生物多样性 ›› 2020, Vol. 28 ›› Issue (9): 1049-1058.  DOI: 10.17520/biods.2020038

所属专题: 青藏高原生物多样性与生态安全

• 中国野生动物红外相机监测网络专题 • 上一篇    下一篇

西南山地红外相机监测网络建设进展

李晟1,*(), William J. McShea2, 王大军1, 申小莉3, 卜红亮1, 官天培4, 王放5, 古晓东6, 张晓峰7, 廖灏泓8   

  1. 1 北京大学生命科学学院, 北京 100871
    2 Smithsonian Conservation Biology Institute, Front Royal, VA 22630, USA
    3 中国科学院植物研究所植被与环境变化国家重点实验室, 北京 100093
    4 绵阳师范学院生态安全与保护四川省重点实验室, 四川绵阳 621000
    5 复旦大学生命科学学院, 上海 200438
    6 四川省林业与草原局, 成都 610081
    7 陕西省林业局, 西安 710082
    8 大自然保护协会中国部, 云南丽江 674100
  • 收稿日期:2020-02-09 接受日期:2020-07-13 出版日期:2020-09-20 发布日期:2020-07-20
  • 通讯作者: 李晟
  • 作者简介:*E-mail: shengli@pku.edu.cn
  • 基金资助:
    生态环境部生物多样性调查、观测与评估项目(2019HJ2096001006);生物多样性保护重大工程专项(2110404: MM-2017-026);生物多样性保护重大工程专项(2018-02-06- M2019-43/44)

Construction progress of the Camera-trapping Network for the Mountains of Southwest China

Sheng Li1,*(), William J. McShea2, Dajun Wang1, Xiaoli Shen3, Hongliang Bu1, Tianpei Guan4, Fang Wang5, Xiaodong Gu6, Xiaofeng Zhang7, Haohong Liao8   

  1. 1 School of Life Sciences, Peking University, Beijing 100871, China
    2 Smithsonian Conservation Biology Institute, Front Royal, VA 22630, USA
    3 State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
    4 Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Teachers’ College, Mianyang, Sichuan 621000, China
    5 School of Life Sciences, Fudan University, Shanghai 200438, China
    6 Forestry and Grassland Administration of Sichuan Province, Chengdu 610081, China
    7 Forestry Administration of Shaanxi Province, Xi’an 710082, China
    8 The Nature Conservancy—China Program, Lijiang, Yunnan 674100, China
  • Received:2020-02-09 Accepted:2020-07-13 Online:2020-09-20 Published:2020-07-20
  • Contact: Sheng Li

摘要:

中国西南山地是全球生物多样性热点区。西南山地红外相机监测网络是我国生物多样性监测的区域性红外相机网络之一。该网络由北京大学牵头, 始建于2002年, 合作单位包括科研院所、高校、保护组织、政府部门、保护地管理机构等。网络主要覆盖青藏高原东缘大横断山区域的秦岭、岷山、邛崃山、相岭、凉山、沙鲁里山、云岭7大山系。网络内目前共有41个监测样区, 包括自然保护区、社区保护地、林场等多种类型。网络内监测样区均采用标准的网格化布设规程, 采取统一数据结构与数据库结构、建立离散式数据库进行分散管理的总体架构, 所有监测样区的数据库保持一致的结构和统一的核心字段, 由每个监测样区建立并维护各自独立的数据库。截至2019年12月, 网络内布设有效调查/监测位点5,738个, 已处理数据中调查工作量(以有效相机日计)合计约120.74万天, 积累红外相机照片/视频(删除连续空拍后) 302.59万份, 另有111.16万份待处理。共记录到分属7目21科的63种野生哺乳动物与分属10目35科的182种野生鸟类物种, 其中国家一、二级重点保护野生动物分别有18与39种。西南山地网络今后的重点工作方向包括: (1)基于通用元数据结构建立统一的在线数据库平台; (2)加强网络内保护地数据管理与分析能力建设; (3)为区域内生物多样性保护与保护地管理提供持续支持; (4)针对野生动物种间关系、群落构建机制以及大型食肉动物的生态功能开展深入的动物生态学研究。

关键词: 中国西南山地, 大横断山, 生物多样性监测, 红外相机, 保护地网络, 生物多样性平台

Abstract

The Mountains of Southwest China is a global biodiversity hotspot. The Camera-trapping Network for the Mountains of Southwest China (SW China Network) has been established as one of the regional camera-trapping networks to measure biodiversity in China. This network was first initiated by Peking University in 2002, and now includes numerous partners from academic institutions, universities, conservation organizations, government agencies, and protected area administrations. The SW China Network spans across seven mountain ranges (i.e., Qinling, Minshan, Qionglai, Xiangling, Liangshan, Shaluli and Yunling Mountains) along the eastern edge of the Qinghai-Tibetan Plateau. Forty-one protected areas (e.g., nature reserves, community-managed protected areas, and timberlands, etc.) have joined the network, with each following a standardized survey protocol. Each protected area maintains its own camera-trapping database that is constructed using a common metadata structure. By December 2019, the SW China Network has generated approximately 3,025,900 camera-trapping images (excluding the empty images) at 5,738 survey stations, over 1,207,000 camera-days. An additional ~1,100,000 images are yet to be processed. We have recorded 63 wild mammal species (belonging to 7 orders and 21 families) and 182 wild bird species (belonging to 10 orders and 35 families), among which 18 are listed as Class-I, and 39 as Class-II National Key Protected Species. The network has four focal areas in the future: (1) construct an online data platform based on a common metadata structure, (2) provide training for reserve staff on camera data analysis to build local capacity for data management and analysis, (3) provide supports for regional biodiversity conservation and protected area management, and (4) conduct wildlife ecology research on the interspecific relationship, community assembly mechanisms, and ecological roles of large carnivores.

Key words: Mountains of Southwest China, Great Hengduan Mountains, biodiversity monitoring, camera- trapping, protected area network, biodiversity infrastructure