生物多样性 ›› 2016, Vol. 24 ›› Issue (1): 72-84. DOI: 10.17520/biods.2015170
所属专题: 生物多样性与生态系统功能
收稿日期:
2015-06-17
接受日期:
2015-10-16
出版日期:
2016-01-20
发布日期:
2016-06-12
通讯作者:
贺金生
基金资助:
Wei Xu1, Xin Jing1, Zhiyuan Ma1, Jin-Sheng He1,2,*()
Received:
2015-06-17
Accepted:
2015-10-16
Online:
2016-01-20
Published:
2016-06-12
Contact:
He Jin-Sheng
摘要:
生物多样性与生态系统多功能性(biodiversity and ecosystem multifunctionality, BEMF)之间的关系是目前生态学研究的一个热点, 其中, 生态系统多功能性(EMF)的测度方法是研究该问题的技术关键。由于缺乏统一的认识, 目前存在多个多功能性的测度方法, 这使人们对生物多样性与生态系统多功能性之间关系的理解复杂化。本文介绍了国际上常用的单功能法、功能-物种替代法、平均值法、单阈值法、多阈值法、直系同源基因法和多元模型法的原理及其特点, 并对其中较难理解的多阈值法进行了举例说明, 希望能对理解EMF的测度方法有所帮助。本文按不同的EMF测度方法对已发表的有关文章进行了归类, 以期帮助读者更好地选择EMF的测度方法。由于缺乏相对统一的、代表各个层次的生态系统功能的测度方法, 导致不同的研究结果难以相互比较, 严重限制了生物多样性与生态系统多功能性研究的发展; 所以, 研发新的、具有普遍适用性的EMF测度方法已成为当务之急。
徐炜, 井新, 马志远, 贺金生 (2016) 生态系统多功能性的测度方法. 生物多样性, 24, 72-84. DOI: 10.17520/biods.2015170.
Wei Xu, Xin Jing, Zhiyuan Ma, Jin-Sheng He (2016) A review on the measurement of ecosystem multifunctionality. Biodiversity Science, 24, 72-84. DOI: 10.17520/biods.2015170.
方法 Approach | 重要刊物文献数量 No. of papers published in top journals | 文献总数 Sum | 参考文献 References |
---|---|---|---|
单功能法 Single function | 1 | 2 | Duffy et al, 2003; Jing et al, 2015 |
功能-物种替代法 Turnover | 3 | 5 | Hector & Bagchi, 2007; He et al, 2009; Isbell et al, 2011; van der Heijden et al, 2015; Lefcheck et al, 2015 |
平均值法 Averaging | 5 | 14 | Hooper & Vitousek, 1998; Mouillot et al, 2011; Maestre et al, 2012a, b; Quero et al, 2013; Bradford et al, 2014a; Pendleton et al, 2014; Soliveres et al, 2014; Wagg et al, 2014; Constán-Nava et al, 2015; Jing et al, 2015; Lefcheck et al, 2015; Lundholm, 2015; Valencia et al, 2015 |
单阈值法 Single threshold | 3 | 5 | Gamfeldt et al, 2008; Zavaleta et al, 2010; Peter et al, 2011; Pasari et al, 2013; Bradford et al, 2014a |
多阈值法 Multiple-threshold | 3 | 5 | Bradford et al, 2014a; Byrnes et al, 2014a; Jing et al, 2015; Lefcheck et al, 2015; Perkins et al, 2015 |
多元模型法 Multivariate model | 0 | 1 | Dooley et al, 2015 |
直系同源基因法 Orthologue | 0 | 1 | Miki et al, 2014 |
其他 Others | 0 | 1 | Bowker et al, 2013 |
表1 生态系统多功能性(EMF)测度方法的分类及使用情况
Table 1 The list of the metrics of ecosystem multifunctionality (EMF) and their uses in the literatures
方法 Approach | 重要刊物文献数量 No. of papers published in top journals | 文献总数 Sum | 参考文献 References |
---|---|---|---|
单功能法 Single function | 1 | 2 | Duffy et al, 2003; Jing et al, 2015 |
功能-物种替代法 Turnover | 3 | 5 | Hector & Bagchi, 2007; He et al, 2009; Isbell et al, 2011; van der Heijden et al, 2015; Lefcheck et al, 2015 |
平均值法 Averaging | 5 | 14 | Hooper & Vitousek, 1998; Mouillot et al, 2011; Maestre et al, 2012a, b; Quero et al, 2013; Bradford et al, 2014a; Pendleton et al, 2014; Soliveres et al, 2014; Wagg et al, 2014; Constán-Nava et al, 2015; Jing et al, 2015; Lefcheck et al, 2015; Lundholm, 2015; Valencia et al, 2015 |
单阈值法 Single threshold | 3 | 5 | Gamfeldt et al, 2008; Zavaleta et al, 2010; Peter et al, 2011; Pasari et al, 2013; Bradford et al, 2014a |
多阈值法 Multiple-threshold | 3 | 5 | Bradford et al, 2014a; Byrnes et al, 2014a; Jing et al, 2015; Lefcheck et al, 2015; Perkins et al, 2015 |
多元模型法 Multivariate model | 0 | 1 | Dooley et al, 2015 |
直系同源基因法 Orthologue | 0 | 1 | Miki et al, 2014 |
其他 Others | 0 | 1 | Bowker et al, 2013 |
图1 丛枝菌根真菌(AMF)多样性和达到所测功能最大值的某一阈值的功能数之间的关系。 不同颜色表示不同的阈值, 冷色调表示低阈值, 暖色调表示高阈值。Tmin表示斜率不等于0的最小阈值, Tmde表示斜率最大时的阈值, Tmax是斜率与0有显著差异时的最大阈值。带M的指标表示相应阈值下, 达到该阈值的功能数(数据来自Jing et al, 2015)。
Fig. 1 The relationship between diversity of arbuscular mycorrhizal fungi (AMF) and the number of functions beyond a threshold of the maximum observed value. Different colors indicate different thresholds. Cooler colors imply lower thresholds; and warmer colors higher thresholds. Tmin is the minimum threshold whose slope is significantly different from 0. Tmde is the threshold with the steepest slope. Tmax is the maximum threshold where the slope is not significantly different from 0 again. All indices preceded by M indicate the number of functions at or beyond the threshold (Data from Jing et al, 2015).
图2 在不同的阈值下, 丛枝菌根真菌(AMF)多样性和达到所测功能最大值的某一阈值的功能数之间关系的斜率。各个点是拟合值, 阴影表示±1的置信区间。Tmin表示斜率不等于0的最小阈值, Tmde表示斜率最大时的阈值, Tmax是斜率再次不等于0时的最大阈值, Rmde表示在Tmde处估计的最大斜率(数据来自Jing et al, 2015)。
Fig. 2 The slope of the relationship between diversity of arbuscular mycorrhizal fungi (AMF) and the number of functions beyond a threshold of the maximum observed value at different thresholds. Points are the fitted values and shading indicated ±1 CI. Tmin is the lowest threshold whose slope is significantly different from 0. Tmde is the threshold with the steepest slope. Tmax is the maximum threshold where the slope is not significantly different from 0 again. Rmde indicates the maximum slope estimated at Tmde (Data are from Jing et al, 2015).
21 | Hendry AP, Lohmann LG, Conti E, Cracraft J, Crandall KA, Faith DP, Hauser C, Joly CA, Kogure K, Larigauderie A, Magallon S, Moritz C, Tillier S, Zardoya R, Prieur-Richard AH, Walther BA, Yahara T, Donoghue MJ (2010) Evolutionary biology in biodiversity science, conservation, and policy: a call to action. Evolution, 64, 1517-1528. |
22 | Hooper DU, Vitousek PM (1998) Effects of plant composition and diversity on nutrient cycling. Ecological Monographs, 68, 121-149. |
23 | Isbell F, Calcagno V, Hector A, Connolly J, Harpole WS, Reich PB, Scherer-Lorenzen M, Schmid B, Tilman D, van Ruijven J, Weigelt A, Wilsey BJ, Zavaleta ES, Loreau M (2011) High plant diversity is needed to maintain ecosystem services. Nature, 477, 199-202. |
24 | Jing X, Sanders NJ, Shi Y, Chu HY, Classen AT, Zhao K, Chen LT, Shi Y, Jiang YX, He JS (2015) The links between ecosystem multifunctionality and above- and belowground biodiversity are mediated by climate. Nature Communications, 6, doi:10.1038/ncomms9159. |
25 | Kirwan L, Connolly J, Finn JA, Brophy C, Luscher A, Nyfeler D, Sebastia MT (2009) Diversity-interaction modeling: estimating contributions of species identities and interactions to ecosystem function. Ecology, 90, 2032-2038. |
26 | Lefcheck JS, Byrnes JEK, Isbell F, Gamfeldt L, Griffin JN, Eisenhauer N, Hensel MJS, Hector A, Cardinale BJ, Duffy JE (2015) Biodiversity enhances ecosystem multifunctionality across trophic levels and habitats. Nature Communications, 6, 6936. |
27 | Loreau M, Hector A (2001) Partitioning selection and complementarity in biodiversity experiments. Nature, 412, 72-76. |
28 | Lundholm JT (2015) Green roof plant species diversity improves ecosystem multifunctionality. Journal of Applied Ecology, 52, 726-734. |
29 | Maestre FT, Castillo-Monroy AP, Bowker MA, Ochoa-Hueso R (2012a) Species richness effects on ecosystem multifunctionality depend on evenness, composition and spatial pattern. Journal of Ecology, 100, 317-330. |
30 | Maestre FT, Quero JL, Gotelli NJ, Escudero A, Ochoa V, Delgado-Baquerizo M, Garcia-Gomez M, Bowker MA, Soliveres S, Escolar C, Garcia-Palacios P, Berdugo M, Valencia E, Gozalo B, Gallardo A, Aguilera L, Arredondo T, Blones J, Boeken B, Bran D, Conceicao AA, Cabrera O, Chaieb M, Derak M, Eldridge DJ, Espinosa CI, Florentino A, Gaitan J, Gatica MG, Ghiloufi W, Gomez-Gonzalez S, Gutierrez JR, Hernandez RM, Huang X, Huber-Sannwald E, Jankju M, Miriti M, Monerris J, Mau RL, Morici E, Naseri K, Ospina A, Polo V, Prina A, Pucheta E, Ramirez- Collantes DA, Romao R, Tighe M, Torres-Diaz C, Val J, Veiga JP, Wang D, Zaady E (2012b) Plant species richness and ecosystem multifunctionality in global drylands. Science, 335, 214-218. |
31 | Ma KP (1994) Measurement of biotic community diversity. I. α diversity (part 1). Chinese Biodiversity, 2, 162-168. (in Chinese) |
[马克平 (1994) 生物群落多样性的测度方法 I. α多样性的测度方法(上). 生物多样性, 2, 162-168.] | |
32 | Miki T, Yokokawa T, Matsui K (2014) Biodiversity and multifunctionality in a microbial community: a novel theoretical approach to quantify functional redundancy. Proceedings of the Royal Society B: Biological Sciences, 281, 1-9. |
33 | Mooney HA, Cropper A, Reid W (2004) The Millennium Ecosystem Assessment: what is it all about? Trends in Ecology and Evolution, 19, 221-224. |
34 | Mouillot D, Villéger S, Scherer-Lorenzen M, Mason NWH (2011) Functional structure of biological cmmunities predicts ecosystem multifunctionality. PLoS ONE, 6, e17476. |
35 | Pasari JR, Levi T, Zavaleta ES, Tilman D (2013) Several scales of biodiversity affect ecosystem multifunctionality. Proceedings of the National Academy of Sciences, USA, 110, 10219-10222. |
36 | Pendleton RM, Hoeinghaus DJ, Gomes LC, Agostinho AA (2014) Loss of rare fish species from tropical floodplain food webs affects community structure and ecosystem multifunctionality in a mesocosm experiment. PLoS ONE, 9, e84568. |
37 | Perkins DM, Bailey RA, Dossena M, Gamfeldt L, Reiss J, Trimmer M, Woodward G (2015) Higher biodiversity is required to sustain multiple ecosystem processes across temperature regimes. Global Change Biology, 21, 396-406. |
38 | Peter H, Ylla I, Gudasz C, Romaní AM, Sabater S, Tranvik LJ (2011) Multifunctionality and diversity in bacterial biofilms. PLoS ONE, 6, e23225. |
39 | Quero JL, Maestre FT, Ochoa V, García-Gómez M, Delgado- Baquerizo M (2013) On the importance of shrub encroachment by sprouters, climate, species richness and anthropic factors for ecosystem multifunctionality in semi-arid mediterranean ecosystems. Ecosystems, 16, 1248-1261. |
40 | Soliveres S, Maestre FT, Eldridge DJ, Delgado-Baquerizo M, Quero JL, Bowker MA, Gallardo A (2014) Plant diversity and ecosystem multifunctionality peak at intermediate levels of woody cover in global drylands. Global Ecology and Biogeography, 23, 1408-1416. |
41 | Spehn EM, Hector A, Joshi J, Scherer-Lorenzen M, Schmid B, Bazeley-White E, Beierkuhnlein C, Caldeira MC, Diemer M, Dimitrakopoulos PG, Finn JA, Freitas H, Giller PS, Good J, Harris R, Högberg P, Huss-Danell K, Jumpponen A, Koricheva J, Leadley PW, Loreau M, Minns A, Mulder CPH, O’Donovan G, Otway SJ, Palmborg C, Pereira JS, Pfisterer AB, Prinz A, Read DJ, Schulze ED, Siamantziouras ASD, Terry AC, Troumbis AY, Woodward FI, Yachi S, Lawton JH (2005) Ecosystem effects of biodiversity manipulations in European grasslands. Ecological Monographs, 75, 37-63. |
42 | Tilman D, Knops J, Wedin D, Reich P, Ritchie M, Siemann E (1997a) The influence of functional diversity and composition on ecosystem processes. Science, 277, 1300-1302. |
43 | Tilman D, Lehman CL, Thomson KT (1997b) Plant diversity and ecosystem productivity: theoretical considerations. Proceedings of the National Academy of Sciences, USA, 94, 1857. |
44 | Uchiyama I, Higuchi T, Kawai M (2010) MBGD update 2010: toward a comprehensive resource for exploring microbial genome diversity. Nucleic Acids Research, 38, 361-365. |
45 | Valencia E, Maestre FT, Le Bagousse-Pinguet Y, Quero JL, Tamme R, Börger L, García-Gómez M, Gross N (2015) Functional diversity enhances the resistance of ecosystem multifunctionality to aridity in Mediterranean drylands. New Phytologist, 206, 660-671. |
46 | van der Heijden MGA, Martin FM, Selosse M, Sanders IR (2015) Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytologist, 205, 1406-1423. |
47 | Wagg C, Bender SF, Widmer F, van der Heijden MGA (2014) Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proceedings of the National Academy of Sciences, USA, 111, 5266-5270. |
48 | Xu W, Ma ZY, Jing X, He JS (2016) Biodiversity and ecosystem multifunctionality: status and perspectives. Biodiversity Science, 24, 55-71. (in Chinese with English abstract) |
[徐炜, 马志远, 井新, 贺金生 (2016) 生物多样性与生态系统多功能性: 进展与展望. 生物多样性, 24, 55-71.] | |
49 | Zavaleta ES, Pasari JR, Hulvey KB, Tilman GD (2010) Sustaining multiple ecosystem functions in grassland communities requires higher biodiversity. Proceedings of the National Academy of Sciences, USA, 107, 1443-1446. |
1 | Bowker MA, Maestre FT, Mau RL (2013) Diversity and patch-size distributions of biological soil crusts regulate dryland ecosystem multifunctionality. Ecosystems, 16, 923-933. |
2 | Bradford MA, Wood SA, Bardgett RD, Black HIJ, Bonkowski M, Eggers T, Grayston SJ, Kandeler E, Manning P, Setälä H, Jones TH (2014a) Discontinuity in the responses of ecosystem processes and multifunctionality to altered soil community composition. Proceedings of the National Academy of Sciences, USA, 111, 14478-14483. |
3 | Bradford MA, Wood SA, Bardgett RD, Black HIJ, Bonkowski M, Eggers T, Grayston SJ, Kandeler E, Manning P, Setälä H, Jones TH (2014b) Reply to Byrnes et al.: Aggregation can obscure understanding of ecosystem multifunctionality. Proceedings of the National Academy of Sciences, USA, 111, E5491. |
4 | Byrnes JEK, Gamfeldt L, Isbell F, Lefcheck JS, Griffin JN, Hector A, Cardinale BJ, Hooper DU, Dee LE, Emmett Duffy J (2014a) Investigating the relationship between biodiversity and ecosystem multifunctionality: challenges and solutions. Methods in Ecology and Evolution, 5, 111-124. |
5 | Byrnes JEK, Lefcheck JS, Gamfeldt L, Griffin JN, Isbell F, Hector A (2014b) Multifunctionality does not imply that all functions are positively correlated. Proceedings of the National Academy of Sciences, USA, 111, E5490. |
6 | Cardinale BJ, Wright JP, Cadotte MW, Carroll IT, Hector A, Srivastava DS, Loreau M, Weis JJ (2007) Impacts of plant diversity on biomass production increase through time because of species complementarity. Proceedings of the National Academy of Sciences, USA, 104, 18123-18128. |
7 | Cardinale BJ (2011) Biodiversity improves water quality through niche partitioning. Nature, 472, 86-89. |
8 | Cardinale BJ, Srivastava DS, Emmett Duffy J, Wright JP, Downing AL, Sankaran M, Jouseau C (2006) Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature, 443, 989-992. |
9 | Constán-Nava S, Soliveres S, Torices R, Serra L, Bonet A (2015) Direct and indirect effects of invasion by the alien tree Ailanthus altissima on riparian plant communities and ecosystem multifunctionality. Biological Invasions, 17, 1095-1108. |
10 | Dooley A, Isbell F, Kirwan L, Connolly J, Finn JA, Brophy C (2015) Testing the effects of diversity on ecosystem multifunctionality using a multivariate model. Ecology Letters, 18, 1242-1251. |
11 | Downing AL (2005) Relative effects of species composition and richness on ecosystem properties in ponds. Ecology, 86, 701-715. |
12 | Duffy JE, Macdonald KS, Rhode JM, Parker JD (2001) Grazer diversity, functional redundancy, and productivity in seagrass beds: an experimental test. Ecology, 82, 2417-2434. |
13 | Duffy JE, Richardson JP, Canuel EA (2003) Grazer diversity effects on ecosystem functioning in seagrass beds. Ecology Letters, 6, 637-645. |
14 | Faith DP (1992) Conservation evaluation and phylogenetic diversity. Biological Conservation, 61, 1-10. |
15 | Fang G, Bhardwaj N, Robilotto R, Gerstein MB (2010) Getting started in gene orthology and functional analysis. PLoS Computational Biology, 6, e1000703. |
16 | Fargione J, Tilman D, Dybzinski R, Lambers JHR, Clark C, Harpole WS, Knops JMH, Reich PB, Loreau M (2007) From selection to complementarity: shifts in the causes of biodiversity-productivity relationships in a long-term biodiversity experiment. Proceedings of the Royal Society B: Biological Sciences, 274, 871-876. |
17 | Gamfeldt L, Hillebrand H, Jonsson PR (2008) Multiple functions increase the importance of biodiversity for overall ecosystem functioning. Ecology, 89, 1223. |
18 | Gamfeldt L, Snäll T, Bagchi R, Jonsson M, Gustafsson L, Kjellander P, Ruiz-Jaen MC, Fröberg M, Stendahl J, Philipson CD, Mikusiński G, Andersson E, Westerlund B, Andrén H, Moberg F, Moen J, Bengtsson J (2013) Higher levels of multiple ecosystem services are found in forests with more tree species. Nature Communications, 4, doi: 10.1038/ncomms2328 . |
19 | He J, Ge Y, Xu Z, Chen C (2009) Linking soil bacterial diversity to ecosystem multifunctionality using backward- elimination boosted trees analysis. Journal of Soils and Sediments, 9, 547-554. |
20 | Hector A, Bagchi R (2007) Biodiversity and ecosystem multifunctionality. Nature, 448, 188-190. |
[1] | 张超 李娟 程海云 段家充 潘昭. 秦岭西段地区蝴蝶群落多样性与环境因子相关性[J]. 生物多样性, 2023, 31(1): 22272-. |
[2] | 王言一 张屹美 夏灿玮 Anders Pape M?ller. Alpha声学指数效用的meta分析[J]. 生物多样性, 2023, 31(1): 22369-. |
[3] | 马海港 范鹏来. 被动声学监测技术在陆生哺乳动物研究中的应用、进展和展望[J]. 生物多样性, 2023, 31(1): 22374-. |
[4] | 孙翊斐 王士政 冯佳伟 王天明. 东北虎豹国家公园森林声景的昼夜和季节变化[J]. 生物多样性, 2023, 31(1): 22523-. |
[5] | 张屹美 王言一 何衍 周冰 田苗 夏灿玮. Beta声学指数的特征和应用[J]. 生物多样性, 2023, 31(1): 22513-. |
[6] | 刘童祎, 姜立云, 乔格侠. 中国半翅目等29目昆虫新分类单元2021年年度报告[J]. 生物多样性, 2022, 30(8): 22300-. |
[7] | 万霞, 张丽兵. 世界维管植物新分类群2021年年度报告[J]. 生物多样性, 2022, 30(8): 22116-. |
[8] | 张露丹, 卢影, 褚畅, 何巧巧, 姚志远. 2021年世界蜘蛛新分类单元[J]. 生物多样性, 2022, 30(8): 22163-. |
[9] | 郭淳鹏, 钟茂君, 汪晓意, 杨胜男, 唐科, 贾乐乐, 张春兰, 胡军华. 福建省两栖、爬行动物更新名录[J]. 生物多样性, 2022, 30(8): 22090-. |
[10] | 牛铜钢, 刘为. 双碳战略背景下城市生态系统的碳汇功能与生物多样性可以兼得[J]. 生物多样性, 2022, 30(8): 22168-. |
[11] | 闫冰, 陆晴, 夏嵩, 李俊生. 城市土壤微生物多样性研究进展[J]. 生物多样性, 2022, 30(8): 22186-. |
[12] | 宋蕊, 邓晶, 秦涛. 野生动物肇事公众责任保险发展困境与优化路径[J]. 生物多样性, 2022, 30(7): 22291-. |
[13] | 程卓, 张晴, 龙春林. 民族植物学研究现状(2017-2022)[J]. 生物多样性, 2022, 30(7): 22372-. |
[14] | 刘冰, 覃海宁. 中国高等植物多样性编目进展[J]. 生物多样性, 2022, 30(7): 22397-. |
[15] | 沈梅, 郭宁宁, 罗遵兰, 郭晓晨, 孙光, 肖能文. 基于eDNA metabarcoding探究北京市主要河流鱼类分布及影响因素[J]. 生物多样性, 2022, 30(7): 22240-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn