 1.899 | |
∆BIO | -23.754 | -25.897 | + | 0.02 | -26.458 | -28.778 | +, - | 0.24# | -2.881 | |||
坡度 Slope | ≤ 20° | 33 | BIO | 596.410 | 592.748 | + | 0.01 | 598.983 | 594.426 | +, - | 004 | 1.678 |
∆BIO | -15.746 | -19.408 | + | 0.03 | -14.324 | -18.882 | +, - | 0.09 | 0.526 | |||
> 20° | 13 | BIO | 227.108 | 228.079 | + | 0.59** | 227.930 | 230.671 | -, + | 0.64** | 2.592 | |
∆BIO | -10.178 | -9.206 | + | 0.01 | -11.306 | -8.566 | +, - | 0.24 | 0.640 | |||
坡向 Aspect | 南、西南 South, Southwest | 21 | BIO | 370.428 | 368.706 | + | 0.19* | 371.462 | 369.784 | -, + | 0.26# | 1.078 |
西、东南 West, Southeast | ∆BIO | -25.380 | -27.102 | + | 0.01 | -26.650 | -28.328 | +, - | 0.19 | -1.226 | ||
东、东北 East, Northeast | 25 | BIO | 456.261 | 453.747 | + | 0.07 | 457.746 | 454.871 | +, - | 0.14 | 1.124 | |
北、西北 North, Northwest | ∆BIO | -4.620 | -7.133 | + | 0.02 | -3.648 | -6.524 | +, - | 0.10 | 0.609 | ||
土层厚度 Soil depth (cm) | < 40 | 26 | BIO | 454.222 | 451.539 | + | 0.01 | 457.463 | 454.335 | +, - | 0.01 | 2.996 |
∆BIO | -14.875 | -17.559 | + | 0.04 | -11.992 | -15.119 | +, - | 0.06 | 2.440 | |||
≥ 40 | 20 | BIO | 367.197 | 365.710 | + | 0.14# | 369.428 | 368.112 | +, - | 0.17 | 2.402 | |
∆BIO | -12.855 | -14.342 | + | 0.03 | -13.070 | -14.386 | +, - | 0.17 | -0.044 | |||
林龄 Forest age | ≤ 15 | 22 | BIO | 404.116 | 402.176 | + | 0.05 | 406.959 | 404.948 | -, + | 0.06 | 2.772 |
∆BIO | -13.638 | -15.578 | - | 0.01 | -14.995 | -17.006 | +, - | 0.14 | -1.428 | |||
> 15 | 24 | BIO | 422.094 | 419.760 | + | 0.20* | 425.249 | 422.642 | -, + | 0.20# | 2.882 | |
∆BIO | -9.905 | -12.239 | + | 0.02 | -8.569 | -11.176 | +, - | 0.09 | 1.063 |
[1] | Ali A, Yan ER (2017) The forest strata-dependent relationship between biodiversity and aboveground biomass within a subtropical forest. Forest Ecology & Management, 401, 125-134. |
[2] | Barrufol M, Schmid B, Bruelheide H, Chi XL, Hector A, Ma KP, Michalski S, Tang ZY, Niklaus PA (2013) Biodiversity promotes tree growth during succession in subtropical forest. PLoS ONE, 8, e81246. |
[3] | Bruelheide H, Nadrowski K, Assmann T, Bauhus J, Both S, Buscot F, Chen XY, Ding BY, Durka W, Erfmeier A, Gutknecht JLM, Guo DL, Guo LD, Härdtle W, He JS, Klein AM, Kühn P, Liang Y, Liu XJ, Michalski S, Niklaus PA, Pei KQ, Scherer-Lorenzen M, Scholten T, Schuldt A, Seidler G, Trogisch S, Oheimb G, Welk E, Wirth C, Wubet T, Yang XF, Yu MJ, Zhang SR, Zhou HZ, Fischer M, Ma KP, Schmid B (2014) Designing forest biodiversity experiments: General considerations illustrated by a new large experiment in subtropical China. Methods in Ecology and Evolution, 5, 74-89. |
[4] | Burnham KP, Anderson DR (2010) Model Selection and Multi-model Inference: A Practical Information Theoretic Approach. Springer, New York. |
[5] | Caspersen JP, Pacala SW (2001) Successional diversity and forest ecosystem function. Ecological Research, 16, 895-903. |
[6] | Cavanaugh KC, Gosnell JS, Davis SL, Davis JS, Ahumada J, Boundja P, Clark DB, Mugerwa B, Jansen PA, O’Brien TG, Rovero F, Sheil D, Vasquez R, Andelman S (2014) Carbon storage in tropical forests correlates with taxonomic diversity and functional dominance on a global scale. Global Ecology Biogeography, 23, 563-573. |
[7] | Cadotte MW, Cavender-Bares J, Tilman D, Oakley TH (2009) Using phylogenetic, functional and trait diversity to understand patterns of plant community productivity. PLoS ONE, 4, e5695. |
[8] | Corlett RT (2013) Where are the subtropics? Biotropica, 45, 273-275. |
[9] | Duffy JE (2009) Why biodiversity is important to the functioning of real-world ecosystems. Frontiers in Ecology and the Environment, 7, 437-444. |
[10] | Fraser LH, Pither J, Jentsch A, Sternberg M, Zobel M, Askarizadeh D, Bartha S, Beierkuhnlein C, Bennett JA, Bittel A, Boldgiv B, Boldrini II, Bork E, Brown L, Cabido M, Cahill J, Carlyle CN, Campetella G, Chelli S, Cohen O, Csergo AM, Díaz S, Enrico L, Ensing D, Fidelis A, Fridley JD, Foster B, Garris H, Goheen JR, Henry HA, Hohn M, Jouri MH, Klironomos J, Koorem K, Lawrence-Lodge R, Long R, Manning P, Mitchell R, Moora M, Müller SC, Nabinger C, Naseri K, Overbeck GE, Palmer TM, Parsons S, Pesek M, Pillar VD, Pringle RM, Roccaforte K, Schmidt A, Shang Z, Stahlmann R, Stotz GC, Sugiyama S, Szentes S, Thompson D, Tungalag R, Undrakhbold S, van Rooyen M, Wellstein C, Wilson JB, Zupo T (2015) Worldwide evidence of a unimodal relationship between productivity and plant species richness. Science, 349, 302-305. |
[11] | Flombaum P, Sala OE (2008) Higher effect of plant species diversity on productivity in natural than artificial ecosystems. Proceedings of the National Academy of Sciences, USA, 105, 6087-6090. |
[12] | Hair JF, Anderson RE, Tatham RL, Black WC (1998) Multivariate Data Analysis, 5th edn. Prentice Hall, New Jersey. |
[13] | Hautier Y, Hector A (2009) Competition for light causes plant biodiversity loss after eutrophication. Science, 324, 636-638. |
[14] | He JS, Fang JY, Ma KP, Huang JH (2003) Biodiversity and ecosystem productivity: Why is there a discrepancy in the relationship between experimental and natural ecosystems? Acta Phytoecologica Sinica, 27, 835-843. (in Chinese with English abstract) |
[贺金生, 方精云, 马克平, 黄建辉 (2003) 生物多样性与生态系统生产力: 为什么野外观测和受控实验结果不一致?植物生态学报, 27, 835-843.] | |
[15] | Hortal J, Triantis KA, Meiri S, Sfenthourakis S (2009) Island species richness increases with habitat diversity. The American Naturalist, 174, E205. |
[16] | Huang YY, Chen YX, Castro-Izaguirre N, Baruffol M, Brezzi M, Lang AN, Li Y, Haerdtle W, von Oheimb G, Yang XF, Pei KQ, Both S, Liu XJ, Yang B, Eichenberg D, Assmann T, Bauhus J, Behrens T, Buscot F, Chen XY, Chesters D, Ding BY, Durka W, Erfmeier A, Fang JY, Fischer M, Guo LD, Guo DL, Gutknecht JLM, He JS, He CL, Hector A, Hoenig L, Hu RY, Klein, AM, Kuehn P, Liang Y, Michalski S, Scherer-Lorenzen M, Schmidt K, Scholten T, Schuldt A, Shi XZ, Tan MZ, Tang ZY, Trogisch S, Wang ZH, Welk E, Wirth C, Wubet T, Xiang WH, Yan JY, Yu MJ, Yu XD, Zhang JY, Zhang SR, Zhang NL, Zhou HZ, Zhu CD, Zhu L, Bruelheide H, Ma KP, Niklaus PA, Schmid B (2017) Strong positive biodiversity-productivity relationships in a subtropical forest experiment. bioRxiv, doi: https://doi.org/10.1101/206722. |
[17] | Jiang L, Wan S, Li L (2009) Species diversity and productivity: Why do results of diversity-manipulation experiments differ from natural patterns? Journal of Ecology, 97, 603-608. |
[18] | Lasky JR, Uriarte M, Boukili VK, Erickson DL, John Kress W, Chazdon RL (2014) The relationship between tree biodiversity and biomass dynamics changes with tropical forest succession. Ecology Letters, 17, 1158-1167. |
[19] | Liang J, Crowther TW, Picard N, Wiser S, Zhou M, Alberti G, Schulze ED, McGuire AD, Bozzato F, Pretzsch H, de-Miguel S, Paquette A, Hérault B, Scherer-Lorenzen M, Barrett CB, Glick HB, Hengeveld GM, Nabuurs GJ, Pfautsch S, Viana H, Vibrans AC, Ammer C, Schall P, Verbyla D, Tchebakova N, Fischer M, Watson JV, Chen HYH, Lei XD, Schelhaas MJ, Lu HC, Gianelle D, Parfenova EI, Salas C, Lee E, Lee B, Kim HS, Bruelheide H, Coomes DA, Piotto D, Sunderland T, Schmid B, Gourlet-Fleury S, Sonké B, Tavani R, Zhu J, Brand S, Vayreda J, Kitahara F, Searle EB, Neldner VJ, Ngugi MR, Baraloto C, Frizzera L, Bałazy R, Oleksyn J, Zawiła-Niedźwiecki T, Bouriaud O, Bussotti F, Finér L, Jaroszewicz B, Jucker T, Valladares F, Jagodzinski AM, Peri PL, Gonmadje C, Marthy W, O’Brien T, Martin EH, Marshall AR, Rovero F, Bitariho R, Niklaus PA, Alvarez-Loayza P, Chamuya N, Valencia R, Mortier F, Worte V, Engone-Obiang NL, Ferreira LV, Odeke DE, Vasquez RM, Lewis SL, Reich PB (2016) Positive biodiversity-productivity relationship predominant in global forests. Science, 354, aaf8957. |
[20] | Loreau M, Hector A (2001) Partitioning selection and complementarity in biodiversity experiments. Nature, 412, 72-76. |
[21] | Ma KP (2013) Studies on biodiversity and ecosystem function via manipulation experiments. Biodiversity Science, 21, 247-248. (in Chinese) |
[马克平 (2013) 生物多样性与生态系统功能的实验研究. 生物多样性, 21, 247-248.] | |
[22] | Ma KP, He JS, Bruelheide H, Klein AM, Liu XJ, Schmid B (2017) Biodiversity-ecosystem functioning research in Chinese subtropical forests. Journal of Plant Ecology, 10, 1-3. |
[23] | Mori AS, Osono T, Cornelissen JHC, Craine J, Uchida M (2017) Biodiversity-ecosystem function relationships change through primary succession. Oikos, 126, 1637-1649. |
[24] | Ouyang S, Xiang W, Wang XP, Zeng YL, Lei PF, Deng XW, Peng CH (2016) Significant effects of biodiversity on forest biomass during the succession of subtropical forest in South China. Forest Ecology and Management, 372, 291-302. |
[25] | Pan YD, Birdsey RA, Fang JY, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P, Jackson RB, Pacala SW, McGuire AD, Piao SL, Rautiainen A, Sitch S, Hayes D (2011) A large and persistent carbon sink in the world’s forests. Science, 333, 988-993. |
[26] | Paquette A, Messier C (2011) The effect of biodiversity on tree productivity: From temperate to boreal forests. Global Ecology Biogeography, 20, 170-180. |
[27] | Pretzsch H, Bielak K, Block J, Bruchwald A, Dieler J, Ehrhart HP, Kohnle U, Nagel J, Spellmann H, Zasada M, Zingg A (2013) Productivity of mixed versus pure stands of oak (Quercus petraea (Matt.) Liebl. and Quercus robur L.) and European beech (Fagus sylvatica L.) along an ecological gradient. European Journal of Forest Research, 132, 263-280. |
[28] | Ratcliffe S, Wirth C, Jucker T, van der Plas F, Scherer-Lorenzen M, Verheyen K, Allan E, Benavides R, Bruelheide H, Ohse B, Paquette A, Ampoorter E, Bastias C, Bauhus J, Bonal D, Bouriaud O, Bussotti F, Carnol M, Castagneyrol B, Chećko E, Dawud S, Wandeler H, Domisch T, Finér L, Fischer M, Fotelli M, Gessler A, Granier A, Grossiord C, Guyot V, Haase J, Hättenschwiler S, Jactel H, Jaroszewicz B, Joly F, Kambach S, Kolb S, Koricheva J, Liebersgesell M, Milligan H, Müller S, Muys B, Nguyen D, Nock C, Pollastrini M, Purschke O, Radoglou K, Raulund-Rasmussen K, Roger F, Ruiz-Benito P, Seidl R, Selvi F, Seiferling I, Stenlid J, Valladares F, Vesterdal L, Baeten L (2017) Biodiversity and ecosystem functioning relations in European forests depend on environmental context. Ecology Letters, 20, 1414-1426. |
[29] | Reich PB, Tilman D, Isbell F, Mueller K, Hobbie SE, Flynn D, Eisenhauer N (2012) Impacts of biodiversity loss escalate through time as redundancy fades. Science, 336, 589-592. |
[30] | Schmid B, Balvanera P, Cardinale BJ, Godbold J, Pfisterer AB, Raffaelli D, Solan M, Srivastava DS (2009) Consequences of species loss for ecosystem functioning: Meta-analyses of data from biodiversity experiments. In: Biodiversity, Ecosystem Functioning, and Human Wellbeing: An Ecological and Economic Perspective (eds Naeem S, Bunker DE, Hector A, Loreau M, Perrings C), pp. 14-29. Oxford University Press, Oxford. |
[31] | Shi L, Liu SR (2017) Methods of estimating forest biomass: A review. In: Biomass Volume Estimation and Valorization for Energy (ed. Tumuluru JS). InTech. |
[32] | Srivastava DS, Cadotte MW, MacDonald AAM, Marushia RG, Mirotchnick N (2012) Phylogenetic diversity and the functioning of ecosystems. Ecology Letters, 15, 637-648. |
[33] | Swenson NG, Anglada-Cordero P, Barone JA (2011) Deterministic tropical tree community turnover: Evidence from patterns of functional beta diversity along an elevational gradient. Proceedings of the Royal Society of London B: Biological Sciences, 278, 877-884. |
[34] | Tan SS, Wang RR, Gong XL, Cai JY, Shen GC (2017) Scale dependent effects of species diversity and structural diversity on aboveground biomass in a tropical forest on Barro Colorado Island, Panama. Biodiversity Science, 25, 1054-1064. (in Chinese with English abstract) |
[谭珊珊, 王忍忍, 龚筱羚, 蔡佳瑶, 沈国春 (2017) 群落物种及结构多样性对森林地上生物量的影响及其尺度效应: 以巴拿马BCI样地为例. 生物多样性, 25, 1054-1064. ] | |
[35] | Tilman D, Isbell F, Cowles JM (2014) Biodiversity and ecosystem functioning. Annual Review of Ecology, Evolution, and Systematics, 45, 471-493. |
[36] | Tilman D, Reich PB, Knops J, Wedin DA, Mielke T (2001) Diversity and productivity in a long-term grassland experiment. Science, 294, 843-845. |
[37] | van der Sande MT, Peña-Claros M, Ascarrunz N, Arets EJMM, Licona JC, Toledo M, Poorter L, Hector A (2017) Abiotic and biotic drivers of biomass change in a Neotropical forest. Journal of Ecology, 105, 1223-1234. |
[38] | Vellend M (2016) The Theory of Ecological Communities. Princeton University Press, Princeton, New Jersey. |
[39] | Vellend M, Baeten L, Becker-Scarpitta A, Boucher-Lalonde V, McCune JL, Messier J, Myers-Smith IH, Sax DF (2017) Plant biodiversity change across scales during the anthropocene. Annual Review of Plant Biology, 68, 563-586. |
[40] | Wacker L, Baudois O, Eichenberger-Glinz, Schmid B (2008) Environmental heterogeneity increases complementarity in experimental grassland communities. Basic and Applied Ecology, 9, 467-474. |
[41] | Wardle DA (2016) Do experiments exploring plant diversity-ecosystem functioning relationships inform how biodiversity loss impacts natural ecosystems? Journal of Vegetation Science, 27, 646-653. |
[42] | Willig MR (2011) Biodiversity and productivity. Science, 333, 1709-1710. |
[43] | Wu X, Wang XP, Tang ZY, Shen ZH, Zheng CY, Xia XL, Fang JY (2015) The relationship between species richness and biomass changes from boreal to subtropical forests in China. Ecography, 38, 602-613. |
[44] | Yan ER, Wang XH, Huang JJ (2006) Shifts in plant nutrient use strategies under secondary forest succession. Plant & Soil, 289, 187-197. |
[45] | Yang B (2014) Key Factors Affecting the Relationship Between Forest Biodiversity and Ecosystem Function in Subtropical China. PhD dissertation, Institute of Botany, Chinese Academy of Sciences, Beijing. (in Chinese with English abstract) |
[杨波 (2014) 影响亚热带森林生物多样性与生态系统功能关系的关键因子研究. 博士学位论文, 中国科学院植物研究所, 北京.] | |
[46] | Zhang QG, Zhang DY (2002) Biodiversity and ecosystem functioning: Recent advances and controversies. Biodiversity Science, 10, 49-60. (in Chinese with English abstract) |
[张全国, 张大勇 (2002) 生物多样性与生态系统功能: 进展与争论. 生物多样性, 10, 49-60.] |
[1] | 干靓 刘巷序 鲁雪茗 岳星. 全球生物多样性热点地区大城市的保护政策与优化方向[J]. 生物多样性, 2025, 33(5): 24529-. |
[2] | 曾子轩 杨锐 黄越 陈路遥. 清华大学校园鸟类多样性特征与环境关联[J]. 生物多样性, 2025, 33(5): 24373-. |
[3] | 臧明月, 刘立, 马月, 徐徐, 胡飞龙, 卢晓强, 李佳琦, 于赐刚, 刘燕. 《昆明-蒙特利尔全球生物多样性框架》下的中国城市生物多样性保护[J]. 生物多样性, 2025, 33(5): 24482-. |
[4] | 祝晓雨, 王晨灏, 王忠君, 张玉钧. 城市绿地生物多样性研究进展与展望[J]. 生物多样性, 2025, 33(5): 25027-. |
[5] | 袁琳, 王思琦, 侯静轩. 大都市地区的自然留野:趋势与展望[J]. 生物多样性, 2025, 33(5): 24481-. |
[6] | 胡敏, 李彬彬, Coraline Goron. 只绿是不够的: 一个生物多样性友好的城市公园管理框架[J]. 生物多样性, 2025, 33(5): 24483-. |
[7] | 王欣, 鲍风宇. 基于鸟类多样性提升的南滇池国家湿地公园生态修复效果分析[J]. 生物多样性, 2025, 33(5): 24531-. |
[8] | 明玥, 郝培尧, 谭铃千, 郑曦. 基于城市绿色高质量发展理念的中国城市生物多样性保护与提升研究[J]. 生物多样性, 2025, 33(5): 24524-. |
[9] | 谢淦, 宣晶, 付其迪, 魏泽, 薛凯, 雒海瑞, 高吉喜, 李敏. 草地植物多样性无人机调查的物种智能识别模型构建[J]. 生物多样性, 2025, 33(4): 24236-. |
[10] | 褚晓琳, 张全国. 演化速率假说的实验验证研究进展[J]. 生物多样性, 2025, 33(4): 25019-. |
[11] | 宋威, 程才, 王嘉伟, 吴纪华. 土壤微生物对植物多样性–生态系统功能关系的调控作用[J]. 生物多样性, 2025, 33(4): 24579-. |
[12] | 卢晓强, 董姗姗, 马月, 徐徐, 邱凤, 臧明月, 万雅琼, 李孪鑫, 于赐刚, 刘燕. 前沿技术在生物多样性研究中的应用现状、挑战与展望[J]. 生物多样性, 2025, 33(4): 24440-. |
[13] | 农荞伊, 曹军, 程文达, 彭艳琼. 不同方法对蜜蜂总科昆虫资源与多样性监测效果的比较[J]. 生物多样性, 2025, 33(4): 25057-. |
[14] | 郭雨桐, 李素萃, 王智, 解焱, 杨雪, 周广金, 尤春赫, 朱萨宁, 高吉喜. 全国自然保护地对国家重点保护野生物种的覆盖度及其分布状况[J]. 生物多样性, 2025, 33(3): 24423-. |
[15] | 赵维洋, 王伟, 马冰然. 其他有效的区域保护措施(OECMs)研究进展与展望[J]. 生物多样性, 2025, 33(3): 24525-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn